MRI and Pulmonary Function Tests’ Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Magnetic Resonance
2.2. Pulmonary Function Tests
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions and Possible Clinical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riordan, J.R.; Rommens, J.M.; Kerem, B.S.; Alon, N.O.A.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.I.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Turkovic, L.; Caudri, D.; Rosenow, T.; Breuer, O.; Murray, C.; Tiddens, H.A.W.M.; Ramanauskas, F.; Ranganathan, S.C.; Hall, G.L.; Stick, S.M. Structural determinants of long term functional outcomes in young children with cystic fibrosis. Eur. Respir. J. 2020, 55, 1900748. [Google Scholar] [CrossRef] [PubMed]
- Horsley, A.; Wild, J.M. Ventilation heterogeneity and the benefits and challenges of multiple breath washout testing in patients with cystic fibrosis. Paediatr. Respir. Rev. 2015, 16 (Suppl. S1), 15–18. [Google Scholar] [CrossRef] [PubMed]
- Puderbach, M.; Eichinger, M.; Gahr, J.; Ley, S.; Tuengerthal, S.; Schmähl, A.; Fink, C.; Plathow, C.; Wiebel, M.; Müller, F.M.; et al. Proton MRI appearance of cystic fibrosis: Comparison to CT. Eur. Radiol. 2007, 17, 716–724. [Google Scholar] [CrossRef]
- Bonnel, A.S.; Song, S.M.H.; Kesavarju, K.; Newaskar, M.; Paxton, C.J.; Bloch, D.A.; Moss, R.B.; Robinson, T.E. Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr. Pulmonol. 2004, 38, 396–405. [Google Scholar] [CrossRef]
- Wielputz, M.O.; Puderbach, M.; Kopp-Schneider, A.; Stahl, M.; Fritzsching, E.; Sommerburg, O.; Ley, S.; Sumkauskaite, M.; Biederer, J.; Kauczor, H.U.; et al. Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2014, 189, 956–965. [Google Scholar] [CrossRef]
- Woods, J.C.; Wild, J.M.; Wielpütz, M.O.; Clancy, J.P.; Hatabu, H.; Kauczor, H.U.; van Beek, E.J.R.; Altes, T.A. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J. Magn. Reson. Imaging 2020, 52, 1306–1320. [Google Scholar] [CrossRef]
- Smith, L.J.; Horsley, A.; Bray, J.; Hughes, P.J.C.; Biancardi, A.; Norquay, G.; Wildman, M.; West, N.; Marshall, H.; Wild, J.M. The assessment of short and long term changes in lung function in CF using 129Xe MRI. Eur. Respir. J. 2020, 56, 2000441. [Google Scholar] [CrossRef]
- Corin Willers, C.; Frauchiger, B.S.; Stranzinger, E.; Bauman, G.; Moeller, A.; Jung, A.; Hector, A.; Regamey, N.; Zanolari, M.; Mueller-Suter, D.; et al. Feasibility of unsedated lung MRI in young children with cystic fibrosis. Eur. Respir. J. 2022, 60, 2103112. [Google Scholar] [CrossRef]
- Eichinger, M.; Puderbach, M.; Fink, C.; Gahr, J.; Ley, S.; Plathow, C.; Tuengerthal, S.; Zuna, I.; Müller, F.M.; Kauczor, H.U. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-Initial results. Eur. Radiol. 2006, 16, 2147–2152. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet. Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef]
- Ramsey, K.A.; Rosenow, T.; Turkovic, L.; Skoric, B.; Banton, G.; Adams, A.M.; Simpson, S.J.; Murray, C.; Ranganathan, S.C.; Stick, S.M.; et al. Lung clearance index and structural lung disease on computed tomography in early cystic fibrosis. Am. J. Respir. Crit. Care Med. 2016, 193, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonneveld, N.; Stanojevic, S.; Amin, R.; Aurora, P.; Davies, J.; Elborn, J.S.; Horsley, A.; Latzin, P.; O’Neill, K.; Robinson, P.; et al. Lung clearance index in cystic fibrosis subjects treated for pulmonary exacerbations. Eur. Respir. J. 2015, 46, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Marshall, H.; Aldag, I.; Horn, F.; Collier, G.; Hughes, D.; West, N.; Horsley, A.; Taylor, C.J.; Wild, J. Longitudinal assessment of children with mild cystic fibrosis using hyperpolarized gas lung magnetic resonance imaging and lung clearance index. Am. J. Respir. Crit. Care Med. 2018, 197, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Wojsyk-Banaszak, I.; Jończyk-Potoczna, K.; Szczepankiewicz, A.; Bręborowicz, A.W.B. Multiple Breath Washout and Magnetic Resonance Imaging as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. Pediatr. Pulmonol. 2021, 56, S123. [Google Scholar]
- Bilton, D.; Canny, G.; Conway, S.; Dumcius, S.; Hjelte, L.; Proesmans, M.; Tümmler, B.; Vavrova, V.; De Boeck, K. Pulmonary exacerbation: Towards a definition for use in clinical trials. Report from the EuroCareCF Working Group on outcome parameters in clinical trials. J. Cyst. Fibros. 2011, 10, S79–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichinger, M.; Optazaite, D.E.; Kopp-Schneider, A.; Hintze, C.; Biederer, J.; Niemann, A.; Mall, M.A.; Wielpütz, M.O.; Kauczor, H.U.; Puderbach, M. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur. J. Radiol. 2012, 81, 1321–1329. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; Macintyre, N.R.; Thompson, B.R.; Wanger, J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef] [Green Version]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- King, G.G.; Bates, J.; Berger, K.I.; Calverley, P.; de Melo, P.L.; Dellacà, R.L.; Farré, R.; Hall, G.L.; Ioan, I.; Irvin, C.G.; et al. Technical standards for respiratory oscillometry. Eur. Respir. J. 2020, 55, 1900753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kentgens, A.C.; Latzin, P.; Anagnostopoulou, P.; Jensen, R.; Stahl, M.; Harper, A.; Yammine, S.; Foong, R.E.; Hall, G.L.; Singer, F.; et al. Normative multiple breath washout data in school-aged children corrected for sensor error. Eur. Respir. J. 2022, 60, 2102398. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.D.; Latzin, P.; Verbanck, S.; Hall, G.L.; Horsley, A.; Gappa, M.; Thamrin, C.; Arets, H.G.M.; Aurora, P.; Fuchs, S.I.; et al. Consensus statement for inert gas washout measurement using multiple- and singlebreath tests. Eur. Respir. J. 2013, 41, 507–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, M.; Oppelaar, M.C.; Jensen, R.; Stanojevic, S.; Davis, S.D.; Retsch-Bogart, G.; Ratjen, F.A. The utility of moment ratios and abbreviated endpoints of the multiple breath washout test in preschool children with cystic fibrosis. Pediatr. Pulmonol. 2020, 55, 649–653. [Google Scholar] [CrossRef]
- Wyler, F.; Oestreich, M.A.; Frauchiger, B.S.; Ramsey, K.A.; Latzin, P. Correction of sensor crosstalk error in Exhalyzer D multiple-breath washout device significantly impacts outcomes in children with cystic fibrosis. J. Appl. Physiol. 2021, 131, 1148–1156. [Google Scholar] [CrossRef]
- Puderbach, M.; Eichinger, M. The role of advanced imaging techniques in cystic fibrosis follow-up: Is there a place for MRI? Pediatr. Radiol. 2010, 40, 844–849. [Google Scholar] [CrossRef]
- Puderbach, M.; Eichinger, M.; Haeselbarth, J.; Ley, S.; Kopp-Schneider, A.; Tuengerthal, S.; Schmaehl, A.; Fink, C.; Plathow, C.; Wiebel, M.; et al. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: Comparison to thin-section CT and chest x-ray. Investig. Radiol. 2007, 42, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, M.; Heussel, C.P.; Kauczor, H.U.; Tiddens, H.; Puderbach, M. Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J. Magn. Reson. Imaging 2010, 32, 1370–1378. [Google Scholar] [CrossRef]
- Kaireit, T.F.; Sorrentino, S.A.; Renne, J.; Schoenfeld, C.; Voskrebenzev, A.; Gutberlet, M.; Schulz, A.; Jakob, P.M.; Hansen, G.; Wacker, F.; et al. Functional lung MRI for regional monitoring of patients with cystic fibrosis. PLoS ONE 2017, 12, e0187483. [Google Scholar] [CrossRef] [Green Version]
- Stahl, M.; WielpüTz, M.O.; Graeber, S.Y.; Joachim, C.; Sommerburg, O.; Kauczor, H.U.; Puderbach, M.; Eichinger, M.; Mall, M.A. Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2017, 195, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.M.; Borsboom, G.J.J.M.; Van Der Wiel-Kooij, E.C.; Caudri, D.; Rosenfeld, M.; Tiddens, H.A.W.M. Small airway involvement in cystic fibrosis lung disease: Routine spirometry as an early and sensitive marker. Pediatr. Pulmonol. 2013, 48, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Tiddens, H.A.W.M.; Donaldson, S.H.; Rosenfeld, M.; Paré, P.D. Cystic fibrosis lung disease starts in the small airways: Can we treat it more effectively? Pediatr. Pulmonol. 2010, 45, 107–117. [Google Scholar] [CrossRef]
- Smith, L.J.; Collier, G.J.; Marshall, H.; Hughes, P.J.C.; Biancardi, A.M.; Wildman, M.; Aldag, I.; West, N.; Horsley, A.; Wild, J.M. Patterns of regional lung physiology in cystic fibrosis using ventilation magnetic resonance imaging and multiple-breath washout. Eur. Respir. J. 2018, 52, 1800821. [Google Scholar] [CrossRef]
- Bickel, S.; Popler, J.; Lesnick, B.; Eid, N. Impulse oscillometry: Interpretation and practical applications. Chest 2014, 146, 841–847. [Google Scholar] [CrossRef]
- Kraemer, R.; Baldwin, D.N.; Ammann, R.A.; Frey, U.; Gallati, S. Progression of pulmonary hyperinflation and trapped gas associated with genetic and environmental factors in children with cystic fibrosis. Respir. Res. 2006, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nyilas, S.; Bauman, G.; Sommer, G.; Stranzinger, E.; Pusterla, O.; Frey, U.; Korten, I.; Singer, F.; Casaulta, C.; Bieri, O.; et al. Novel magnetic resonance technique for functional imaging of cystic fibrosis lung disease. Eur. Respir. J. 2017, 50, 1701464. [Google Scholar] [CrossRef] [Green Version]
- Foo, C.T.; Langton, D.; Thompson, B.R.; Thien, F. Functional lung imaging using novel and emerging MRI techniques. Front. Med. 2023, 10, 1060940. [Google Scholar] [CrossRef] [PubMed]
Variable | Median (Range) or Number (%) |
---|---|
Male/female | 18/21 |
Diagnosed with newborn screening | 15 (40) |
BMI (median; range) | 18.35 (13.6–34.13) |
BMI z-score < −1.64 * | 4 (10) |
F508del homozygous | 19 (49) |
F508 heterozygous | 15 (38) |
Other mutations | 3 (13) |
Exacerbation (visits) | 22 (25) |
FEV1 z-score < −1.64 * | 25 (29) |
FEV1 z-score (median; range) | −0.05 (−9.06–3.71) |
LCI 2.5% (median; range) | 8.03 (5.1–17.39) |
LCI 2.5% z-score (median; range) | 4.23 (−2.95–27.16) |
LCI 2.5% z-score > 1.64 * | 46 (65) |
Pancreatic insufficiency | 34 (87) |
Medication used | |
Dornase alfa | 39 (100%) |
Hypertonic saline | 39 (100%) |
Chronic inhaled antibiotics # | 13 (33%) |
Modulators | 0 (0%) |
Variable | MRI Score 0 | MRI Score ≥ 1 | Total | Cohen’s Kappa | p-Value |
---|---|---|---|---|---|
Multiple-breath washout test | |||||
LCI z-score ≤ 1.64 | 17 | 8 | 25 | 0.429 | <0.001 |
LCI z-score > 1.64 | 11 | 35 | 46 | ||
M1/M0 z-score ≤ 1.64 | 17 | 10 | 27 | 0.377 | 0.001 |
M1/M0 z-score > 1.64 | 11 | 33 | 44 | ||
M2/M0 z-score ≤ 1.64 | 15 | 8 | 24 | 0.361 | 0.002 |
M2/M0 z-score > 1.64 | 13 | 35 | 47 | ||
Spirometry | |||||
FEV1 z-score ≥ −1.64 | 32 | 30 | 62 | 0.380 | <0.001 |
FEV1 z-score < −1.64 | 0 | 25 | 25 | ||
FVC z-score ≥−1.64 | 31 | 38 | 69 | 0.224 | 0.002 |
FVC z-score < −1.64 | 1 | 17 | 18 | ||
FEF25/75 z-score ≥ −1.64 | 30 | 31 | 61 | 0.314 | <0.001 |
FEF25/75 z-score < −1.64 | 2 | 24 | 26 | ||
Impulse oscillometry | |||||
X5Hz z-score ≥ −1.64 | 32 | 52 | 84 | 0.014 | 0.434 |
X5Hz z-score < −1.64 | 0 | 1 | 1 | ||
X10Hz z-score ≥ −1.64 | 32 | 48 | 80 | 0.073 | 0.073 |
X10Hz z-score < −1.64 | 0 | 5 | 5 | ||
Fres z-score ≤ 1.64 | 28 | 44 | 72 | 0.036 | 0.578 |
Fres z-score > 1.64 | 4 | 9 | 13 | ||
Body plethysmography | |||||
TLC z-score ≤ 1.64– ≥ −1.64 | 8 | 18 | 26 | −0.086 | 0.443 |
TLC z-score < −1.64 or >1.64 | 21 | 32 | 53 | ||
RV/TLC z-score ≤ 1.64 | 13 | 2 | 15 | 0.454 | <0.001 |
RV/TLC z-score > 1.64 | 16 | 48 | 64 | ||
Single-breath carbon monoxide uptake | |||||
TLC z-score ≤ 1.64– ≥ −1.64 | 6 | 17 | 23 | −0.194 | 0.151 |
TLC z-score < −1.64 or >1.64 | 14 | 17 | 31 | ||
RV/TLC z-score ≤ 1.64 | 11 | 9 | 20 | 0.285 | 0.036 |
RV/TLC z-score > 1.64 | 9 | 25 | 34 | ||
TLCO z-score ≥ −1.64 | 16 | 15 | 31 | 0.322 | 0.010 |
TLCO z-score < −1.64 | 4 | 19 | 23 |
Variable | MRI Score | p-Value * | ||
---|---|---|---|---|
0 | 1–3 | >3 | ||
Number of visits | 36 | 31 | 20 | |
Age (median; range) | 10 (7–17) | 13 (8–18) | 14 (9–18) | 0.025 * (0) vs. (>3) ** |
BMI (median; range) | 19.32 (14.47–34.13) | 17.66 (13.6–23.94) | 18.36 (14–21.23) | 0.417 * |
F508del homozygous (%) | 13 (36%) | 17 (55%) | 11 (55%) | 0.224 # |
F508del heterozygous (%) | 21 (58%) | 10 (32%) | 7(35%) | 0.067 # |
PI (%) | 27 (75%) | 30 (97%) | 19 (95%) | 0.014 # (0) vs. (1–3) ## |
Exacerbation (%) | 2 (6%) | 13 (42%) | 8 (40%) | 0.001 # (0) vs. (1–3) ## (0) vs. (>3) ## |
Chronic P. aeruginosa infection (%) ^ | 5 (14%) | 7 (23%) | 3 (15%) | 0.614 # |
Chronic S. aureus infection (%) ^ | 30 (83%) | 30 (97%) | 16 (80%) | 0.135 # |
Variable | R Spearman | p-Value ^ |
---|---|---|
Multiple-breath washout | ||
LCI 2.5% | 0.504 | <0.001 |
LCI z-score | 0.506 | <0.001 |
M1/M0 z-score | 0.493 | <0.001 |
M2/M0 z-score | 0.347 | 0.049 |
Spirometry | ||
FEV1 z-score | −0.546 | <0.001 |
FVC z-score | −0.516 | <0.001 |
FEF25/75 z-score | −0.382 | 0.004 |
Impulse oscillometry | ||
X5Hz z-score | −0.394 | 0.003 |
X10Hz z-score | −0.253 | 0.311 |
AX | −0.0796 | 1 |
Fres z-score | 0.0434 | 1 |
Body plethysmography | ||
TLC z-score | 0.0374 | 1 |
RV z-score | 0.3794 | 0.011 |
RV/TLC z-score | 0.4207 | 0.002 |
Single-breath carbon monoxide uptake | ||
TLC z-score | −0.3183 | 0.343 |
RV z-score | 0.013 | 1 |
RV/TLC z-score | 0.2302 | 1 |
TLCO z-score | −0.3621 | 0.133 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojsyk-Banaszak, I.; Więckowska, B.; Szczepankiewicz, A.; Stachowiak, Z.; Andrzejewska, M.; Juchnowicz, J.; Kycler, M.; Famulska, P.; Osińska, M.; Jończyk-Potoczna, K. MRI and Pulmonary Function Tests’ Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. J. Clin. Med. 2023, 12, 5136. https://doi.org/10.3390/jcm12155136
Wojsyk-Banaszak I, Więckowska B, Szczepankiewicz A, Stachowiak Z, Andrzejewska M, Juchnowicz J, Kycler M, Famulska P, Osińska M, Jończyk-Potoczna K. MRI and Pulmonary Function Tests’ Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. Journal of Clinical Medicine. 2023; 12(15):5136. https://doi.org/10.3390/jcm12155136
Chicago/Turabian StyleWojsyk-Banaszak, Irena, Barbara Więckowska, Aleksandra Szczepankiewicz, Zuzanna Stachowiak, Marta Andrzejewska, Jerzy Juchnowicz, Maciej Kycler, Paulina Famulska, Marta Osińska, and Katarzyna Jończyk-Potoczna. 2023. "MRI and Pulmonary Function Tests’ Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis" Journal of Clinical Medicine 12, no. 15: 5136. https://doi.org/10.3390/jcm12155136
APA StyleWojsyk-Banaszak, I., Więckowska, B., Szczepankiewicz, A., Stachowiak, Z., Andrzejewska, M., Juchnowicz, J., Kycler, M., Famulska, P., Osińska, M., & Jończyk-Potoczna, K. (2023). MRI and Pulmonary Function Tests’ Results as Ventilation Inhomogeneity Markers in Children and Adolescents with Cystic Fibrosis. Journal of Clinical Medicine, 12(15), 5136. https://doi.org/10.3390/jcm12155136