Characterizing Foveal Hypoplasia Using Optical Coherence Tomography Angiography: Evaluation of Microvascular Abnormalities and Clinical Significance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Patient Examination
2.3. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Main Outcome: Angiographic Parameters
3.2.1. Flow Density (FD)
3.2.2. Foveal Avascular Zone (FAZ)
3.3. Secondary Outcome: Retinal Thickness and Volume
3.4. Tertiary Outcome: Correlation Analysis
4. Discussion
4.1. Challenges in OCTA Imaging in Eyes with FH
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, M.G.; Papageorgiou, E.; Kuht, H.J.; Gottlob, I. Normal and abnormal foveal development. Br. J. Ophthalmol. 2022, 106, 593–599. [Google Scholar] [CrossRef]
- Creel, D.J.; Summers, C.G.; King, R.A. Visual anomalies associated with albinism. Ophthalmic. Paediatr. Genet. 1990, 11, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Mishra, C.; Baliga, G.; Rajan, R.P. Multimodal imaging of congenital retinal macrovessel with secondary foveal hypoplasia. BMJ Case Rep. 2022, 15, e249563. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, K.; Bypareddy, R.; Chawla, R. Congenital retinal macrovessel may be associated with unilateral foveal hypoplasia/small foveal avascular zone. Can. J. Ophthalmol. 2019, 54, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Kashani, A.H.; Chen, C.L.; Gahm, J.K.; Zheng, F.; Richter, G.M.; Rosenfeld, P.J.; Shi, Y.; Wang, R.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 2017, 60, 66–100. [Google Scholar] [CrossRef]
- Storp, J.J.; Leclaire, M.D.; Zimmermann, J.A.; Englmaier, V.A.; Albert, F.; Eter, N.; Al-Nawaiseh, S. Further Evidence Against Bilateral Manifestation Of Coats Disease In Optical Coherence Tomography Angiography of the Macula. Retina 2023, 10. [Google Scholar] [CrossRef]
- Roisman, L.; Rosenfeld, P.J. Optical Coherence Tomography Angiography of Macular Telangiectasia Type 2. Dev. Ophthalmol. 2016, 56, 146–158. [Google Scholar] [CrossRef]
- Pakzad-Vaezi, K.; Keane, P.A.; Cardoso, J.N.; Egan, C.; Tufail, A. Optical coherence tomography angiography of foveal hypoplasia. Br. J. Ophthalmol. 2017, 101, 985–988. [Google Scholar] [CrossRef]
- Lypka, K.R.; Rodman, J.; Starman, K.; Woods, A.D.; Bi, H. Case Report: Optical Coherence Tomography Angiography of Idiopathic Foveal Hypoplasia and Its Correlation With Visual Acuity. Optom. Vis. Sci. 2020, 97, 110–120. [Google Scholar] [CrossRef]
- Sánchez-Vicente, J.L.; Contreras-Díaz, M.; Llerena-Manzorro, L.; Rueda, T.; López-Herrero, F.; Molina-Socola, F.E.; Muñoz-Morales, A.; Rodríguez de la Rúa-Franch, E. Foveal Hypoplasia: Diagnosis Using Optical Coherence Tomography Angiography. Retin. Cases Brief Rep. 2018, 12, 122–126. [Google Scholar] [CrossRef]
- Mansour, H.A.; Uwaydat, S.; Yunis, M.H.; Mansour, A.M. Foveal avascular zone in oculocutaneous albinism. BMJ Case Rep. 2021, 14, e240208. [Google Scholar] [CrossRef] [PubMed]
- Bazvand, F.; Karkhaneh, R.; Roohipoor, R.; Rajabi, M.B.; Ebrahimiadib, N.; Davoudi, S.; Modjtahedi, B.S. Optical Coherence Tomography Angiography in Foveal Hypoplasia. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Dolz-Marco, R.; Phasukkijwatana, N.; Sarraf, D.; Freund, K.B. Optical Coherence Tomography Angiography in Fovea Plana. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaidonis, G.; Silva, R.A.; Sanislo, S.R.; Leng, T. The superficial and deep retinal capillary plexus in cases of fovea plana imaged by spectral-domain optical coherence tomography angiography. Am. J. Ophthalmol. Case Rep. 2016, 6, 41–44. [Google Scholar] [CrossRef]
- Fragiotta, S.; Ciancimino, C.; Perdicchi, A.; de Paula, A.; Abdolrahimzadeh, S.; Scuderi, G. Volume Rendering of Angiographic Optical Coherence Tomography Angiography in Fovea Plana and Normal Foveal Pit. Front. Neurol. 2021, 12, 633492. [Google Scholar] [CrossRef]
- Değirmenci, C.; Afrashi, F.; Nalçacı, S.; Furundaoturan, O. Multimodal Imaging of Isolated Foveal Hypoplasia: A Case Report. Turk. J. Ophthalmol. 2020, 50, 321–323. [Google Scholar] [CrossRef]
- Chatzistergiou, V.; Cilliers, H.; Pournaras, J.A.; Ambresin, A. Fovea Plana On Optical Coherence Tomography Angiography: New Perspectives. Retina 2021, 41, 1541–1546. [Google Scholar] [CrossRef]
- Le, H.M.; Souied, E.H.; Pedinielli, A.; Zambrowski, O.; Miere, A. Idiopathic Foveal Hypoplasia: Quantitative Analysis Using Optical Coherence Tomography Angiography. Retina 2020, 40, 2325–2331. [Google Scholar] [CrossRef]
- Thomas, M.G.; Kumar, A.; Mohammad, S.; Proudlock, F.A.; Engle, E.C.; Andrews, C.; Chan, W.M.; Thomas, S.; Gottlob, I. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology 2011, 118, 1653–1660. [Google Scholar] [CrossRef] [Green Version]
- Rufai, S.R.; Thomas, M.G.; Purohit, R.; Bunce, C.; Lee, H.; Proudlock, F.A.; Gottlob, I. Can Structural Grading of Foveal Hypoplasia Predict Future Vision in Infantile Nystagmus?: A Longitudinal Study. Ophthalmology 2020, 127, 492–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, B.; Nelis, P.; Rolfes, F.; Alnawaiseh, M.; Klose, A.; Krüger, M.; Eter, N.; Brand, S.M.; Alten, F. Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis 2018, 274, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, P.; Grassi, M.O.; Pignataro, M.; Boscia, G.; Borrelli, E.; Molfetta, T.; Evangelista, F.; Alessio, G.; Boscia, F. Topographical Analysis of the Choriocapillaris Reperfusion After Loading Anti-VEGF Therapy in Neovascular AMD. Transl. Vis. Sci. Technol. 2022, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, J.; Zhang, L.; Cui, Y.; Zhang, G.; Chen, X.; Wang, J.; Zhang, A.; Huang, T.; Meng, Q. Identifying Microvascular and Neural Parameters Related to the Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Invest. Ophthalmol. Vis. Sci. 2020, 61, 39. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Glynn, R.J. Estimation of rank correlation for clustered data. Stat. Med. 2017, 36, 2163–2186. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Glynn, R.J.; Lee, M.L. Extension of the rank sum test for clustered data: Two-group comparisons with group membership defined at the subunit level. Biometrics 2006, 62, 1251–1259. [Google Scholar] [CrossRef]
- Jiang, Y.; Lee, M.-L.T.; He, X.; Rosner, B.; Yan, J. Wilcoxon Rank-Based Tests for Clustered Data with R Package clusrank. J. Stat. Softw. 2020, 96, 1–26. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 30 May 2023).
- Spaide, R.F.; Klancnik, J.M., Jr.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Hendricks, D.; Lehman, S.; Friess, A.; Salvin, J.; Reid, J.; Wang, J. Comparison of OCT imaging in children with foveal hypoplasia born full term versus preterm. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3075–3085. [Google Scholar] [CrossRef]
- Kondo, H. Foveal hypoplasia and optical coherence tomographic imaging. Taiwan J. Ophthalmol. 2018, 8, 181–188. [Google Scholar] [CrossRef]
- Springer, A.D.; Hendrickson, A.E. Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Vis. Neurosci. 2004, 21, 53–62. [Google Scholar] [CrossRef]
- Hendrickson, A.E.; Yuodelis, C. The morphological development of the human fovea. Ophthalmology 1984, 91, 603–612. [Google Scholar] [CrossRef]
- Lee, H.; Purohit, R.; Patel, A.; Papageorgiou, E.; Sheth, V.; Maconachie, G.; Pilat, A.; McLean, R.J.; Proudlock, F.A.; Gottlob, I. In Vivo Foveal Development Using Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4537–4545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmor, M.F.; Choi, S.S.; Zawadzki, R.J.; Werner, J.S. Visual insignificance of the foveal pit: Reassessment of foveal hypoplasia as fovea plana. Arch. Ophthalmol. 2008, 126, 907–913. [Google Scholar] [CrossRef]
- Noval, S.; Freedman, S.F.; Asrani, S.; El-Dairi, M.A. Incidence of fovea plana in normal children. J. AAPOS 2014, 18, 471–475. [Google Scholar] [CrossRef]
- Provis, J.M.; Dubis, A.M.; Maddess, T.; Carroll, J. Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog. Retin. Eye Res. 2013, 35, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Dubis, A.M.; Hansen, B.R.; Cooper, R.F.; Beringer, J.; Dubra, A.; Carroll, J. Relationship between the foveal avascular zone and foveal pit morphology. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1628–1636. [Google Scholar] [CrossRef] [PubMed]
- Krawitz, B.D.; Mo, S.; Geyman, L.S.; Agemy, S.A.; Scripsema, N.K.; Garcia, P.M.; Chui, T.Y.P.; Rosen, R.B. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vis. Res. 2017, 139, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.B.; Kim, Y.W.; Kim, J.M.; Jo, Y.J.; Kim, J.Y. The importance of signal strength in quantitative assessment of retinal vessel density using optical coherence tomography angiography. Sci. Rep. 2018, 8, 12897. [Google Scholar] [CrossRef] [PubMed]
- Brücher, V.C.; Storp, J.J.; Eter, N.; Alnawaiseh, M. Optical coherence tomography angiography-derived flow density: A review of the influencing factors. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 701–710. [Google Scholar] [CrossRef]
FH | Controls | |
---|---|---|
n (eyes) | 19 | 19 |
n (patients) | 10 | 10 |
Age (years) | 21.67 (14.53; 53.16) | 22.92 (19.56; 52.92) |
Gender (M:F) | 8:2 | 8:2 |
Study eye (R:L) | 9:10 | 9:10 |
n (eyes) according to Leicester Grading System for Foveal Hypoplasia [20,21] Grade 1a Grade 1b Grade 2 Grade 3 Grade 4 | 2 (11%) 3 (16%) 7 (37%) 3 (16%) 4 (21%) | |
Visual acuity (logMAR) | 0.20 (0.15; 0.30) | 0.10 (0.05; 0.20) |
Spherical equivalent | 0.50 (−2.44; 1.56) | −0.50 (−1.56; 1.69) |
QI | 7.00 (6.50; 8.00) | 8.00 (7.00; 9.00) |
SSI | 65.70 (61.21; 70.04) | 69.28 (65.55; 78.52) |
Location | Parameter | Study Group | Control Group | p Value |
---|---|---|---|---|
Flow Density SCP (%) | Whole en face | 43.95 (40.16; 47.43) | 45.87 (44.50; 48.51) | 0.36 |
Whole en face superior hemisphere | 43.67 (39.57; 46.13) | 46.07 (44.51; 47.93) | 0.24 | |
Whole en face inferior hemisphere | 44.44 (40.99; 48.51) | 45.75 (44.29; 48.44) | 0.52 | |
Fovea | 34.39 (31.39; 40.47) | 20.45 (16.25; 22.13) | <0.01 | |
Parafovea | 45.31 (40.81; 48.73) | 48.52 (47.09; 51.09) | 0.29 | |
Parafovea superior hemisphere | 45.93 (39.99; 48.47) | 49.08 (46.86; 50.80) | 0.21 | |
Parafovea inferior hemisphere | 45.95 (42.34; 49.17) | 48.83 (47.07; 51.25) | 0.35 | |
Parafovea temporal | 45.68 (42.42; 48.80) | 47.89 (44.58; 49.86) | 1.00 | |
Parafovea superior | 45.34 (41.21; 48.65) | 50.18 (48.26; 51.79) | 0.07 | |
Parafovea nasal | 44.98 (39.64; 49.06) | 48.58 (45.15; 49.94) | 0.49 | |
Parafovea inferior | 45.87 (43.20; 49.86) | 50.80 (47.73; 52.54) | 0.24 | |
DCP (%) | Whole en face | 53.71 (49.31; 55.93) | 49.45 (46.91; 54.85) | 0.38 |
Whole en face superior hemisphere | 51.82 (48.63; 55.02) | 49.91 (46.15; 54.32) | 0.52 | |
Whole en face inferior hemisphere | 54.70 (48.98; 56.25) | 49.36 (47.54; 55.16) | 0.36 | |
Fovea | 53.61 (48.58; 56.52) | 36.92 (31.77; 40.56) | <0.01 | |
Parafovea | 53.2446.86; 55.51) | 51.22 (49.08 56.12) | 0.77 | |
Parafovea superior hemisphere | 52.98 (47.33; 56.01) | 51.09 (48.27; 55.83) | 0.77 | |
Parafovea inferior hemisphere | 54.24 (47.92; 55.76) | 51.10 (48.81; 56.41) | 0.95 | |
Parafovea temporal | 54.35 (50.27; 56.11) | 51.95 (49.49; 57.34) | 0.58 | |
Parafovea superior | 51.99 (48.81; 56.94) | 51.55 (47.41; 55.30) | 0.90 | |
Parafovea nasal | 53.62 (46.52; 55.53) | 50.79 (49.47; 55.62) | 0.62 | |
Parafovea inferior | 54.03 (47.82; 56.32) | 50.46 (47.73; 55.52) | 0.74 | |
CC (%) | Whole en face | 72.57 (68.66; 74.38) | 71.74 (70.89; 72.96) | 0.77 |
Whole en face superior hemisphere | 71.66 (68.60; 73.69) | 72.17 (70.90; 72.66) | 0.80 | |
Whole en face inferior hemisphere | 71.53 (68.71; 74.99) | 72.07 (70.74; 73.20) | 0.88 | |
Fovea | 70.68 (64.23; 73.71) | 71.86 (67.75; 74.01) | 0.31 | |
Parafovea | 71.97(67.91; 73.70) | 71.57 (70.35; 73.15) | 0.79 | |
Parafovea superior hemisphere | 71.72 (67.99; 73.38) | 71.57 (70.30; 72.56) | 0.54 | |
Parafovea inferior hemisphere | 71.68 (67.83; 74.21) | 72.36 (69.88; 73.56) | 0.95 | |
Parafovea temporal | 72.92 (69.81; 77.30) | 74.20 (72.39; 75.55) | 0.92 | |
Parafovea superior | 71.09 (68.09; 72.94) | 69.28 (67.66; 70.17) | 0.09 | |
Parafovea nasal | 71.77 (65.37; 73.56) | 73.34 (71.87; 74.40) | 0.28 | |
Parafovea inferior | 72.11 (66.34; 75.48) | 70.24 (67.63; 72.35) | 0.43 |
Location | Parameter | Study Group | Control Group | p Value |
---|---|---|---|---|
FAZ | FAZ area (mm2) | 0.05 (0.03; 0.09) | 0.22 (0.18; 0.27) | 0.04 |
Perimeter (mm) | 0.91 (0.78; 1.24) | 1.84 (1.68; 2.05) | 0.04 | |
ACI | 1.19 (1.14; 1.24) | 1.12 (1.11; 1.15) | 0.03 | |
FD-300 Area Density (%) | 49.66 (44.78; 51.10) | 47.96 (46.80; 49.76) | 0.41 | |
FD-300 Area Length (%) | 15.98 (13.99; 18.15) | 17.30 (16.54; 18.21) | 0.79 |
Parameter | Scan Area | Location | Study Group | Control Group | p Value |
---|---|---|---|---|---|
Thickness (µm) | Whole | All (ILM-RPE) | 303.20 (292.65; 313.30) | 326.60 (316.90; 330.75) | 0.01 |
SP (NFL-IPL) | 70.40 (67.50; 75.70) | 83.00 (79.55; 87.80) | 0.01 | ||
DP (IPL-OPL) | 66.10 (60.55; 69.40) | 65.40 (63.90; 71.35) | 0.92 | ||
Center | All (ILM-RPE) | 293.40 (287.15; 301.45) | 265.00 (256.75; 271.10) | 0.02 | |
SP (NFL-IPL) | 59.30 (48.50; 61.95) | 33.40 (26.00; 36.30) | <0.01 | ||
DP (IPL-OPL) | 56.20 (53.00; 60.45) | 45.70 (44.20; 50.40) | 0.03 | ||
Volume (mm3) | Whole | All (ILM-RPE) | 2.73 (2.62; 2.78) | 2.95 (2.87; 3.00) | 0.03 |
SP (NFL-IPL) | 0.63 (0.60; 0.68) | 0.75 (0.72; 0.81) | 0.03 | ||
DP (IPL-OPL) | 0.04 (0.04; 0.05) | 0.04 (0.03; 0.04) | 0.45 | ||
Center | All (ILM-RPE) | 0.23 (0.22; 0.24) | 0.21 (0.20; 0.21) | 0.04 | |
SP (NFL-IPL) | 0.04 (0.04; 0.05) | 0.03 (0.02; 0.03) | 0.01 | ||
DP (IPL-OPL) | 0.60 (0.58; 0.65) | 0.60 (0.55; 0.63) | 0.03 |
Estimate | Lower 95% CI | Upper 95% CI | |
---|---|---|---|
Visual acuity (LogMar) | 0.78 | 0.11 | 0.97 |
FAZ area (mm2) | 0.38 | −0.08 | 0.71 |
Perimeter (mm) | 0.45 | −0.01 | 0.76 |
ACI | 0.38 | −0.13 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storp, J.J.; Zimmermann, J.A.; Danzer, M.F.; Alnawaiseh, M.; Eter, N.; Al-Nawaiseh, S. Characterizing Foveal Hypoplasia Using Optical Coherence Tomography Angiography: Evaluation of Microvascular Abnormalities and Clinical Significance. J. Clin. Med. 2023, 12, 4992. https://doi.org/10.3390/jcm12154992
Storp JJ, Zimmermann JA, Danzer MF, Alnawaiseh M, Eter N, Al-Nawaiseh S. Characterizing Foveal Hypoplasia Using Optical Coherence Tomography Angiography: Evaluation of Microvascular Abnormalities and Clinical Significance. Journal of Clinical Medicine. 2023; 12(15):4992. https://doi.org/10.3390/jcm12154992
Chicago/Turabian StyleStorp, Jens Julian, Julian Alexander Zimmermann, Moritz Fabian Danzer, Maged Alnawaiseh, Nicole Eter, and Sami Al-Nawaiseh. 2023. "Characterizing Foveal Hypoplasia Using Optical Coherence Tomography Angiography: Evaluation of Microvascular Abnormalities and Clinical Significance" Journal of Clinical Medicine 12, no. 15: 4992. https://doi.org/10.3390/jcm12154992
APA StyleStorp, J. J., Zimmermann, J. A., Danzer, M. F., Alnawaiseh, M., Eter, N., & Al-Nawaiseh, S. (2023). Characterizing Foveal Hypoplasia Using Optical Coherence Tomography Angiography: Evaluation of Microvascular Abnormalities and Clinical Significance. Journal of Clinical Medicine, 12(15), 4992. https://doi.org/10.3390/jcm12154992