A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: From Molecular Imaging to Augmented Reality
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Primary Tumor
3.1.1. Preoperative Planning
3.1.2. Intraoperative Tumor Detection and Real Time Imaging
3.1.3. Intraoperative Diagnostics
3.2. Intraoperative Detection of Lymph Node Metastases
3.3. Training
3.3.1. Virtual Training
3.3.2. Peer Review and Structured Feedback
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Esperto, F.; Prata, F.; Autrán-Gómez, A.M.; Rivas, J.G.; Socarras, M.; Marchioni, M.; Albisinni, S.; Cataldo, R.; Scarpa, R.M.; Papalia, R. New Technologies for Kidney Surgery Planning 3D, Impression, Augmented Reality 3D, Reconstruction: Current Realities and Expectations. Curr. Urol. Rep. 2021, 22, 35. [Google Scholar] [CrossRef]
- Tewari, A.; Peabody, J.O.; Fischer, M.; Sarle, R.; Vallancien, G.; Delmas, V.; Hassan, M.; Bansal, A.; Hemal, A.K.; Guillonneau, B.; et al. An Operative and Anatomic Study to Help in Nerve Sparing during Laparoscopic and Robotic Radical Prostatectomy. Eur. Urol. 2003, 43, 444–454. [Google Scholar] [CrossRef]
- Amparore, D.; Pecoraro, A.; Checcucci, E.; De Cillis, S.; Piramide, F.; Volpi, G.; Piana, A.; Verri, P.; Granato, S.; Sica, M.; et al. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: Which is the urologists’ perception? Minerva Urol. Nephrol. 2022, 74, 178–185. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Howick, J.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Chalmers, I.; Moschetti, I.; Phillips, B.; Thornton, H. The Oxford 2011 Levels of Evidence. CEBM. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 1 March 2023).
- Wake, N.; Rosenkrantz, A.B.; Huang, R.; Park, K.U.; Wysock, J.S.; Taneja, S.S.; Huang, W.C.; Sodickson, D.K.; Chandarana, H. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: Impact on patient education. 3D Print. Med. 2019, 5, 4. [Google Scholar] [CrossRef]
- Shirk, J.D.; Reiter, R.; Wallen, E.M.; Pak, R.; Ahlering, T.; Badani, K.K.; Porter, J.R. Effect of 3-Dimensional, Virtual Reality Models for Surgical Planning of Robotic Prostatectomy on Trifecta Outcomes: A Randomized Clinical Trial. J. Urol. 2022, 208, 618–625. [Google Scholar] [CrossRef]
- Martini, A.; Falagario, U.G.; Cumarasamy, S.; Jambor, I.; Wagaskar, V.G.; Ratnani, P.; Haines, K.G., III; Tewari, A.K. The Role of 3D Models Obtained from Multiparametric Prostate MRI in Performing Robotic Prostatectomy. J. Endourol. 2022, 36, 387–393. [Google Scholar] [CrossRef]
- Checcucci, E.; Pecoraro, A.; Amparore, D.; De Cillis, S.; Granato, S.; Volpi, G.; Sica, M.; Verri, P.; Piana, A.; Piazzolla, P.; et al. The impact of 3D models on positive surgical margins after robot-assisted radical prostatectomy. World J. Urol. 2022, 40, 2221–2229. [Google Scholar] [CrossRef]
- Porpiglia, F.; Fiori, C.; Checcucci, E.; Amparore, D.; Bertolo, R. Augmented Reality Robot-assisted Radical Prostatectomy: Preliminary Experience. Urology 2018, 115, 184. [Google Scholar] [CrossRef]
- Porpiglia, F.; Bertolo, R.; Amparore, D.; Checcucci, E.; Artibani, W.; Dasgupta, P.; Montorsi, F.; Tewari, A.; Fiori, C. Augmented reality during robot-assisted radical prostatectomy: Expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol. Nephrol. 2018, 70, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Samei, G.; Goksel, O.; Lobo, J.; Mohareri, O.; Black, P.; Rohling, R.; Salcudean, S. Real-Time FEM-Based Registration of 3-D to 2.5-D Transrectal Ultrasound Images. IEEE Trans. Med. Imaging 2018, 37, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Kratiras, Z.; Gavazzi, A.; Belba, A.; Willis, B.; Chew, S.; Allen, C.; Amoroso, P.; Dasgupta, P. Phase I study of a new tablet-based image guided surgical system in robot-assisted radical prostatectomy. Minerva Urol. Nephrol. 2019, 71, 92–95. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Manfredi, M.; Massa, F.; Piazzolla, P.; Manfrin, D.; Piana, A.; Tota, D.; Bollito, E.; et al. Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology: A Step Further in the Identification of Capsular Involvement. Eur. Urol. 2019, 76, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Autorino, R.; Piana, A.; Bellin, A.; Piazzolla, P.; Massa, F.; Bollito, E.; Gned, D.; et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: A radiological and pathological study. BJU Int. 2019, 123, 834–845. [Google Scholar] [CrossRef]
- Mehralivand, S.; Kolagunda, A.; Hammerich, K.; Sabarwal, V.; Harmon, S.; Sanford, T.; Gold, S.; Hale, G.; Romero, V.V.; Bloom, J.; et al. A multiparametric magnetic resonance imaging-based virtual reality surgical navigation tool for robotic-assisted radical prostatectomy. Turk. J. Urol. 2019, 45, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Canda, A.E.; Aksoy, S.F.; Altinmakas, E.; Koseoglu, E.; Falay, O.; Kordan, Y.; Çil, B.; Balbay, M.D.; Esen, T. Virtual reality tumor navigated robotic radical prostatectomy by using three-dimensional reconstructed multiparametric prostate MRI and (68)Ga-PSMA PET/CT images: A useful tool to guide the robotic surgery? BJUI Compass 2020, 1, 108–115. [Google Scholar] [CrossRef]
- Samei, G.; Tsang, K.; Kesch, C.; Lobo, J.; Hor, S.; Mohareri, O.; Chang, S.; Goldenberg, S.L.; Black, P.C.; Salcudean, S. A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy. Med. Image Anal. 2020, 60, 101588. [Google Scholar] [CrossRef]
- Schiavina, R.; Bianchi, L.; Lodi, S.; Cercenelli, L.; Chessa, F.; Bortolani, B.; Gaudiano, C.; Casablanca, C.; Droghetti, M.; Porreca, A.; et al. Real-time Augmented Reality Three-dimensional Guided Robotic Radical Prostatectomy: Preliminary Experience and Evaluation of the Impact on Surgical Planning. Eur. Urol. Focus 2021, 7, 1260–1267. [Google Scholar] [CrossRef]
- Tanzi, L.; Piazzolla, P.; Porpiglia, F.; Vezzetti, E. Real-time deep learning semantic segmentation during intra-operative surgery for 3D augmented reality assistance. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1435–1445. [Google Scholar] [CrossRef]
- Padovan, E.; Marullo, G.; Tanzi, L.; Piazzolla, P.; Moos, S.; Porpiglia, F.; Vezzetti, E. A deep learning framework for real-time 3D model registration in robot-assisted laparoscopic surgery. Int. J. Med. Robot. 2022, 18, e2387. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Zlatev, D.V.; Mach, K.E.; Bui, D.; Liu, J.J.; Rouse, R.V.; Harris, T.; Leppert, J.T.; Liao, J.C. Intraoperative Optical Biopsy during Robotic Assisted Radical Prostatectomy Using Confocal Endomicroscopy. J. Urol. 2016, 195, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Law, K.W.; Ajib, K.; Couture, F.; Tholomier, C.; Bondarenko, H.D.; Preisser, F.; Karakiewicz, P.I.; Zorn, K.C. Use of the AccuVein AV400 during RARP: An infrared augmented reality device to help reduce abdominal wall hematoma. Can. J. Urol. 2018, 25, 9384–9388. [Google Scholar] [PubMed]
- Bianchi, L.; Chessa, F.; Angiolini, A.; Cercenelli, L.; Lodi, S.; Bortolani, B.; Molinaroli, E.; Casablanca, C.; Droghetti, M.; Gaudiano, C.; et al. The Use of Augmented Reality to Guide the Intraoperative Frozen Section During Robot-assisted Radical Prostatectomy. Eur. Urol. 2021, 80, 480–488. [Google Scholar] [CrossRef] [PubMed]
- van der Poel, H.G.; Buckle, T.; Brouwer, O.R.; Valdés Olmos, R.A.; van Leeuwen, F.W. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: Clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol. 2011, 60, 826–833. [Google Scholar] [CrossRef] [PubMed]
- KleinJan, G.H.; van den Berg, N.S.; de Jong, J.; Wit, E.M.; Thygessen, H.; Vegt, E.; van der Poel, H.G.; van Leeuwen, F.W. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, N.S.; Buckle, T.; KleinJan, G.H.; van der Poel, H.G.; van Leeuwen, F.W.B. Multispectral Fluorescence Imaging During Robot-assisted Laparoscopic Sentinel Node Biopsy: A First Step Towards a Fluorescence-based Anatomic Roadmap. Eur. Urol. 2017, 72, 110–117. [Google Scholar] [CrossRef]
- de Korne, C.M.; Wit, E.M.; de Jong, J.; Valdés Olmos, R.A.; Buckle, T.; van Leeuwen, F.W.B.; van der Poel, H.G. Anatomical localization of radiocolloid tracer deposition affects outcome of sentinel node procedures in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2558–2568. [Google Scholar] [CrossRef]
- Hinsenveld, F.J.; Wit, E.M.K.; van Leeuwen, P.J.; Brouwer, O.R.; Donswijk, M.L.; Tillier, C.N.; Vegt, E.; van Muilekom, E.; van Oosterom, M.N.; van Leeuwen, F.W.B.; et al. Prostate-Specific Membrane Antigen PET/CT Combined with Sentinel Node Biopsy for Primary Lymph Node Staging in Prostate Cancer. J. Nucl. Med. 2020, 61, 540–545. [Google Scholar] [CrossRef]
- Collamati, F.; van Oosterom, M.N.; De Simoni, M.; Faccini, R.; Fischetti, M.; Mancini Terracciano, C.; Mirabelli, R.; Moretti, R.; Heuvel, J.O.; Solfaroli Camillocci, E.; et al. A DROP-IN beta probe for robot-assisted (68)Ga-PSMA radioguided surgery: First ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020, 10, 92. [Google Scholar] [CrossRef]
- Mazzone, E.; Dell’Oglio, P.; Grivas, N.; Wit, E.; Donswijk, M.; Briganti, A.; Leeuwen, F.V.; Poel, H.V. Diagnostic Value, Oncologic Outcomes, and Safety Profile of Image-Guided Surgery Technologies During Robot-Assisted Lymph Node Dissection with Sentinel Node Biopsy for Prostate Cancer. J. Nucl. Med. 2021, 62, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Wit, E.M.K.; van Beurden, F.; Kleinjan, G.H.; Grivas, N.; de Korne, C.M.; Buckle, T.; Donswijk, M.L.; Bekers, E.M.; van Leeuwen, F.W.B.; van der Poel, H.G. The impact of drainage pathways on the detection of nodal metastases in prostate cancer: A phase II randomized comparison of intratumoral vs intraprostatic tracer injection for sentinel node detection. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Gondoputro, W.; Scheltema, M.J.; Blazevski, A.; Doan, P.; Thompson, J.E.; Amin, A.; Geboers, B.; Agrawal, S.; Siriwardana, A.; Van Leeuwen, P.J.; et al. Robot-Assisted Prostate-Specific Membrane Antigen-Radioguided Surgery in Primary Diagnosed Prostate Cancer. J. Nucl. Med. 2022, 63, 1659–1664. [Google Scholar] [CrossRef] [PubMed]
- Dell’Oglio, P.; Meershoek, P.; Maurer, T.; Wit, E.M.K.; van Leeuwen, P.J.; van der Poel, H.G.; van Leeuwen, F.W.B.; van Oosterom, M.N. A DROP-IN Gamma Probe for Robot-assisted Radioguided Surgery of Lymph Nodes During Radical Prostatectomy. Eur. Urol. 2021, 79, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Mazzone, E.; Stabile, A.; Pellegrino, A.; Cucchiara, V.; Barletta, F.; Scuderi, S.; Robesti, D.; Leni, R.; Samanes Gajate, A.M.; et al. Prostate-specific membrane antigen Radioguided Surgery to Detect Nodal Metastases in Primary Prostate Cancer Patients Undergoing Robot-assisted Radical Prostatectomy and Extended Pelvic Lymph Node Dissection: Results of a Planned Interim Analysis of a Prospective Phase 2 Study. Eur. Urol. 2022, 82, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Özkan, A.; Köseoğlu, E.; Canda, A.E.; Çil, B.E.; Aykanat, C.İ.; Sarıkaya, A.F.; Tarım, K.; Armutlu, A.; Kulaç, İ.; Barçın, E.; et al. Fluorescence-guided extended pelvic lymphadenectomy during robotic radical prostatectomy. J. Robot. Surg. 2022, 17, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.J.; Zehnder, P.; Patil, M.B.; Cai, J.; Ng, C.K.; Aron, M.; Gill, I.S.; Desai, M.M. Face, content and construct validity of a novel robotic surgery simulator. J. Urol. 2011, 186, 1019–1024. [Google Scholar] [CrossRef]
- Aghazadeh, M.A.; Mercado, M.A.; Pan, M.M.; Miles, B.J.; Goh, A.C. Performance of robotic simulated skills tasks is positively associated with clinical robotic surgical performance. BJU Int. 2016, 118, 475–481. [Google Scholar] [CrossRef]
- Hoogenes, J.; Wong, N.; Al-Harbi, B.; Kim, K.S.; Vij, S.; Bolognone, E.; Quantz, M.; Guo, Y.; Shayegan, B.; Matsumoto, E.D. A Randomized Comparison of 2 Robotic Virtual Reality Simulators and Evaluation of Trainees’ Skills Transfer to a Simulated Robotic Urethrovesical Anastomosis Task. Urology 2018, 111, 110–115. [Google Scholar] [CrossRef]
- Harrison, P.; Raison, N.; Abe, T.; Watkinson, W.; Dar, F.; Challacombe, B.; Van Der Poel, H.; Khan, M.S.; Dasgupa, P.; Ahmed, K. The Validation of a Novel Robot-Assisted Radical Prostatectomy Virtual Reality Module. J. Surg. Educ. 2018, 75, 758–766. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, J.Y.; Pyun, J.H.; Cho, S.; Oh, M.M.; Kang, S.H.; Lee, J.G.; Kim, J.J.; Cheon, J.; Kang, S.G. Comparison of effective teaching methods to achieve skill acquisition using a robotic virtual reality simulator: Expert proctoring versus an educational video versus independent training. Medicine 2018, 97, e13569. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Noh, T.I.; Kim, J.Y.; Pyun, J.H.; Cho, S.; Oh, M.M.; Kang, S.H.; Cheon, J.; Lee, J.G.; Kim, J.J.; et al. Predictive Validation of a Robotic Virtual Reality Simulator: The Tube 3 module for Practicing Vesicourethral Anastomosis in Robot-Assisted Radical Prostatectomy. Urology 2018, 122, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Almarzouq, A.; Hu, J.; Noureldin, Y.A.; Yin, A.; Anidjar, M.; Bladou, F.; Tanguay, S.; Kassouf, W.; Aprikian, A.G.; Andonian, S. Are basic robotic surgical skills transferable from the simulator to the operating room? A randomized, prospective, educational study. Can. Urol. Assoc. J. 2020, 14, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, C.; Guo, F.; Sheng, X.; Ji, J.; Xu, Y.; Cao, Z.; Lyu, J.; Lu, X.; Yang, B. The application of virtual reality training for anastomosis during robot-assisted radical prostatectomy. Asian J. Urol. 2021, 8, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.G.; Bjerrum, F.; Konge, L.; Jepsen, J.V.; Azawi, N.H.; Bube, S.H. Validation of a Novel Simulation-Based Test in Robot-Assisted Radical Prostatectomy. J. Endourol. 2021, 35, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Ebbing, J.; Wiklund, P.N.; Akre, O.; Carlsson, S.; Olsson, M.J.; Höijer, J.; Heimer, M.; Collins, J.W. Development and validation of non-guided bladder-neck and neurovascular-bundle dissection modules of the RobotiX-Mentor® full-procedure robotic-assisted radical prostatectomy virtual reality simulation. Int. J. Med. Robot. 2021, 17, e2195. [Google Scholar] [CrossRef] [PubMed]
- Papalois, Z.A.; Aydın, A.; Khan, A.; Mazaris, E.; Rathnasamy Muthusamy, A.S.; Dor, F.; Dasgupta, P.; Ahmed, K. HoloMentor: A Novel Mixed Reality Surgical Anatomy Curriculum for Robot-Assisted Radical Prostatectomy. Eur. Surg. Res. 2022, 63, 40–45. [Google Scholar] [CrossRef]
- Sanford, D.I.; Ma, R.; Ghoreifi, A.; Haque, T.F.; Nguyen, J.H.; Hung, A.J. Association of Suturing Technical Skill Assessment Scores between Virtual Reality Simulation and Live Surgery. J. Endourol. 2022, 36, 1388–1394. [Google Scholar] [CrossRef]
- van der Leun, J.A.; Siem, G.; Meijer, R.P.; Brinkman, W.M. Improving Robotic Skills by Video Review. J. Endourol. 2022, 36, 1126–1135. [Google Scholar] [CrossRef]
- Noël, J.; Moschovas, M.C.; Patel, E.; Rogers, T.; Marquinez, J.; Rocco, B.; Mottrie, A.; Patel, V. Step-by-step optimisation of robotic-assisted radical prostatectomy using augmented reality. Int. Braz. J. Urol. 2022, 48, 600–601. [Google Scholar] [CrossRef]
- Cheikh Youssef, S.; Hachach-Haram, N.; Aydin, A.; Shah, T.T.; Sapre, N.; Nair, R.; Rai, S.; Dasgupta, P. Video labelling robot-assisted radical prostatectomy and the role of artificial intelligence (AI): Training a novice. J. Robot. Surg. 2022, 17, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.J.; Chen, J.; Jarc, A.; Hatcher, D.; Djaladat, H.; Gill, I.S. Development and Validation of Objective Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study. J. Urol. 2018, 199, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Wit, E.M.K.; Acar, C.; Grivas, N.; Yuan, C.; Horenblas, S.; Liedberg, F.; Valdes Olmos, R.A.; van Leeuwen, F.W.B.; van den Berg, N.S.; Winter, A.; et al. Sentinel Node Procedure in Prostate Cancer: A Systematic Review to Assess Diagnostic Accuracy. Eur. Urol. 2017, 71, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Bravi, C.A.; Paciotti, M.; Sarchi, L.; Mottaran, A.; Nocera, L.; Farinha, R.; De Backer, P.; Vinckier, M.-H.; De Naeyer, G.; D’Hondt, F.; et al. Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System: Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur. Urol. 2022, 82, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Beulens, A.J.W.; Vaartjes, L.; Tilli, S.; Brinkman, W.M.; Umari, P.; Puliatti, S.; Koldewijn, E.L.; Hendrikx, A.J.M.; van Basten, J.P.; van Merriënboer, J.J.G.; et al. Structured robot-assisted surgery training curriculum for residents in Urology and impact on future surgical activity. J. Robot. Surg. 2021, 15, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Imber, B.S.; Varghese, M.; Ehdaie, B.; Gorovets, D. Financial toxicity associated with treatment of localized prostate cancer. Nat. Rev. Urol. 2020, 17, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Özman, O.; Tillier, C.N.; van Muilekom, E.; van de Poll-Franse, L.V.; van der Poel, H.G. Financial Toxicity After Robot-Assisted Radical Prostatectomy and Its Relation with Oncologic, Functional Outcomes. J. Urol. 2022, 208, 978–986. [Google Scholar] [CrossRef]
- Bolenz, C.; Gupta, A.; Hotze, T.; Ho, R.; Cadeddu, J.A.; Roehrborn, C.G.; Lotan, Y. Cost comparison of robotic, laparoscopic, and open radical prostatectomy for prostate cancer. Eur. Urol. 2010, 57, 453–458. [Google Scholar] [CrossRef]
- Checcucci, E.; Verri, P.; Amparore, D.; Cacciamani, G.E.; Rivas, J.G.; Autorino, R.; Mottrie, A.; Breda, A.; Porpiglia, F. The future of robotic surgery in urology: From augmented reality to the advent of metaverse. Ther. Adv. Urol. 2023, 15, 17562872231151853. [Google Scholar] [CrossRef]
- Andras, I.; Mazzone, E.; van Leeuwen, F.W.B.; De Naeyer, G.; van Oosterom, M.N.; Beato, S.; Buckle, T.; O’Sullivan, S.; van Leeuwen, P.J.; Beulens, A.; et al. Artificial intelligence and robotics: A combination that is changing the operating room. World J. Urol. 2020, 38, 2359–2366. [Google Scholar] [CrossRef]
- Rodler, S.; Buchner, A.; Stief, C.G.; Heinemann, V.; Staehler, M.; Casuscelli, J. Patients’ Perspective on Digital Technologies in Advanced Genitourinary Cancers. Clin. Genitourin. Cancer 2021, 19, 76–82.e76. [Google Scholar] [CrossRef]
- Zachrison, K.S.; Yan, Z.; Samuels-Kalow, M.E.; Licurse, A.; Zuccotti, G.; Schwamm, L.H. Association of Physician Characteristics with Early Adoption of Virtual Health Care. JAMA Netw. Open 2021, 4, e2141625. [Google Scholar] [CrossRef]
- Gandaglia, G.; Schatteman, P.; De Naeyer, G.; D’Hondt, F.; Mottrie, A. Novel Technologies in Urologic Surgery: A Rapidly Changing Scenario. Curr. Urol. Rep. 2016, 17, 19. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Chu, T.N.; Sanford, D.I.; Abreu, A.; Duddalwar, V.; Oberai, A.; Kuo, C.C.J.; Liu, X.; Denniston, A.K.; Vasey, B.; et al. PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare. Nat. Med. 2023, 29, 14–15. [Google Scholar] [CrossRef]
Author [Ref.] | Year | Study Design | LoE [6] | Organ | Area of Application | Imaging Modality |
---|---|---|---|---|---|---|
Wake et al. [7] | 2019 | Prospective | IV | Prostate | Preoperative Planning | MRI—Virtual Reality, 3D models |
Shirk et al. [8] | 2022 | Prospective | II | Prostate | Preoperative Planning | MRI—Virtual reality |
Martini et al. [9] | 2022 | Retrospective | IV | Prostate | Preoperative Planning | MRI—3D models |
Checcuci et al. [10] | 2022 | Retrospective | IV | Prostate | Preoperative Planning | MRI—3D models |
Porpilgia et al. [11] | 2018 | Prospective | IV | Prostate | Visualization of PT | MRI—console |
Porpiglia et al. [12] | 2018 | Prospective | III | Prostate | Visualization of PT | MRI—console |
Samei et al. [13] | 2018 | Prospective | IV | Prostate | Visualization of PT | Ultrasound |
Kratiras et al. [14] | 2019 | Prospective | IV | Prostate | Visualization of PT | MRI—tablet |
Porpiglia et al. [15] | 2019 | Prospective | III | Prostate | Visualization of PT | MRI—console |
Porpiglia et al. [16] | 2019 | Prospective | III | Prostate | Visualization of PT | MRI—console |
Mehralivand et al. [17] | 2019 | Prospective | IV | Prostate | Visualization of PT | MRI—separate display |
Canda et al. [18] | 2020 | Prospective | IV | Prostate | Visualization of PT | MRI/PSMA-PET—console |
Samei et al. [19] | 2020 | Prospective | IV | Prostate | Visualization of PT | MRI/Ultrasound—console |
Schiavina et al. [20] | 2021 | Prospective | IV | Prostate | Visualization of PT | MRI—console |
Tanzi et al. [21] | 2021 | Retrospective | IV | Prostate | Visualization of PT | Console |
Padovan et al. [22] | 2022 | Retrospective | IV | Prostate | Visualization of PT | Console |
Lopez et al. [23] | 2016 | Prospective | IV | Prostate | Intraoperative diagnostics | Confocal |
Law et al. [24] | 2018 | Retrospective | IV | Abdominal wall | Intraoperative diagnostics | Infrared |
Bianchi et al. [25] | 2021 | Prospective | III | Prostate | Intraoperative diagnostics | Augmented reality—console |
van der Poel et al. [26] | 2011 | Prospective | III | LN | Intraoperative detection of LN | Fluorescent camera |
KleinJan et al. [27] | 2016 | Prospective | IV | LN | Intraoperative detection of LN | Fluorescent camera |
van den Berg et al. [28] | 2017 | Prospective | IV | LN | Intraoperative detection of LN | Fluorescent camera |
De Korne et al. [29] | 2019 | Retrospective | III | LN | Intraoperative detection of LN | Fluorescent camera/gamma probe |
Hinsenveld et al. [30] | 2020 | Retrospective | III | LN | Intraoperative detection of LN | Fluorescent camera |
Collamati et al. [31] | 2020 | Prospective | IV | LN | Intraoperative detection of LN | DROP-IN beta particle detector |
Mazzone et al. [32] | 2021 | Retrospective | III | LN | Intraoperative detection of LN | Fluorescent camera |
Wit et al. [33] | 2022 | Prospective | II | LN | Intraoperative detection of LN | Fluorescent camera |
Gondoputro et al. [34] | 2022 | Prospective | IV | LN | Intraoperative detection of LN | Drop-IN gamma detector |
DellÓglio et al. [35] | 2021 | Prospective | IV | LN | Intraoperative detection of LN | Drop-in gamma probe, laparoscopic gamma probe, fluorescent camera |
Gandaglia et al. [36] | 2022 | Prospective | III | LN | Intraoperative detection of LN | Drop-in gamma probe |
Özkan et al. [37] | 2022 | Retrospective | IV | LN | Intraoperative detection of LN | Fluorescent camera |
Hung et al. [38] | 2011 | Prospective | IV | Prostate | Education/ Training | Simulator—basic skills |
Aghazadeh et al. [39] | 2016 | Prospective | IV | Prostate | Education/ Training | Simulator—clinical skills |
Hoogenes et al. [40] | 2018 | Prospective | III | Prostate | Education/ Training | Simulator |
Harrison et al. [41] | 2018 | Prospective | III | Prostate | Education/ Training | Simulator—clinical skills |
Shim et al. [42] | 2018 | Prospective | IV | Prostate | Education/ Training | Video instruction vs. Guided |
Shim et al. [43] | 2018 | Prospective | IV | Prostate | Education/ Training | Simulator |
Almarzouq et al. [44] | 2020 | Prospective | III | Prostate | Education/ Training | Simulator |
Wang et al. [45] | 2021 | Prospective | III | Prostate | Education/ Training | Simulator |
Olsen et al. [46] | 2021 | Prospective | III | Prostate | Education/ Training | Simulator |
Ebbing et al. [47] | 2021 | Prospective | IV | Prostate | Education/ Training | Full procedure simulator |
Papalois et al. [48] | 2022 | Prospective | IV | Prostate | Education/ Training | Mixed reality/VR Glasses |
Sanford et al. [49] | 2022 | Prospective | IV | Prostate | Education/ Training | VR Simulator |
Van der Leun et al. [50] | 2022 | Prospective | III | Prostate | Feedback | Simulator—video |
Noël et al. [51] | 2022 | Prospective | IV | Prostate | Feedback | Remote Teaching |
Cheikh et al. [52] | 2022 | Retrospective | IV | Prostate | Feedback | Video labeling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodler, S.; Kidess, M.A.; Westhofen, T.; Kowalewski, K.-F.; Belenchon, I.R.; Taratkin, M.; Puliatti, S.; Gómez Rivas, J.; Veccia, A.; Piazza, P.; et al. A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: From Molecular Imaging to Augmented Reality. J. Clin. Med. 2023, 12, 5425. https://doi.org/10.3390/jcm12165425
Rodler S, Kidess MA, Westhofen T, Kowalewski K-F, Belenchon IR, Taratkin M, Puliatti S, Gómez Rivas J, Veccia A, Piazza P, et al. A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: From Molecular Imaging to Augmented Reality. Journal of Clinical Medicine. 2023; 12(16):5425. https://doi.org/10.3390/jcm12165425
Chicago/Turabian StyleRodler, Severin, Marc Anwar Kidess, Thilo Westhofen, Karl-Friedrich Kowalewski, Ines Rivero Belenchon, Mark Taratkin, Stefano Puliatti, Juan Gómez Rivas, Alessandro Veccia, Pietro Piazza, and et al. 2023. "A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: From Molecular Imaging to Augmented Reality" Journal of Clinical Medicine 12, no. 16: 5425. https://doi.org/10.3390/jcm12165425
APA StyleRodler, S., Kidess, M. A., Westhofen, T., Kowalewski, K. -F., Belenchon, I. R., Taratkin, M., Puliatti, S., Gómez Rivas, J., Veccia, A., Piazza, P., Checcucci, E., Stief, C. G., & Cacciamani, G. E. (2023). A Systematic Review of New Imaging Technologies for Robotic Prostatectomy: From Molecular Imaging to Augmented Reality. Journal of Clinical Medicine, 12(16), 5425. https://doi.org/10.3390/jcm12165425