Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design
2.2. Study Population
2.3. Biorepository Biospecimen and Clinical Data Collection
2.4. RNA Purification from Plasma and cDNA Library Preparation
2.5. c-sncRNA Sequencing Data and Differential Expression Analysis
2.6. mRNA Target Prediction and Pathway Enrichment Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. c-sncRNA Profiles in Hemodialysis Patients with and without Cardiovascular Death
3.3. Pathway Enrichment Analysis of Circulating miR-129-5p
3.4. Association of Circulating miR-129-1-5p with Cardiovascular Death
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.C.; Bragg-Gresham, J.; Balkrishnan, R.; Bhave, N.; Dietrich, X.; Ding, Z.; Eggers, P.W.; et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2019, 73, A7–A8. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; et al. Chronic kidney disease as a global public health problem: Approaches and initiatives—A position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007, 72, 247–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckardt, K.U.; Coresh, J.; Devuyst, O.; Johnson, R.J.; Kottgen, A.; Levey, A.S.; Levin, A. Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 2013, 382, 158–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etheridge, A.; Lee, I.; Hood, L.; Galas, D.; Wang, K. Extracellular microRNA: A new source of biomarkers. Mutat. Res. 2011, 717, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Calin, G.A. MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 2009, 9, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Stachurska, A.; Zorro, M.M.; van der Sijde, M.R.; Withoff, S. Small and Long Regulatory RNAs in the Immune System and Immune Diseases. Front. Immunol. 2014, 5, 513. [Google Scholar] [CrossRef] [Green Version]
- Guay, C.; Roggli, E.; Nesca, V.; Jacovetti, C.; Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res. J. Lab. Clin. Med. 2011, 157, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Veneziano, D.; Acunzo, M.; Croce, C.M. Small non-coding RNA and cancer. Carcinogenesis 2017, 38, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Van Rooij, E.; Purcell, A.L.; Levin, A.A. Developing microRNA therapeutics. Circ. Res. 2012, 110, 496–507. [Google Scholar] [CrossRef]
- Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12, 861–874. [Google Scholar] [CrossRef]
- Mattick, J.S. The genetic signatures of noncoding RNAs. PLoS Genet. 2009, 5, e1000459. [Google Scholar] [CrossRef]
- Dozmorov, M.G.; Giles, C.B.; Koelsch, K.A.; Wren, J.D. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinform. 2013, 14 (Suppl. S14), S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep. 2018, 25, 1346–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrero, G.; Cordero, F.; Tarallo, S.; Arigoni, M.; Riccardo, F.; Gallo, G.; Ronco, G.; Allasia, M.; Kulkarni, N.; Matullo, G.; et al. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: Description of the diverse and most represented species. Oncotarget 2018, 9, 3097–3111. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef]
- Cheng, G. Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv. Drug Deliv. Rev. 2015, 81, 75–93. [Google Scholar] [CrossRef]
- Cheng, Y.; Tan, N.; Yang, J.; Liu, X.; Cao, X.; He, P.; Dong, X.; Qin, S.; Zhang, C. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin. Sci. 2010, 119, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kuznetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 2010, 3, 499–506. [Google Scholar] [CrossRef]
- D’Alessandra, Y.; Devanna, P.; Limana, F.; Straino, S.; Di Carlo, A.; Brambilla, P.G.; Rubino, M.; Carena, M.C.; Spazzafumo, L.; De Simone, M.; et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 2010, 31, 2765–2773. [Google Scholar] [CrossRef] [Green Version]
- Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Roxe, T.; Muller-Ardogan, M.; et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010, 107, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Tijsen, A.J.; Creemers, E.E.; Moerland, P.D.; de Windt, L.J.; van der Wal, A.C.; Kok, W.E.; Pinto, Y.M. MiR423-5p as a circulating biomarker for heart failure. Circ. Res. 2010, 106, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Cambier, L.; de Couto, G.; Ibrahim, A.; Echavez, A.K.; Valle, J.; Liu, W.; Kreke, M.; Smith, R.R.; Marban, L.; Marban, E. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol. Med. 2017, 9, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.S.; Ramasamy, S.; George-William, J.N.; Rajendhran, J. Emerging cardiac non-coding landscape: The importance of meta-analysis. Biochimie 2017, 133, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lv, Y.; Duan, Y.; Li, G.; Zhang, Z. Circulating Non-coding RNAs and Cardiovascular Diseases. Adv. Exp. Med. Biol. 2020, 1229, 357–367. [Google Scholar] [CrossRef]
- Viereck, J.; Thum, T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ. Res. 2017, 120, 381–399. [Google Scholar] [CrossRef]
- Baigent, C.; Burbury, K.; Wheeler, D. Premature cardiovascular disease in chronic renal failure. Lancet 2000, 356, 147–152. [Google Scholar] [CrossRef]
- Chao, C.T.; Liu, Y.P.; Su, S.F.; Yeh, H.Y.; Chen, H.Y.; Lee, P.J.; Chen, W.J.; Lee, Y.M.; Huang, J.W.; Chiang, C.K.; et al. Circulating MicroRNA-125b Predicts the Presence and Progression of Uremic Vascular Calcification. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1402–1414. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.; Song, D.; Ye, H.; Wu, X.; Jiang, L.; Tang, B.; Zhou, Y.; Fang, L.; Cao, H.; He, W.; et al. Circulating MiR-133a as a biomarker predicts cardiac hypertrophy in chronic hemodialysis patients. PLoS ONE 2014, 9, e103079. [Google Scholar] [CrossRef] [Green Version]
- Shang, F.; Wang, S.C.; Hsu, C.Y.; Miao, Y.; Martin, M.; Yin, Y.; Wu, C.C.; Wang, Y.T.; Wu, G.; Chien, S.; et al. MicroRNA-92a Mediates Endothelial Dysfunction in CKD. J. Am. Soc. Nephrol. JASN 2017, 28, 3251–3261. [Google Scholar] [CrossRef]
- Han, Z.; Xiao, Z.; Kalantar-Zadeh, K.; Moradi, H.; Shafi, T.; Waikar, S.S.; Quarles, L.D.; Yu, Z.; Tin, A.; Coresh, J.; et al. Validation of a Novel Modified Aptamer-Based Array Proteomic Platform in Patients with End-Stage Renal Disease. Diagnostics 2018, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumida, K.; Han, Z.; Dashputre, A.A.; Potukuchi, P.K.; Kovesdy, C.P. Association between Nrf2 and CDKN2A expression in patients with end-stage renal disease: A pilot study. Aging 2020, 12, 16357–16367. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Pierre, J.F.; Han, Z.; Mims, T.S.; Potukuchi, P.K.; Yuzefpolskaya, M.; Colombo, P.C.; Demmer, R.T.; Datta, S.; Kovesdy, C.P. Circulating Microbial Signatures and Cardiovascular Death in Patients With ESRD. Kidney Int. Rep. 2021, 6, 2617–2628. [Google Scholar] [CrossRef] [PubMed]
- Kuscu, C.; Kiran, M.; Mohammed, A.; Kuscu, C.; Satpathy, S.; Wolen, A.; Bardhi, E.; Bajwa, A.; Eason, J.D.; Maluf, D.; et al. Integrative Analyses of Circulating Small RNAs and Kidney Graft Transcriptome in Transplant Glomerulopathy. Int. J. Mol. Sci. 2021, 22, 6218. [Google Scholar] [CrossRef]
- Gebert, D.; Hewel, C.; Rosenkranz, D. Unitas: The universal tool for annotation of small RNAs. BMC Genom. 2017, 18, 644. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef]
- Santulli, G.; Iaccarino, G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016, 93, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Austin, K.M.; Trembley, M.A.; Chandler, S.F.; Sanders, S.P.; Saffitz, J.E.; Abrams, D.J.; Pu, W.T. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 2019, 16, 519–537. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Broderick, T.L.; Gutkowska, J. The Role of Oxytocin in Cardiovascular Protection. Front. Psychol. 2020, 11, 2139. [Google Scholar] [CrossRef] [PubMed]
- McCauley, M.D.; Wang, T.; Mike, E.; Herrera, J.; Beavers, D.L.; Huang, T.W.; Ward, C.S.; Skinner, S.; Percy, A.K.; Glaze, D.G.; et al. Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: Implication for therapy in Rett syndrome. Sci. Transl. Med. 2011, 3, 113ra125. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Takahashi, T.; Mitsumasu, C.; Igata, S.; Takano, M.; Minami, T.; Yasukawa, H.; Okayama, S.; Nakamura, K.; Okabe, Y.; et al. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias. Sci. Rep. 2015, 5, 11204. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, F.; Cao, Q.; Li, Z.; Huang, L.; Chen, S. The Effect of Mecp2 on Heart Failure. Cell. Physiol. Biochem. 2018, 47, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- Schulte, C.; Barwari, T.; Joshi, A.; Zeller, T.; Mayr, M. Noncoding RNAs versus Protein Biomarkers in Cardiovascular Disease. Trends Mol. Med. 2020, 26, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabajdova, M.; Spakova, I.; Zelko, A.; Rosenberger, J.; Kolarcik, P.; Sobolova, V.; Pella, D.; Marekova, M.; Madarasova Geckova, A. The role of physical activity and miRNAs in the vascular aging and cardiac health of dialysis patients. Physiol. Rep. 2021, 9, e14879. [Google Scholar] [CrossRef]
- Bolignano, D.; Greco, M.; Presta, P.; Duni, A.; Vita, C.; Pappas, E.; Mirabelli, M.; Lakkas, L.; Naka, K.K.; Brunetti, A.; et al. A small circulating miRNAs signature predicts mortality and adverse cardiovascular outcomes in chronic hemodialysis patients. Clin. Kidney J. 2023, 16, 868–878. [Google Scholar] [CrossRef]
- Deng, B.; Tang, X.; Wang, Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp. Ther. Med. 2021, 22, 918. [Google Scholar] [CrossRef]
- Tang, X.; Tang, J.; Liu, X.; Zeng, L.; Cheng, C.; Luo, Y.; Li, L.; Qin, S.L.; Sang, Y.; Deng, L.M.; et al. Downregulation of miR-129-2 by promoter hypermethylation regulates breast cancer cell proliferation and apoptosis. Oncol. Rep. 2016, 35, 2963–2969. [Google Scholar] [CrossRef] [Green Version]
- Xiao, N.; Zhang, J.; Chen, C.; Wan, Y.; Wang, N.; Yang, J. miR-129-5p improves cardiac function in rats with chronic heart failure through targeting HMGB1. Mamm. Genome 2019, 30, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Cui, W.; Chen, Z. Mesenchymal Stem Cell-Derived Exosome-Loaded microRNA-129-5p Inhibits TRAF3 Expression to Alleviate Apoptosis and Oxidative Stress in Heart Failure. Cardiovasc. Toxicol. 2022, 22, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Xu, F.; Zhang, Y. MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis. Am. J. Transl. Res. 2016, 8, 1886–1894. [Google Scholar] [PubMed]
Characteristics | Cases (n = 50) | Controls a (n = 50) | p |
---|---|---|---|
Age (years) | 63.1 ± 11.0 | 63.1 ± 11.2 | 1.00 |
Male sex | 24 (48.0) | 24 (48.0) | 1.00 |
Race | 1.00 | ||
White | 17 (34.0) | 17 (34.0) | |
African American | 27 (54.0) | 27 (54.0) | |
Others | 6 (12) | 6 (12) | |
Dialysis vintage (years) | 4.1 ± 3.4 | 4.4 ± 3.2 | 0.70 |
Vascular access type | 0.67 | ||
Arteriovenous fistula | 30 (60.0) | 32 (64.0) | |
Arteriovenous graft | 11 (22.0) | 8 (16.0) | |
Catheter | 9 (18.0) | 9 (18.0) | |
Body mass index (kg/m2) | 30.4 ± 8.4 | 31.2 ± 6.4 | 0.60 |
Systolic BP (mmHg) | 151.9 ± 26.9 | 149.4 ± 25.8 | 0.62 |
Diastolic BP (mmHg) | 76.8 ± 14.7 | 77.2 ± 15.7 | 0.90 |
Charlson Comorbidity Index | 5.8 ± 1.7 | 5.6 ± 1.9 | 0.58 |
Comorbidities | |||
Diabetes mellitus | 31 (62.0) | 31 (62.0) | 1.00 |
Ischemic heart disease | 6 (12.0) | 5 (10.0) | 0.75 |
Congestive heart failure | 12 (24.0) | 5 (10.0) | 0.062 |
Liver disease | 1 (2.0) | 1 (2.0) | 1.00 |
HIV/AIDS | 0 (0) | 0 (0) | 1.00 |
Malignancies | 0 (0) | 0 (0) | 1.00 |
Laboratory parameters | |||
Blood hemoglobin (g/dL) | 11.1 ± 1.4 | 10.8 ± 1.0 | 0.13 |
Serum albumin (g/dL) | 3.9 ± 0.4 | 3.9 ± 0.3 | 0.91 |
Serum calcium (mg/dL) | 9.3 ± 0.7 | 9.1 ± 0.7 | 0.29 |
Serum phosphorus (mg/dL) | 5.6 ± 1.6 | 5.1 ± 1.2 | 0.09 |
Serum ALP (U/L) | 117.8 ± 70.7 | 94.8 ± 39.3 | 0.05 |
Serum intact PTH (pg/mL) | 374 [225, 612] | 301 [220, 504] | 0.10 |
Medications | |||
Statins | 18 (36.0) | 10 (20.0) | 0.075 |
ESAs | 36 (72.0) | 44 (88.0) | 0.045 |
Phosphate binders | 29 (58.0) | 30 (60.0) | 0.83 |
Vitamin D analogs | 44 (88.0) | 47 (94.0) | 0.30 |
Aspirin | 14 (28.0) | 5 (10.0) | 0.022 |
Opioids | 17 (34.0) | 14 (28.0) | 0.52 |
Models | Odds Ratio (95% CI) * | p |
---|---|---|
Model 1 | 1.29 (0.89–1.86) | 0.18 |
Model 2 | 1.44 (0.90–2.32) | 0.13 |
Model 3 | 1.68 (1.01–2.81) | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuscu, C.; Mallisetty, Y.; Naik, S.; Han, Z.; Berta, C.J.; Kuscu, C.; Kovesdy, C.P.; Sumida, K. Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. J. Clin. Med. 2023, 12, 5010. https://doi.org/10.3390/jcm12155010
Kuscu C, Mallisetty Y, Naik S, Han Z, Berta CJ, Kuscu C, Kovesdy CP, Sumida K. Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. Journal of Clinical Medicine. 2023; 12(15):5010. https://doi.org/10.3390/jcm12155010
Chicago/Turabian StyleKuscu, Canan, Yamini Mallisetty, Surabhi Naik, Zhongji Han, Caleb J. Berta, Cem Kuscu, Csaba P. Kovesdy, and Keiichi Sumida. 2023. "Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy" Journal of Clinical Medicine 12, no. 15: 5010. https://doi.org/10.3390/jcm12155010
APA StyleKuscu, C., Mallisetty, Y., Naik, S., Han, Z., Berta, C. J., Kuscu, C., Kovesdy, C. P., & Sumida, K. (2023). Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. Journal of Clinical Medicine, 12(15), 5010. https://doi.org/10.3390/jcm12155010