Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Exercise Test Protocol
2.3. HRV Measurement
2.4. Statistical Analysis
3. Results
3.1. Patient’s Backgroud
3.2. HRV Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar]
- Kamiya, K.; Yamamoto, T.; Tsuchihashi-Makaya, M.; Ikegame, T.; Takahashi, T.; Sato, Y.; Kotooka, N.; Saito, Y.; Tsutsui, H.; Miyata, H.; et al. Nationwide Survey of Multidisciplinary Care and Cardiac Rehabilitation for Patients with Heart Failure in Japan—An Analysis of the AMED-CHF Study. Circ. J. 2019, 83, 1546–1552. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Katsumata, Y.; Sadahiro, T.; Azuma, K.; Akita, K.; Isobe, S.; Yashima, F.; Miyamoto, K.; Nishiyama, T.; Tamura, Y.; et al. Real-Time Analysis of the Heart Rate Variability During Incremental Exercise for the Detection of the Ventilatory Threshold. J. Am. Heart Assoc. 2018, 7, e006612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottin, F.; Medigue, C.; Lepretre, P.M.; Papelier, Y.; Koralsztein, J.P.; Billat, V. Heart rate variability during exercise performed below and above ventilatory threshold. Med. Sci. Sports Exerc. 2004, 36, 594–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Rovere, M.T.; Bigger, J.T., Jr.; Marcus, F.I.; Mortara, A.; Schwartz, P.J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Mortara, A.; Capomolla, S.; Febo, O.; Ferrari, R.; Franchini, M.; Gnemmi, M.; Opasich, C.; et al. Short-Term Heart Rate Variability Strongly Predicts Sudden Cardiac Death in Chronic Heart Failure Patients. Circulation 2003, 107, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Gaskill, S.E.; Ruby, B.C.; Walker, A.J.; Sanchez, O.A.; Serfass, R.C.; Leon, A.S. Validity and reliability of combining three methods to determine ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef]
- Niewiadomski, W.; Gasiorowska, A.; Krauss, B.; Mroz, A.; Cybulski, G. Suppression of heart rate variability after supramaximal exertion. Clin. Physiol. Funct. Imaging 2007, 27, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, B.; Macaulay, R.J.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.A.V.I.D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. 1985, 248, H151–H153. [Google Scholar] [CrossRef] [PubMed]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.A.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.; Winzer, E.B.; Duvinage, A.; Gevaert, A.B.; Edelmann, F.; Haller, B.; Pieske-Kraigher, E.; Beckers, P.; Bobenko, A.; Hommel, J.; et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021, 325, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Magrì, D.; Piepoli, M.; Gallo, G.; Corrà, U.; Metra, M.; Paolillo, S.; Filardi, P.P.; Maruotti, A.; Salvioni, E.; Mapelli, M.; et al. Old and new equations for maximal heart rate prediction in patients with heart failure and reduced ejection fraction on beta-blockers treatment: Results from the MECKI score data set. Eur. J. Prev. Cardiol. 2022, 29, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Magrì, D.; Corrà, U.; Di Lenarda, A.; Cattadori, G.; Maruotti, A.; Iorio, A.; Mezzani, A.; Giannuzzi, P.; Mantegazza, V.; Gondoni, E.; et al. Cardiovascular mortality and chronotropic incompetence in systolic heart failure: The importance of a reappraisal of current cut-off criteria. Eur. J. Heart Fail. 2014, 16, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Casolo, G.C.; Stroder, P.; Sulla, A.; Chelucci, A.; Freni, A.; Zerauschek, M. Heart rate variability and functional severity of congestive heart failure secondary to coronary artery disease. Eur. Heart J. 1995, 16, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, P.; Emdin, M.; Corrà, U.; Veglia, F.; Magrì, D.; Tedesco, C.C.; Berton, E.; Passino, C.; Bertella, E.; Re, F.; et al. Permanent atrial fibrillation affects exercise capacity in chronic heart failure patients. Eur. Heart J. 2008, 29, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
Low-HFC Group (n = 33) | High-HFC Group (n = 34) | |
---|---|---|
Baseline characteristics | ||
Age, years | 60 (49–64) | 55 (40–68) |
Male, n (%) | 24 (73) | 22 (65) |
Body mass index, kg/m2 | 22.9 (21.2–26.1) | 22.9 (19.8–25.2) |
Diabetes mellitus, n (%) | 9 (31) | 7 (18) |
Ischemic etiology, n (%) | 4 (12) | 5 (15) |
Non-ischemic etiology, n (%) | 29 (88) | 29 (85) |
Beta-blocker, n (%) | 31 (94) | 32 (94) |
Dose of β-blocker, mg | 5.0 (2.5–10.0) | 10.0 (4.7–20.0) |
ACEI or ARB, n (%) | 27 (82) | 29 (85) |
MRA, n (%) | 23 (70) | 21 (62) |
Laboratory data | ||
eGFR, mL/min/1.73 m2 | 61 (41–77) | 59 (39–75) |
Hemoglobin, g/dL | 12.6 (11.6–13.9) | 13.4 (12.4–14.6) |
HbA1c, % | 5.9 (5.5–6.3) | 5.8 (5.5–6.5) |
BNP, pg/mL | 93.7 (28.5–381.8) | 64.2 (20.8–167.5) |
Echocardiography data | ||
LVEF, % | 36.9 (27.4–43.9) | 37.1 (32.5–50.0) |
LVDd, mm | 60 (50.5–65.0) | 58 (51–62) |
LVDs, mm | 48 (38.5–56.0) | 48 (34.8–52.5) |
PASP, mm Hg | 29 (22–41) | 25 (20–31) * |
CPX data | ||
At rest | ||
HR, bpm | 81 (70–90) | 74 (66–79) * |
Systolic BP, mmHg | 119 (102–130) | 117 (103–128) |
VO2, mL/kg per min | 3.8 (3.4–4.3) | 3.7 (3.4–4.2) |
HFC, ms2 | 13.7 (7.0–19.7) | 94.3 (43.2–120) * |
During warm-up | ||
HR, bpm | 88 (75–97) | 81 (75–85) * |
Systolic BP, mmHg | 127 (112–141) | 128 (117–144) |
VO2, mL/kg per min | 6.7 (6.0–7.9) | 6.3 (5.8–7.6) |
At anaerobic threshold | ||
HR, bpm | 102 (92–114) | 100 (89–109) |
Systolic BP, mmHg | 138 (119–153) | 138 (119–153) |
VO2, mL/kg per min | 12.0 (11.0–14.9) | 13.2 (11.6–15.3) |
VO2 percentage of predicted peak VO2, % | 46 (37–59) | 46 (37–64) |
RQ | 0.90 (0.87–0.97) | 0.91 (0.82–0.95) |
At peak exercise | ||
HR, bpm | 140 (115–147) | 134 (117–149) |
Systolic BP, mmHg | 160 (140–178) | 155 (130–178) |
VO2, ml/kg per minute | 19.2 (14.6–26.8) | 19.8 (16.6–26.6) |
VO2 percentage of predicted peak VO2, % | 71 (59–91) | 77 (57–94) |
RQ | 1.15 (1.09–1.22) | 1.17 (1.09–1.24) |
Peak HR reserve, % # | 65 (48–80) | 62 (50–71) |
VE-VCO2 slope | 30.2 (26.6–35.3) | 29.2 (26.2–30.8) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryuzaki, T.; Shiraishi, Y.; Miura, K.; Ikura, H.; Seki, Y.; Azuma, K.; Sato, K.; Fukuda, K.; Katsumata, Y. Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients. J. Clin. Med. 2023, 12, 5225. https://doi.org/10.3390/jcm12165225
Ryuzaki T, Shiraishi Y, Miura K, Ikura H, Seki Y, Azuma K, Sato K, Fukuda K, Katsumata Y. Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients. Journal of Clinical Medicine. 2023; 12(16):5225. https://doi.org/10.3390/jcm12165225
Chicago/Turabian StyleRyuzaki, Toshinobu, Yasuyuki Shiraishi, Kotaro Miura, Hidehiko Ikura, Yuta Seki, Koichiro Azuma, Kazuki Sato, Keiichi Fukuda, and Yoshinori Katsumata. 2023. "Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients" Journal of Clinical Medicine 12, no. 16: 5225. https://doi.org/10.3390/jcm12165225
APA StyleRyuzaki, T., Shiraishi, Y., Miura, K., Ikura, H., Seki, Y., Azuma, K., Sato, K., Fukuda, K., & Katsumata, Y. (2023). Real-Time Estimation of Anaerobic Threshold during Exercise Using Electrocardiogram in Heart Failure Patients. Journal of Clinical Medicine, 12(16), 5225. https://doi.org/10.3390/jcm12165225