Relationship between Changes in Condylar Morphology and Masticatory Muscle Volume after Skeletal Class II Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orthognathic Surgery and Proximal Segment Repositioning
2.2. Evaluation of Condylar Morphology Changes
2.3. Measurement of 3D Positional Changes in the Condyle
2.4. Measurement of 3D Positional Changes in the Mandibular Body (Distal Segments)
2.5. Measurement of the Masseter and Medial Pterygoid Muscle Volume Changes
2.6. Statistical Analysis
3. Results
3.1. The Changes in the Condylar Morphology after Orthognathic Surgery
3.2. Positional Changes in the Condyle and Mandibular Body in Three Dimensions
3.3. The Changes in the Masseter and Medial Pterygoid Muscle Volume
3.4. Correlations between Distance and Direction of Mandibular Body Movement, Muscular Volumes, and Mandibular Condyle Changes
4. Discussion
4.1. Relationship between Orthognathic Surgery and TMJ Pain
4.2. Relationship between Orthognathic Surgery for Mandibular Advancement and Mandibular Condyle
4.3. Relationships between Masticatory Muscle Volume Changes, Mandibular Condyle Changes, and Orthognathic Surgery
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnett, G.W.; Milam, S.B.; Gottesman, L. Progressive mandibular retrusion-idiopathic condylar resorption. Part I. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 8–15. [Google Scholar] [CrossRef]
- Arnett, G.W.; Milam, S.B.; Gottesman, L. Progressive mandibular retrusion-idiopathic condylar resorption. Part II. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 117–127. [Google Scholar] [CrossRef]
- Mendez-Manjon, I.; Guijarro-Martınez, R.; Valls-Ontanon AHernandez-Alfaro, F. Early changes in condylar position after mandibular advancement: A three-dimensional analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lei, J.; Wang, X.; Fu, K.-Y.; Farzad, P.; Yi, B. Short- and long-term changes of condylar position after bilateral sagittal split ramus osteotomy for mandibular advancement in combination with Le Fort I osteotomy evaluated by cone-beam computed tomography. J. Oral Maxillofac. Surg. 2013, 71, 1956–1966. [Google Scholar] [CrossRef]
- Harris, M.D.; Van Sickels, J.E.; Alder, M. Factors influencing condylar position after the bilateral sagittal split osteotomy fixed with bicortical screws. J. Oral Maxillofac. Surg. 1999, 57, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E., 3rd. Condylar positioning devices for orthognathic surgery: Are they necessary? J. Oral Maxillofac. Surg. 1994, 52, 536–552. [Google Scholar] [CrossRef] [PubMed]
- Epker, B.N.; Wylie, G.A. Control of the condylar-proximal mandibular segments after sagittal split osteotomies to advance the mandible. Oral Surg. Oral Med. Oral Pathol. 1986, 62, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Ueki, K.; Moroi, A.; Sotobori, M.; Ishihara, Y.; Marukawa, K.; Takatsuka, S.; Yoshizawa, K.; Kato, K.; Kawashiri, S. A hypothesis on the desired postoperative position of the condyle in orthognathic surgery: A review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-J.; Haers, P.E.; Zimmermann, A.; Oechslin, C.; Seifert, B.; Sailer, H.F. Surgical risk factors for condylar resorption after orthognathic surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 542–552. [Google Scholar] [CrossRef]
- Xi, T.; Schreurs, R.; van Loon, B.; de Koning, M.; Bergé, S.; Hoppenreijs, T.; Maal, T. 3D analysis of condylar remodelling and skeletal relapse following bilateral sagittal split advancement osteotomies. J. Craniomaxillofac. Surg. 2015, 43, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Izumi, N.; Kojima, T.; Sakagami, N.; Saito, I.; Saito, C. Progressive condylar resorption after mandibular advancement. Br. J. Oral Maxillofac. Surg. 2012, 50, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Dicker, G.J.; Castelijns, J.A.; Tuinzing, D.B.; Stoelinga, P.J.W. Do the changes in muscle mass, muscle direction, and rotations of the condyles that occur after sagittal split advancement osteotomies play a role in the aetiology of progressive condylar resorption. Int. J. Oral Maxillofac. Surg. 2015, 44, 627–631. [Google Scholar] [CrossRef]
- Basit, H.; Tariq, M.A.; Siccardi, M.A. Anatomy, Head and Neck, Mastication Muscles; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Olchowy, C.; Grzech-Leśniak, K.; Hadzik, J.; Olchowy, A.; Łasecki, M. Monitoring of Changes in Masticatory Muscle Stiffness after Gum Chewing Using Shear Wave Elastography. J. Clin. Med. 2021, 10, 2480. [Google Scholar] [CrossRef]
- Fassicollo, C.E.; Garcia, D.M.; Machado, B.C.Z.; de Felício, C.M. Changes in jaw and neck muscle coactivation and coordination in patients with chronic painful TMD disk displacement with reduction during chewing. Physiol. Behav. 2021, 230, 113267. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, G.; Wójcicki, M.; Rapa, M.; Matysik-Woźniak, A.; Baszczowski, M.; Ginszt, M.; Litko-Rola, M.; Szkutnik, J.; Różyło-Kalinowska, I.; Rejdak, R.; et al. Correlation between refractive error, muscle thickness, and bioelectrical activity of selected masticatory muscles. Cranio 2023, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sassouni, V. A classification of skeletal facial types. Am. J. Orthod. 1969, 55, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Sassouni, V.; Nanda, S. Analysis of dento-facial vertical proportion. Am. J. Orthod. 1964, 50, 801–823. [Google Scholar] [CrossRef]
- Sant’ana, E.; Souza, D.P.; Temprano, A.B.; Shinohara, E.H.; Faria, P.E.P. Lingual Short Split: A Bilateral Sagittal Split Osteotomy Technique Modification. J. Craniofac. Surg. 2017, 28, 1852–1854. [Google Scholar] [CrossRef]
- Arnett, G.W.; Gunson, M.J. Risk factors in the initiation of condylar resorption. Semin. Orthod. 2013, 19, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Hanada, K.; Hayashi, T.; Ito, J. Condylar bony change, disk displacement and signs and symptoms of TMJ disorders in orthognathic surgery patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Hiruma, Y.; Hanada, K.; Hayashi, T.; Koyama, J.I.; Ito, J. Condylar bony change and craniofacial morphology in orthodontic patients with temporomandibular disorders (TMD) symptoms: A pilot study using helical computed tomography and magnetic resonance imaging. Clin. Orthod. Res. 1999, 2, 133–142. [Google Scholar] [CrossRef]
- Kim, Y.I.; Jung, Y.H.; Cho, B.H.; Kim, J.R.; Kim, S.S.; Son, W.S.; Park, S.B. The assessment of the short- and long-term changes in the condylar position following sagittal split ramus osteotomy (SSRO) with rigid fixation. J. Oral Rehabil. 2010, 37, 262–270. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient Variants of the ICP Algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001. [Google Scholar]
- Ellis, H.; Logan, B.M.; Dixon, A.K. Human Sectional Anatomy; Atlas of Body Sections, CT and MRI Images, 2nd ed; Nankodo Co., Ltd.: Tokyo, Japan, 1999; pp. 30–45, 80–87. (In Japanese) [Google Scholar]
- Dicker, G.; Van Spronsen, P.; Van Schijndel, R.; van Ginkel, F.; Manoliu, R.; Boom, H.; Tuinzing, D.B. Adaptation of jaw closing muscles after surgical mandibular advancement procedures in different vertical craniofacial types: A magnetic resonance imaging study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 475–482. [Google Scholar] [CrossRef]
- Frey, D.R.; Hatch, J.P.; Van Sickels, J.E.; Dolce, C.; Rugh, J.D. Effects of surgical mandibular advancement and rotation on signs and symptoms of temporomandibular disorder: A 2-year follow-up study. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 490.e1–490.e8. [Google Scholar] [CrossRef]
- Dujoncquoy, J.P.; Ferril, J.; Raoul, G.; Kleinhein, J. Temporomandibular joint dysfunction and orthognathic surgery: A retrospective study. Head Face Med. 2010, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbaje, J.; Luyten, J.; Politis, C. Pain Complaints in Patients Undergoing Orthognathic Surgery. Pain Res. Manag. 2018, 2018, 4235025. [Google Scholar] [CrossRef]
- Wolford, L.M.; Reiche-Fischel, O.; Mehra, P. Changes in temporomandibular joint dysfunction after orthognathic surgery. J. Oral Maxillofac. Surg. 2003, 61, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabrizi, R.; Shahidi, S.; Bahramnejad, E.; Arabion, H. Evaluation of Condylar Position after Orthognathic Surgery for Treatment of Class II Vertical Maxillary Excess and Mandibular Deficiency by Using Cone-Beam Computed Tomography. J. Dent. 2016, 17, 318–325. [Google Scholar]
- Hoppenreijs, T.J.; Stoelinga, P.J.; Grace, K.L.; Robben, C.M. Long-term evaluation of patients with progressive condylar resorption following orthognathic surgery. Int. J. Oral Maxillofac. Surg. 1999, 28, 411–418. [Google Scholar] [CrossRef]
- Hoppenreijs, T.J.; Maal, T.; Xi, T. Evaluation of condylar resorption before and after orthognathic surgery. Semin. Orthod. 2013, 19, 106–115. [Google Scholar] [CrossRef]
- Van Sickels, J.E.; Dolce, C.; Keeling, S.; Tiner, B.D.; Clark, G.M.; Rugh, J.D. Technical factors accounting for stability of a bilateral sagittal split osteotomy advancement: Wire osteosynthesis versus rigid fixation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2000, 89, 19–23. [Google Scholar] [CrossRef]
- Reynolds, S.T.; Ellis, E., 3rd; Carlson, D.S. Adaptation of the Suprahyoid muscle complex to large mandibular advancements. J. Oral Maxillofac. Surg. 1988, 46, 1077–1085. [Google Scholar] [CrossRef]
- Joss, C.U.; Vassalli, I.M. Stability after bilateral sagittal split osteotomy advancement surgery with rigid internal fixation: A systematic review. J. Oral Maxillofac. Surg. 2009, 67, 301–313. [Google Scholar] [CrossRef]
- Kawamata, A.; Fujishita, M.; Nagahara, K.; Kanematu, N.; Niwa, K.I.; Langlais, R.P. Three-dimensional computed tomography evaluation of postsurgical condylar displacement after mandibular osteotomy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 85, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, D.A.; Suguimoto, R.M.; Wolford, L.W.; Sachdeva, R.; Guo, I.Y. Condylar change after upward and forward rotation of the maxillomandibular complex. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 156–162. [Google Scholar] [CrossRef]
- Xi, T.; de Koning, M.; Bergé, S.; Hoppenreijs, T.; Maal, T. The role of mandibular proximal segment rotations on skeletal relapse and condylar remodelling following bilateral sagittal split advancement osteotomies. J. Craniomaxillofac. Surg. 2015, 43, 1716–1722. [Google Scholar] [CrossRef]
- Carvalho FD, A.R.; Cevidanes LH, S.; da Motta AT, S.; de Oliveira Almeida, M.A.; Phillips, C. Three-dimensional assessment of mandibular advancement 1 year after surgery. Am. J. Orthod. Dentofac. Orthop. 2010, 137 (Suppl. 4), S53.e1–S53.e12, discussion S53–55. [Google Scholar]
- Ellis, E., 3rd; Sinn, D.S. Connective tissue forces from mandibular advancement. J. Oral Maxillofac. Surg. 1994, 52, 1160–1163. [Google Scholar] [CrossRef]
- Ellis, E., 3rd; Hinton, R.J. Histologic examination of the temporomandibular joint after mandibular advancement with and without rigid fixation: An experimental investigation in adult Macaca mulatta. J. Oral Maxillofac. Surg. 1991, 49, 1316–1327. [Google Scholar] [CrossRef]
- Ellis, E., 3rd; Carlson, D.S. Stability two years after mandibular advancement surgery with and without suprahyoid myotomy: An experimental investigation. J. Oral Maxillofac. Surg. 1983, 41, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Borikanphanitphaisan, T.; Lin, C.H.; Chen, Y.A.; Ko, E.W. Accuracy of mandible-first versus maxilla-first approach and of thick versus thin splints for skeletal position after two-jaw orthognathic surgery. Plast. Reconstr. Surg. 2021, 147, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Hamdy Mahmoud, M.; Ismail Elfaramawi, T. Maxillary stability in patients with skeletal class III malocclusion treated by bimaxillary orthognathic surgery: Comparison of mandible-first and maxilla-first approaches in a randomised controlled study. Br. J. Oral Maxillofac. Surg. 2022, 60, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Irgebay, Z.; Beiriger, J.C.; Beiriger, J.W.; Matinrazm, S.; Natali, M.; Yi, C.; Smetona, J.; Schuster, L.; Goldstein, J.A. Review of Diet Protocols Following Orthognathic Surgery and Analysis of Postoperative Weight Loss. Cleft Palate Craniofac. J. 2022, 15, 10556656221113998. [Google Scholar] [CrossRef] [PubMed]
Condylar Morphology | Pre-Treatment | Post-Treatment | ||
---|---|---|---|---|
n | % | n | % | |
Normal | 12 | 20.00 | 4 | 6.67 |
Flattening | 38 | 63.33 | 29 | 48.33 |
Erosion | 5 | 8.33 | 2 | 3.33 |
Osteophytes | 1 | 1.67 | 0 | 0.00 |
Flattening and erosion | 4 | 6.67 | 16 | 26.67 |
Flattening and osteophytes | 0 | 0.00 | 3 | 5.00 |
Flattening, erosion, and osteophytes | 0 | 0.00 | 6 | 10.00 |
Total | 60 | 100 | 60 | 100 |
Measurement | Median | IQR |
---|---|---|
FH Condyle angle (degree) | −2.56 | −0.51–(−4.36) |
MSR Condyle angle (degree) | 0.85 | 3.56–(−1.83) |
N Condyle angle (degree) | −0.86 | 1.28–(−1.46) |
Distance (mm) | 5.67 | 7.69–3.84 |
Direction (mm) X | 0.61 | 1.61–(−0.44) |
Y | 4.67 | 7.18–2.85 |
Z | 0.23 | 1.99–(−1.30) |
Measurement | Pre-Surgery | Post-Surgery | r | p Value | ||
---|---|---|---|---|---|---|
Median | IQR | Median | IQR | |||
Masseter (cm3) | 16.96 | 20.38–13.75 | 15.70 | 17.76–12.82 | 0.60 | 0.00 ** |
Medial pterygoid (cm3) | 7.31 | 9.16–6.30 | 6.56 | 7.86–5.90 | 0.62 | 0.00 ** |
Variables | Correlation | Variables | Correlation | ||
---|---|---|---|---|---|
R | p Value | R | p Value | ||
MCA vs. masseter | −0.15 | NS | X axis vs. masseter | 0.05 | NS |
MCA vs. M ptery | −0.17 | NS | X axis vs. M ptery | 0.04 | NS |
MCA vs. condyle | 0.01 | NS | X axis vs. condyle | −0.07 | NS |
MCA vs. distance | −0.07 | NS | X axis vs. distance | 0.18 | NS |
FCA vs. masseter | 0.08 | NS | Y axis vs. masseter | 0.25 | NS |
FCA vs. M ptery | 0.33 | NS | Y axis vs. M ptery | 0.07 | NS |
FCA vs. condyle | 0.09 | NS | Y axis vs. condyle | 0.50 | 0.01 * |
FCA vs. distance | −0.04 | NS | Y axis vs. distance | 0.89 | 0.00 ** |
NCA vs. masseter | −0.02 | NS | Z axis vs. masseter | −0.10 | NS |
NCA vs. M ptery | −0.02 | NS | Z axis vs. M ptery | 0.08 | NS |
NCA vs. condyle | −0.06 | NS | Z axis vs. condyle | 0.18 | NS |
NCA vs. distance | 0.22 | NS | Z axis vs. distance | 0.12 | NS |
condyle vs. masseter | 0.29 | NS | masseter vs. M ptery | 0.29 | NS |
condyle vs. M ptery | 0.47 | 0.01 * | masseter vs. distance | 0.23 | NS |
condyle vs. distance | 0.53 | 0.00 ** | M ptery vs. distance | 0.15 | NS |
Evaluation | B | SE | Expo (B) | 95% Cl | R2 | p Value | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Condyle angle | MCA | 0.01 | 0.06 | 1.01 | 0.89 | 1.13 | 0.00 | 0.91 |
FCA | 0.08 | 0.12 | 1.89 | 0.87 | 1.37 | 0.01 | 0.47 | |
NCA | −0.02 | 0.18 | 0.98 | 0.69 | 1.40 | 0.00 | 0.91 | |
Mandibular body movement | ||||||||
Distance | 0.75 | 0.31 | 2.12 | 1.17 | 3.85 | 0.30 | 0.01 * | |
Direction | X | 0.02 | 0.20 | 1.02 | 0.68 | 1.51 | 0.05 | 0.93 |
Y | 0.45 | 0.22 | 1.57 | 1.03 | 2.39 | 0.25 | 0.04 * | |
Z | 0.22 | 0.20 | 1.24 | 0.84 | 1.84 | 0.03 | 0.28 | |
Masseter volume change | 0.43 | 0.28 | 1.53 | 0.89 | 2.63 | 0.07 | 0.12 | |
Medial pterygoid volume change | 2.04 | 0.97 | 7.66 | 1.14 | 51.37 | 0.22 | 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekroengsin, B.; Tachiki, C.; Takaki, T.; Nishii, Y. Relationship between Changes in Condylar Morphology and Masticatory Muscle Volume after Skeletal Class II Surgery. J. Clin. Med. 2023, 12, 4875. https://doi.org/10.3390/jcm12144875
Lekroengsin B, Tachiki C, Takaki T, Nishii Y. Relationship between Changes in Condylar Morphology and Masticatory Muscle Volume after Skeletal Class II Surgery. Journal of Clinical Medicine. 2023; 12(14):4875. https://doi.org/10.3390/jcm12144875
Chicago/Turabian StyleLekroengsin, Bunpout, Chie Tachiki, Takashi Takaki, and Yasushi Nishii. 2023. "Relationship between Changes in Condylar Morphology and Masticatory Muscle Volume after Skeletal Class II Surgery" Journal of Clinical Medicine 12, no. 14: 4875. https://doi.org/10.3390/jcm12144875
APA StyleLekroengsin, B., Tachiki, C., Takaki, T., & Nishii, Y. (2023). Relationship between Changes in Condylar Morphology and Masticatory Muscle Volume after Skeletal Class II Surgery. Journal of Clinical Medicine, 12(14), 4875. https://doi.org/10.3390/jcm12144875