Impaired Prolactin-Lowering Effects of Metformin in Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Laboratory Assays
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Auriemma, R.S.; De Alcubierre, D.; Pirchio, R.; Pivonello, R.; Colao, A. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev. Endocrinol. Metab. 2018, 13, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.P.; Marek, B.; Kajdaniuk, D.; Rokicka, D.; Szymborska-Kajanek, A.; Strojek, K. Metformin—A new old drug. Endokrynol. Pol. 2017, 68, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.R.; Jin, H.; Gao, K.; Twamley, E.W.; Ou, J.J.; Shao, P.; Wang, J.; Guo, X.F.; Davis, J.M.; Chan, P.K.; et al. Metformin for treatment of antipsychotic-induced amenorrhea and weight gain in women with worst-episode schizophrenia: A double-blind, randomized, placebo-controlled study. Am. J. Psychiatry 2012, 169, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yang, X.H.; Cai, D.B.; Ungvari, G.S.; Ng, C.H.; Wang, N.; Ning, Y.P.; Xiang, Y.T. Adjunctive metformin for antipsychotic-related hyperprolactinemia: A meta-analysis of randomized controlled trials. J. Psychopharmacol. 2017, 31, 625–631. [Google Scholar] [CrossRef]
- Bo, Q.J.; Wang, Z.M.; Li, X.B.; Ma, X.; Wang, C.Y.; de Leon, J. Adjunctive metformin for antipsychotic-induced hyperprolactinemia: A systematic review. Psychiatry Res. 2016, 237, 257–263. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. The effect of metformin on prolactin levels in patients with drug-induced hyperprolactinemia. Eur. J. Intern. Med. 2016, 30, 94–98. [Google Scholar] [CrossRef]
- Krysiak, R.; Okrzesik, J.; Okopień, B. The effect of short-term metformin treatment on plasma prolactin levels in bromocriptine-treated patients with hyperprolactinaemia and impaired glucose tolerance: A pilot study. Endocrine 2015, 49, 242–249. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. Alternative treatment strategies in women poorly tolerating moderate doses of bromocriptine. Exp. Clin. Endocrinol. Diabetes 2017, 125, 360–364. [Google Scholar] [CrossRef]
- Portari, L.H.; Correa-Silva, S.R.; Abucham, J. Prolactin response to metformin in cabergoline-resistant prolactinomas: A pilot study. Neuroendocrinology 2022, 112, 68–73. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. A neutral effect of metformin treatment on macroprolactin content in women with macroprolactinemia. Exp. Clin. Endocrinol. Diabetes 2016, 125, 223–228. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. Sex-dependent effect of metformin on serum prolactin levels in hyperprolactinemic patients with type 2 diabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 26, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, R.S.; Pirchio, R.; De Alcubierre, D.; Pivonello, R.; Colao, A. Dopamine agonists: From the 1970s to today. Neuroendocrinology 2019, 109, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Cardiometabolic profile of young women with hypoprolactinemia. Endocrine 2022, 78, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Sexual function and depressive symptoms in young women with hyperprolactinemia. Clin. Endocrinol. 2020, 93, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Hoeger, K.M.; Dokras, A.; Piltonen, T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab. 2021, 106, e1071–e1083. [Google Scholar] [CrossRef]
- Delcour, C.; Robin, G.; Young, J.; Dewailly, D. PCOS and hyperprolactinemia: What do we know in 2019? Clin. Med. Insights Reprod. Health 2019, 13, 1179558119871921. [Google Scholar] [CrossRef]
- Ghaneei, A.; Jowkar, A.; Hasani Ghavam, M.R.; Ghaneei, M.E. Cabergoline plus metformin therapy effects on menstrual irregularity and androgen system in polycystic ovary syndrome women with hyperprolactinemia. Iran. J. Reprod. Med. 2015, 13, 93–100. [Google Scholar]
- Elsersy, M.A. Efficacy of combined cabergoline and metformin compared to metformin alone on cycle regularity in patients with polycystic ovarian disease with hyperprolactinemia: A randomized clinical trial. J. Obstet. Gynecol. India 2017, 67, 363–369. [Google Scholar] [CrossRef]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The impact of ethinyl estradiol on metformin action on prolactin levels in women with hyperprolactinemia. Exp. Clin. Endocrinol. Diabetes 2021, 129, 22–28. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. The impact of metformin on prolactin levels in postmenopausal women. J. Clin. Pharm. Ther. 2021, 46, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. Endogenous testosterone determines metformin action on prolactin levels in hyperprolactinaemic men: A pilot study. Basic Clin. Pharmacol. Toxicol. 2020, 126, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalska, B.; Szkróbka, W.; Okopień, B. The effect of oral contraception on macroprolactin levels in women with macroprolactinemia: A pilot study. Pharmacol. Rep. 2015, 67, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The effect of metformin on serum gonadotropin levels in postmenopausal women with diabetes and prediabetes: A pilot study. Exp. Clin. Endocrinol. Diabetes 2018, 126, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Lupoli, R.; Di Minno, A.; Tortora, A.; Ambrosino, P.; Lupoli, G.A.; Di Minno, M.N. Effects of treatment with metformin on TSH levels: A meta-analysis of literature studies. J. Clin. Endocrinol. Metab. 2014, 99, E143–E148. [Google Scholar] [CrossRef]
- Fahie-Wilson, M.N.; John, R.; Ellis, A.R. Macroprolactin; high molecular mass forms of circulating prolactin. Ann. Clin. Biochem. 2005, 42 Pt 3, 175–192. [Google Scholar] [CrossRef]
- Diver, M. Laboratory measurement of testosterone. Front. Horm. Res. 2009, 37, 21–31. [Google Scholar] [CrossRef]
- Di Guardo, F.; Ciotta, L.; Monteleone, M.; Palumbo, M. Male equivalent polycystic ovarian syndrome: Hormonal, metabolic, and clinical aspects. Int. J. Fertil. Steril. 2020, 14, 79–83. [Google Scholar] [CrossRef]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Pituitary effects of metformin in men with early-onset androgenic alopecia. J. Clin. Pharmacol. 2022, 62, 1364–1371. [Google Scholar] [CrossRef]
- Khosla, S.; Bilezikian, J.P. The role of estrogens in men and androgens in women. Endocrinol. Metab. Clin. N. Am. 2003, 32, 195–218. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Stefaneanu, L. Pituitary sex steroid receptors: Localization and function. Endocr. Pathol. 1997, 8, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Tosca, L.; Froment, P.; Rame, C.; McNeilly, J.R.; McNeilly, A.S.; Maillard, V.; Dupont, J. Metformin decreases GnRH- and activin-induced gonadotropin secretion in rat pituitary cells: Potential involvement of adenosine 5′ monophosphate-activated protein kinase (PRKA). Biol. Reprod. 2011, 84, 351–362. [Google Scholar] [CrossRef] [PubMed]
- LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021, 42, 77–96. [Google Scholar] [CrossRef]
- Hasanvand, A. The role of AMPK-dependent pathways in cellular and molecular mechanisms of metformin: A new perspective for treatment and prevention of diseases. Inflammopharmacology 2022, 30, 775–788. [Google Scholar] [CrossRef]
- Li, T.; Zhang, T.; Cui, T.; Yang, Y.; Liu, R.; Chen, Y.; Yin, C. Involvement of endogenous testosterone in hepatic steatosis in women with polycystic ovarian syndrome. J. Steroid Biochem. Mol. Biol. 2020, 204, 105752. [Google Scholar] [CrossRef]
- Christian, B.T.; Vandehey, N.T.; Fox, A.S.; Murali, D.; Oakes, T.R.; Converse, A.K.; Nickles, R.J.; Shelton, S.E.; Davidson, R.J.; Kalin, N.H. The distribution of D2/D3 receptor binding in the adolescent rhesus monkey using small animal PET imaging. Neuroimage 2009, 44, 1334–1344. [Google Scholar] [CrossRef]
- Ortega-González, C.; Cardoza, L.; Coutiño, B.; Hidalgo, R.; Arteaga-Troncoso, G.; Parra, A. Insulin sensitizing drugs increase the endogenous dopaminergic tone in obese insulin-resistant women with polycystic ovary syndrome. J. Endocrinol. 2005, 184, 233–239. [Google Scholar] [CrossRef]
- Toney, T.W.; Lookingland, K.J.; Moore, K.E. Role of testosterone in the regulation of tuberoinfundibular dopaminergic neurons in the male rat. Neuroendocrinology 1991, 54, 23–29. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopień, B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in women with polycystic ovary syndrome and subclinical hypothyroidism. J. Clin. Pharmacol. 2015, 55, 45–49. [Google Scholar] [CrossRef]
- Yavasoglu, I.; Kucuk, M.; Coskun, A.; Guney, E.; Kadikoylu, G.; Bolaman, Z. Polycystic ovary syndrome and prolactinoma association. Intern. Med. 2009, 48, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Falaschi, P.; Rocco, A.; del Pozo, E. Inhibitory effect of bromocriptine treatment on luteinizing hormone secretion in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1986, 62, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Doldi, N.; De Santis, L.; Marelli, G.; Marsiglio, E.; Rofena, S.; Ferrari, A. Cabergoline influences ovarian stimulation in hyperprolactinaemic patients with polycystic ovary syndrome. Hum. Reprod. 2001, 16, 2263–2266. [Google Scholar] [CrossRef] [PubMed]
- Copmann, T.L.; Adams, W.C. Relationship of polycystic ovary induction to prolactin secretion: Prevention of cyst formation by bromocriptine in the rat. Endocrinology 1981, 108, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Velija-Ašimi, Z. Evaluation of endocrine changes in women with the polycystic ovary syndrome during metformin treatment. Bosn. J. Basic Med. Sci. 2013, 13, 180–185. [Google Scholar] [CrossRef]
- Aruna, J.; Mittal, S.; Kumar, S.; Misra, R.; Dadhwal, V.; Vimala, N. Metformin therapy in women with polycystic ovary syndrome. Int. J. Gynecol. Obstet. 2004, 87, 237–241. [Google Scholar] [CrossRef]
- Romijn, J.A. Hyperprolactinemia and prolactinoma. Handb. Clin. Neurol. 2014, 124, 185–195. [Google Scholar] [CrossRef]
- Mansfield, R.; Galea, R.; Brincat, M.; Hole, D.; Mason, H. Metformin has direct effects on human ovarian steroidogenesis. Fertil. Steril. 2003, 79, 956–962. [Google Scholar] [CrossRef]
- Brown, K.A.; Hunger, N.I.; Docanto, M.; Simpson, E.R. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res. Treat. 2010, 123, 591–596. [Google Scholar] [CrossRef]
- Rice, S.; Pellatt, L.; Ramanathan, K.; Whitehead, S.A.; Mason, H.D. Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway. Endocrinology 2009, 150, 4794–4801. [Google Scholar] [CrossRef]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the measurement of estradiol: An endocrine society position statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
Variable | PCOS Group | Control Group | p-Value |
---|---|---|---|
Number (n) | 25 | 25 | - |
Age (years) | 35 ± 8 | 36 ± 7 | 0.6402 |
Reasons for hyperprolactinemia (iatrogenic/traumatic brain injury/empty sella syndrome/idiopathic) (%) | 52/20/20/8 | 48/24/16/12 | 0.7846 |
Smokers (%)/Number of cigarettes a day (n)/Duration of smoking (months) | 40/11 ± 5/140 ± 42 | 40/10 ± 6/146 ± 39 | 0.8834 |
BMI (kg/m2) | 24.2 ± 4.8 | 23.8 ± 5.1 | 0.7443 |
Systolic blood pressure (mmHg) | 129 ± 18 | 126 ± 16 | 0.4635 |
Systolic blood pressure (mmHg) | 85 ± 6 | 84 ± 5 | 0.5251 |
Variable | PCOS Group | Control Group | p-Value (PCOS vs. Controls) |
---|---|---|---|
Glucose (mg/dL) | |||
Baseline | 110 ± 9 | 109 ± 10 | 0.7118 |
Follow-up | 100 ± 10 | 97 ± 10 | 0.2942 |
p-value (follow-up vs. baseline) | 0.0005 | 0.0001 | - |
HOMA1-IR | |||
Baseline | 3.9 ± 1.2 | 3.7 ± 1.1 | 0.5419 |
Follow-up | 3.0 ± 0.8 | 2.1 ± 0.6 | <0.0001 |
p-value (follow-up vs. baseline) | 0.0031 | <0.0001 | - |
Total prolactin (ng/mL) | |||
Baseline | 55.0 ± 10.4 | 53.9 ± 11.2 | 0.7205 |
Follow-up | 51.0 ± 12.0 | 43.0 ± 8.9 | 0.0101 |
p-value (follow-up vs. baseline) | 0.2139 | 0.0004 | - |
Monomeric prolactin (ng/mL) | |||
Baseline | 51.6 ± 10.0 | 50.3 ± 10.8 | 0.6608 |
Follow-up | 47.8 ± 10.6 | 39.6 ± 8.5 | 0.0041 |
p-value (follow-up vs. baseline) | 0.1985 | 0.0003 | - |
Macroprolactin (ng/mL) | |||
Baseline | 3.4 ± 1.5 | 3.6 ± 1.9 | 0.6814 |
Follow-up | 3.2 ± 2.0 | 3.4 ± 1.6 | 0.6980 |
p-value (follow-up vs. baseline) | 0.6908 | 0.6890 | - |
LH (U/L) | |||
Baseline | 5.0 ± 2.1 | 2.8 ± 1.6 | 0.0001 |
Follow-up | 3.5 ± 1.7 | 4.1 ± 1.8 | 0.2316 |
p-value (follow-up vs. baseline) | 0.0078 | 0.0096 | - |
FSH (U/L) | |||
Baseline | 3.4 ± 1.6 | 3.2 ± 1.5 | 0.6505 |
Follow-up | 3.8 ± 2.0 | 4.0 ± 2.1 | 0.7316 |
p-value (follow-up vs. baseline) | 0.4387 | 0.1277 | - |
LH/FSH ratio | |||
Baseline | 1.5 ± 0.6 | 0.9 ± 0.4 | 0.0001 |
Follow-up | 0.9 ± 0.4 | 1.0 ± 0.3 | 0.3221 |
p-value (follow-up vs. baseline) | 0.0001 | 0.3221 | - |
Testosterone (nmol/L) | |||
Baseline | 2.9 ± 0.7 | 1.1 ± 0.4 | <0.0001 |
Follow-up | 2.5 ± 0.6 | 1.2 ± 0.3 | <0.0001 |
p-value (follow-up vs. baseline) | 0.0350 | 0.3221 | - |
SHBG (nmol/L) | |||
Baseline | 35.0 ± 11.2 | 37.5 ± 10.4 | 0.4175 |
Follow-up | 41.8 ± 12.0 | 48.7 ± 11.6 | 0.0441 |
p-value (follow-up vs. baseline) | 0.0437 | 0.0008 | - |
FAI (%) | |||
Baseline | 8.3 ± 1.6 | 2.9 ± 1.0 | <0.0001 |
Follow-up | 6.0 ± 1.8 | 2.5 ± 1.1 | <0.0001 |
p-value (follow-up vs. baseline) | <0.0001 | 0.1848 | |
DHEA-S (μmol/L) | |||
Baseline | 10.8 ± 4.0 | 6.5 ± 2.2 | <0.0001 |
Follow-up | 9.0 ± 3.7 | 5.6 ± 1.6 | 0.0001 |
p-value (follow-up vs. baseline) | 0.1051 | 0.1046 | - |
Androstenedione (nmol/L) | |||
Baseline | 8.0 ± 2.0 | 4.0 ± 1.5 | <0.0001 |
Follow-up | 7.5 ± 2.0 | 3.8 ± 1.3 | <0.0001 |
p-value (follow-up vs. baseline) | 0.3812 | 0.6167 | - |
Estradiol (pmol/L) | |||
Baseline | 260 ± 90 | 170 ± 75 | 0.0004 |
Follow-up | 282 ± 101 | 204 ± 85 | 0.0048 |
p-value (follow-up vs. baseline) | 0.4202 | 0.1402 | - |
Thyrotropin (mU/L) | |||
Baseline | 2.8 ± 1.0 | 2.8 ± 0.9 | 1.0000 |
Follow-up | 2.6 ± 0.9 | 2.5 ± 1.0 | 0.7118 |
p-value (follow-up vs. baseline) | 0.4609 | 0.2704 | - |
ACTH (pg/mL) | |||
Baseline | 40 ± 15 | 38 ± 16 | 0.6505 |
Follow-up | 37 ± 12 | 36 ± 14 | 0.7874 |
p-value (follow-up vs. baseline) | 0.4387 | 0.6402 | - |
IGF-1 (ng/mL) | |||
Baseline | 202 ± 56 | 192 ± 62 | 0.5523 |
Follow-up | 212 ± 60 | 214 ± 53 | 0.9011 |
p-value (follow-up vs. baseline) | 0.5453 | 0.1838 | - |
Variable | PCOS Group | Control Group | p-Value |
---|---|---|---|
Δ Glucose | −9 ± 5 | −11 ± 6 | 0.2066 |
Δ HOMA1-IR | −23 ± 11 | −43 ± 20 | 0.0001 |
Δ Total prolactin | −7 ± 5 | −20 ± 11 | <0.0001 |
Δ Monomeric prolactin | −7 ± 4 | −21 ± 10 | <0.0001 |
Δ Macroprolactin | −6 ± 5 | −6 ± 7 | 1.0000 |
Δ LH | −30 ± 16 | 46 ± 20 | <0.0001 |
Δ FSH | 12 ± 19 | 25 ± 28 | 0.0067 |
Δ LH/FSH ratio | −40 ± 20 | 11 ± 8 | <0.0001 |
Δ Testosterone | −14 ± 10 | 9 ± 11 | <0.0001 |
Δ SHBG | 19 ± 12 | 30 ± 16 | 0.0084 |
Δ FAI | −28 ± 14 | −14 ± 10 | 0.0002 |
Δ DHEA-S | −17 ± 12 | −14 ± 12 | 0.3812 |
Δ Androstenedione | −7 ± 8 | −5 ± 5 | 0.2945 |
Δ Estradiol | 8 ± 16 | 19 ± 25 | 0.0700 |
Δ Thyrotropin | −7 ± 8 | −11 ± 10 | 0.1249 |
Δ ACTH | −8 ± 11 | −5 ± 10 | 0.3180 |
Δ IGF−1 | 5 ± 14 | 11 ± 18 | 0.1946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. Impaired Prolactin-Lowering Effects of Metformin in Women with Polycystic Ovary Syndrome. J. Clin. Med. 2023, 12, 5474. https://doi.org/10.3390/jcm12175474
Krysiak R, Kowalcze K, Szkróbka W, Okopień B. Impaired Prolactin-Lowering Effects of Metformin in Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine. 2023; 12(17):5474. https://doi.org/10.3390/jcm12175474
Chicago/Turabian StyleKrysiak, Robert, Karolina Kowalcze, Witold Szkróbka, and Bogusław Okopień. 2023. "Impaired Prolactin-Lowering Effects of Metformin in Women with Polycystic Ovary Syndrome" Journal of Clinical Medicine 12, no. 17: 5474. https://doi.org/10.3390/jcm12175474
APA StyleKrysiak, R., Kowalcze, K., Szkróbka, W., & Okopień, B. (2023). Impaired Prolactin-Lowering Effects of Metformin in Women with Polycystic Ovary Syndrome. Journal of Clinical Medicine, 12(17), 5474. https://doi.org/10.3390/jcm12175474