Minimally Invasive Isolated Aortic Valve Replacement in a Potential TAVI Cohort of Patients Aged ≥ 75 Years: A Propensity-Matched Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population, Study Design and Ethics Statement
2.2. Surgical MIAVR Access Routes
2.3. Statistical Analysis
3. Results
3.1. Patient Baseline Characteristics
3.2. Unadjusted Outcomes
3.3. Outcomes of Propensity-Score-Matched Patients
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. 2022, 75, 524. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B. Transcatheter aortic-valve replacement in low-risk patients. N. Engl. J. Med. 2019, 381, 684–685. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J. Surgical or transcatheter aortic-valve replacement. N. Engl. J. Med. 2017, 377, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.M.; Reardon, M.J. The corevalve US pivotal trial. Semin. Thorac. Cardiovasc. Surg. 2014, 26, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Thyregod, H.G.; Steinbruchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrom, T.; Clemmensen, P.; et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers notion randomized clinical trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Tamburino, C.; D’Errigo, P.; Biancari, F.; Ranucci, M.; Rosato, S.; Santoro, G.; Fusco, D.; Seccareccia, F.; OBSERVANT Research Group. Five-year outcomes of transfemoral transcatheter aortic valve replacement or surgical aortic valve replacement in a real world population. Circ. Cardiovasc. Interv. 2019, 12, e007825. [Google Scholar] [CrossRef] [PubMed]
- Beyersdorf, F.; Bauer, T.; Freemantle, N.; Walther, T.; Frerker, C.; Herrmann, E.; Bleiziffer, S.; Mollmann, H.; Landwehr, S.; Ensminger, S.; et al. Five-year outcome in 18 010 patients from the German aortic valve registry. Eur. J. Cardiothorac. Surg. 2021, 60, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Barili, F.; Freemantle, N.; Musumeci, F.; Martin, B.; Anselmi, A.; Rinaldi, M.; Kaul, S.; Rodriguez-Roda, J.; Di Mauro, M.; Folliguet, T.; et al. Five-year outcomes in trials comparing transcatheter aortic valve implantation versus surgical aortic valve replacement: A pooled meta-analysis of reconstructed time-to-event data. Eur. J. Cardiothorac. Surg. 2022, 61, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Recent Trends in Life Expectancy at Older Ages: Update to 2014. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/499252/Recent_trends_in_life_expectancy_at_older_ages_2014_update.pdf (accessed on 26 February 2023).
- Wilbring, M.; Alexiou, K.; Schmidt, T.; Petrov, A.; Taghizadeh-Waghefi, A.; Charitos, E.; Matschke, K.; Arzt, S.; Kappert, U. Safety and efficacy of the transaxillary access for minimally invasive aortic valve surgery. Medicina 2023, 59, 160. [Google Scholar] [CrossRef] [PubMed]
- Wilbring, M.; Arzt, S.; Alexiou, K.; Charitos, E.; Matschke, K.; Kappert, U. Clinical safety and efficacy of the transaxillary access route for minimally invasive aortic valve replacement. Thorac. Cardiovasc. Surg. 2023, 71, S1–S72. [Google Scholar] [CrossRef]
- Mariscalco, G.; Biancari, F.; Zanobini, M.; Cottini, M.; Piffaretti, G.; Saccocci, M.; Banach, M.; Beghi, C.; Angelini, G.D. Bedside tool for predicting the risk of postoperative atrial fibrillation after cardiac surgery: The POAF score. J. Am. Heart Assoc. 2014, 3, e000752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, T.H.; Thygesen, J.B.; Thyregod, H.G.; Svendsen, J.H.; Sondergaard, L. New-onset atrial fibrillation after surgical aortic valve replacement and transcatheter aortic valve implantation: A concise review. J. Invasive Cardiol. 2015, 27, 41–47. [Google Scholar] [PubMed]
- Axtell, A.L.; Moonsamy, P.; Melnitchouk, S.; Tolis, G.; Jassar, A.S.; D’Alessandro, D.A.; Villavicencio, M.A.; Cameron, D.E.; Sundt, T.M., 3rd. Preoperative predictors of new-onset prolonged atrial fibrillation after surgical aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2020, 159, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Scurlock, C.; Reich, D.; Raikhelkar, J.; Hossain, S.; Bodian, C.; Krol, M.; Flynn, B. Predictive model for postoperative delirium in cardiac surgical patients. Semin. Cardiothorac. Vasc. Anesth. 2010, 14, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Bach, V.; Schruckmayer, G.; Sam, I.; Kemmler, G.; Stauder, R. Prevalence and possible causes of anemia in the elderly: A cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 2014, 9, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cremer, J. Wie aus leitlinien leidlinien werden! Zeitschrift für Herz- Thorax- und Gefäßchirurgie 2021, 35, 253–254. [Google Scholar] [CrossRef]
- Dayan, V.; Gomes, W.J. The new esc/eacts recommendations for transcatheter aortic valve implantation go too far. Eur. Heart J. 2022, 43, 2753–2755. [Google Scholar] [CrossRef] [PubMed]
Before Matching | After Matching | |
---|---|---|
BMI (kg/m2) | 0.152 | 0.055 |
Preoperative LVEF (%) | 0.038 | 0.039 |
Estimated creatinine clearance (mL/min) | 1.023 | 0.079 |
NYHA I | 0.046 | 0.023 |
NYHA II | 0.139 | 0.048 |
NYHA III | 0.150 | 0.035 |
NYHA IV | <0.001 | 0.029 |
Sex | 0.170 | 0.075 |
Diabetes (no/yes) | 0.167 | 0.048 |
Pulmonary hypertension (no/yes) | 0.251 | 0.061 |
Coronary artery disease (no/yes) | 0.380 | 0.012 |
Peripheral vascular disease (no/yes) | 0.016 | 0.032 |
Chronic obstructive pulmonary disease (no/yes) | 0.008 | 0.020 |
Pre-Matched Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Isolated MIAVR < 75 (n = 956) | Isolated MIAVR ≥ 75 (n = 383) | p | Isolated MIAVR < 75 (n = 347) | Isolated MIAVR ≥ 75 (n = 347) | p | |
Age (years), mean ± SD | 64.2 ± 8.1 | 77.3 ± 1.7 | ≤0.001 ** | 67.8 ± 5.9 | 77.2 ± 1.7 | <0.001 ** |
Sex (male), n (%) | 623 (65.2) | 218 (56.9) | ≤0.01 * | 186 (53.6) | 199 (57.3) | 0.36 |
Height (cm), mean ± SD | 171.2 ± 9.3 | 168.8 ± 9.3 | ≤0.001 ** | 167.5 ± 9.0 | 168.7 ± 9.4 | 0.09 |
Weight (kg), mean ± SD | 83.9 ± 16.7 | 79.5 ± 13.8 | ≤0.001 ** | 79.4 ± 15.4 | 79.9 ± 13.9 | 0.24 |
BMI (kg/m2), mean ± SD | 28.6 ± 5.1 | 27.9 ± 4.2 | 0.10 | 28.3 ± 4.9 | 28.0 ± 4.2 | ≥0.99 |
Arterial hypertension, n (%) | 866 (90.6) | 378 (98.7) | ≤0.001 ** | 332 (95.7) | 343 (98.8) | 0.02 * |
Diabetes mellitus, n (%) | 263 (27.5) | 135 (35.2) | 0.02 * | 119 (34.3) | 127 (36.6) | 0.91 |
Dyslipidemia, n (%) | 565 (59.1) | 245 (64.0) | 0.11 | 212 (61.1) | 228 (65.7) | 0.24 |
Coronary artery disease, n (%) | 210 (22.0) | 150 (39.2) | ≤0.001 ** | 132 (38.0) | 130 (37.5) | 0.77 |
LVEF (%), mean ± SD | 57.3 ± 11.1 | 57 ± 9.6 | 0.79 | 58.1 ± 11.1 | 57.7 ± 9.6 | 0.39 |
COPD, n (%) | 82 (8.6) | 32 (8.4) | ≥0.99 | 33 (9.5) | 31 (8.9) | 0.90 |
Pulmonary arterial hypertension, n (%) | 100 (10.5) | 74 (19.3) | ≤0.001 ** | 55 (15.9) | 63 (18.2) | 0.45 |
Renal insufficiency, n (%) | 118 (12.3) | 107 (27.9) | ≤0.001 ** | 97 (28.0) | 83 (23.9) | 0.26 |
Hemodialysis, n (%) | 10 (1.0) | 0 (0.0) | 0.07 | 7 (2.0) | 0 (0.0) | 0.02 * |
CRCL (mL/min), mean ± SD | 91.4 ± 28.0 | 66.9 ± 19.0 | ≤0.001 ** | 70.5 ± 19.5 | 68.7 ± 18.8 | 0.06 |
PAOD, n (%) | 37 (3.9) | 16 (4.2) | 0.54 | 11 (3.2) | 13 (3.7) | 0.84 |
Carotid artery stenosis > 50%, n (%) | 25 (2.6) | 34 (8.9) | ≤0.001 ** | 132 (38) | 130 (37.5) | 0.02 * |
TIA, n (%) | 22 (2.3) | 9 (2.3) | ≥0.99 | 10 (2.9) | 9 (2.6) | ≥0.99 |
Ischemic stroke, n (%) | 39 (4.0) | 23 (6.0) | 0.14 | 15 (4.3) | 22 (6.4) | 0.25 |
Atrial fibrillation, n (%) | 94 (9.8) | 79 (20.7) | ≤0.001 ** | 47 (13.5) | 26 (6.1) | 0.22 |
Pacemaker, n (%) | 22 (2.3) | 21 (5.5) | ≤0.01 * | 7 (2.0) | 21 (6.1) | 0.01 * |
Smoker status, n (%) | 149 (15.6) | 29 (7.6) | ≤0.001 ** | 37 (10.7) | 26 (7.5) | 0.19 |
NYHA class III or IV, n (%) | 531 (55.5) | 241 (62.9) | ≤0.01 * | 211 (60.8) | 218 (62.8) | 0.59 |
EuroSCORE II (%), mean ± SD | 1.38 ± 1.0 | 2.25 ± 1.3 | ≤0.001 ** | 1.8 ± 1.3 | 2.2 ± 1.3 | ≤0.001 ** |
STS-PROM Score, mean ± SD | 1.1 ± 0.7 | 1.9 ± 0.9 | ≤0.001 ** | 1.5 ± 0.8 | 1.9 ± 0.9 | ≤0.001 ** |
Pre-Matched Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Isolated MIAVR < 75 (n = 956) | Isolated MIAVR ≥ 75 (n = 383) | p | Isolated MIAVR < 75 (n = 347) | Isolated MIAVR ≥ 75 (n = 347) | p | |
Surgical access route † | ||||||
| 307 (32.1) | 114 (29.8) | 110 (31.7) | 107 (30.8) | ||
| 331 (34.6) | 161 (42.0) | 0.03 * | 117 (33.7) | 142 (40.9) | 0.10 |
| 318 (33.3) | 108 (28.2) | 120 (34.6) | 98 (28.2) | ||
Prosthesis size (mm), mean ± SD | 23.9 ± 2.0 | 23.8 ± 2.0 | 0.35 | 186 (53.6) | 199 (57.3) | 0.36 |
STST (min), mean ± SD | 171.2 ± 9.3 | 79.5 ± 13.9 | 0.44 | 167.5 ± 9.0 | 168.7 ± 9.4 | 0.09 |
CPBT (min), mean ± SD | 66.9 ± 21.8 | 64.4 ± 24.5 | 0.02 * | 79.4 ± 15.4 | 79.9 ± 13.9 | 0.24 |
ACCT (min), mean ± SD | 46.8 ± 16.5 | 43.6 ± 14.8 | ≤0.001 ** | 28.3 ± 4.9 | 28.0 ± 4.2 | ≥0.99 |
Prosthesis type † | ||||||
| 105 (11.0) | 1 (0.3) | 18 (5.2) | 1 (0.3) | ||
| 367 (38.4) | 144 (37.6) | ≤0.001 ** | 131 (37.8) | 131 (37.8) | ≤0.001 ** |
| 483 (50.6) | 238 (62.1) | 198 (57.1) | 215 (62.0) |
Pre-Matched Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Isolated MIAVR < 75 (n = 956) | Isolated MIAVR ≥ 75 (n = 383) | p | Isolated MIAVR < 75 (n = 347) | Isolated MIAVR ≥ 75 (n = 347) | p | |
Surgical access route | ||||||
| 0.8 | −0.8 | >0.05 | - | - | >0.05 |
| −2.5 | 2.5 | ≤0.05 | - | - | >0.05 |
| 1.8 | 108 (28.2) | >0.05 | - | - | >0.05 |
Prosthesis type | ||||||
| 6.6 | −6.6 | ≤0.05 | 4.0 | −4.0 | ≤0.05 |
| 0.3 | −0.3 | >0.05 | 0 | 0 | >0.05 |
| −3.8 | 3.8 | ≤0.05 | −1.3 | 1.3 | >0.05 |
Pre-Matched Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Isolated MIAVR < 75 (n = 956) | Isolated MIAVR ≥ 75 (n = 383) | p | Isolated MIAVR < 75 (n = 347) | Isolated MIAVR ≥ 75 (n = 347) | p | |
Ventilation time (hours) | ||||||
| 869 (91.0) | 333 (87.2) | 110 (31.7) | 107 (30.8) | ||
| 57 (6.0) | 33 (8.6) | 0.04 * | 117 (33.7) | 142 (40.9) | 0.10 |
| 29 (3.0) | 16 (4.2) | 120 (34.6) | 98 (28.2) | ||
Respiratory failure †, n (%) | 41 (4.3) | 19 (5.0) | 0.56 | 19 (5.5) | 17 (4.9) | 0.86 |
ICU stay (days), mean ± SD | 2.1 ± 2.8 | 2.1 ± 2.1 | 0.17 | 2.4 ± 3.6 | 2.1 ± 1.9 | 0.57 |
Hospital stay (days), mean ± SD | 9.9 ± 6.4 | 10.5 ± 5.0 | ≤0.001 ** | 11.0 ± 8.0 | 10.5 ± 5.0 | 0.11 |
Transfusion (PRBC), mean ± SD | 0.7 ± 2.3 | 0.8 ± 3.6 | 0.02 * | 0.9 ± 2.2 | 0.8 ± 3.7 | 0.16 |
AKI, n (%) | 47 (4.9) | 38 (9.9) | ≤0.001 ** | 31 (9.0) | 32 (9.2) | ≥0.99 |
AKI grade II or III, n (%) | 36 (3.8) | 28 (7.3) | 0.01 * | 26 (7.5) | 24 (6.9) | 0.83 |
CVVH, n (%) | 14 (1.5) | 11 (2.9) | 0.12 | 10 (2.9) | 10 (2.9) | ≥0.99 |
Conversion to sternotomy, n (%) | 23 (2.4) | 12 (3.1) | 0.45 | 7 (2.0) | 11 (3.2) | 0.48 |
Rethoracotomy, n (%) | 72 (7.5) | 27 (7.1) | 0.82 | 33 (9.5) | 22 (6.4) | 0.16 |
Impaired wound healing, n (%) | 81 (8.5) | 25 (6.5) | 0.26 | 34 (9.8) | 24 (6.9) | 0.22 |
Postoperative delirium, n (%) | 139 (14.6) | 104 (27.2) | ≤0.001 ** | 66 (19.1) | 93 (26.9) | 0.02 * |
Ischemic stroke, n | 21 (2.2) | 8 (2.1) | ≥0.99 | 9 (2.6) | 5 (1.4) | 0.06 |
TIA, n (%) | 9 (0.9) | 3 (0.8) | ≥0.99 | 5 (1.4) | 3 (0.9) | 0.73 |
PPM implantation, n (%) | 61 (6.4) | 27 (7.1) | 0.33 | 30 (8.7) | 25 (7.2) | 0.68 |
NOAF, n (%) | 117 (12.3) | 70 (18.3) | ≤0.01 * | 39 (11.3) | 65 (18.8) | ≤0.01 * |
Myocardial infarction, n (%) | 10 (1.0) | 0 (0.0) | 0.33 | 4 (1.2) | 0 (0.0) | 0.12 |
30-day mortality, n (%) | 14 (1.5) | 13 (3.4) | 0.82 | 4 (1.2) | 5 (1.4) | 0.90 |
Pre-Matched Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
Isolated MIAVR < 75 (n = 956) | Isolated MIAVR ≥ 75 (n = 383) | p | Isolated MIAVR < 75 (n = 347) | Isolated MIAVR ≥ 75 (n = 347) | p | |
Preoperative AVA (cm2), mean ± SD | 0.7 ± 0.2 | 0.7 ± 0.2 | 0.34 | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.89 |
Preoperative Pmax (mmHg), mean ± SD | 78.4 ± 26.1 | 75.0 (21.8) | 0.01 * | 77.3 ± 32.3 | 73.8 ± 20.4 | 0.15 |
Preoperative Pmean (mmHg), mean ± SD | 47.6 ± 14.6 | 46.0 ± 15.0 | 0.01 * | 46.7 ± 14.9 | 45.2 ± 14.1 | 0.12 |
Postoperative Pmax (mmHg), mean ± SD | 24.8 ± 8.1 | 24.5 ± 7.9 | 0.70 | 11.0 ± 8.0 | 10.5 ± 5.0 | 0.11 |
Postoperative Pmean (mmHg), mean ± SD | 14.1 ± 4.6 | 14.0 ± 4.6 | 0.76 | 14.0 ± 4.7 | 14.1 ± 4.7 | 0.98 |
Paravalvular AR, n (%) | 31 (3.3) | 10 (2.6) | 0.55 | 11 (3.2) | 10 (2.9) | ≥0.99 |
Paravalvular AR ≥ II, n (%) | 13 (1.4) | 4 (1.1) | 0.30 | 2 (0.6) | 4 (1.2) | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh-Waghefi, A.; Petrov, A.; Jatzke, P.; Wilbring, M.; Kappert, U.; Matschke, K.; Alexiou, K.; Arzt, S. Minimally Invasive Isolated Aortic Valve Replacement in a Potential TAVI Cohort of Patients Aged ≥ 75 Years: A Propensity-Matched Analysis. J. Clin. Med. 2023, 12, 4963. https://doi.org/10.3390/jcm12154963
Taghizadeh-Waghefi A, Petrov A, Jatzke P, Wilbring M, Kappert U, Matschke K, Alexiou K, Arzt S. Minimally Invasive Isolated Aortic Valve Replacement in a Potential TAVI Cohort of Patients Aged ≥ 75 Years: A Propensity-Matched Analysis. Journal of Clinical Medicine. 2023; 12(15):4963. https://doi.org/10.3390/jcm12154963
Chicago/Turabian StyleTaghizadeh-Waghefi, Ali, Asen Petrov, Philipp Jatzke, Manuel Wilbring, Utz Kappert, Klaus Matschke, Konstantin Alexiou, and Sebastian Arzt. 2023. "Minimally Invasive Isolated Aortic Valve Replacement in a Potential TAVI Cohort of Patients Aged ≥ 75 Years: A Propensity-Matched Analysis" Journal of Clinical Medicine 12, no. 15: 4963. https://doi.org/10.3390/jcm12154963
APA StyleTaghizadeh-Waghefi, A., Petrov, A., Jatzke, P., Wilbring, M., Kappert, U., Matschke, K., Alexiou, K., & Arzt, S. (2023). Minimally Invasive Isolated Aortic Valve Replacement in a Potential TAVI Cohort of Patients Aged ≥ 75 Years: A Propensity-Matched Analysis. Journal of Clinical Medicine, 12(15), 4963. https://doi.org/10.3390/jcm12154963