A Quantitative Measure of Pain with Current Perception Threshold, Pain Equivalent Current, and Quantified Pain Degree: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Measurements and Analysis
2.3. Statistical Methods
3. Results
3.1. Correlations between the NRS and Parameters of the PainVisionTM System
3.2. Differences between the Pain and No-Pain Groups
4. Discussion
4.1. Reliability of Parameters Using Electrical Stimulation
4.2. Validity of Electrical Parameters as Quantitative Diagnostic Markers for Pain
4.3. CPT and the Type of Pain Disease
4.4. Confounding Factors That Can Affect the CPT and PEC
4.5. Limitation of This Study
4.6. Prospects of Pain Assessment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet 2006, 367, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Fecho, K.; Miller, N.R.; Merritt, S.A.; Klauber-Demore, N.; Hultman, C.S.; Blau, W.S. Acute and persistent postoperative pain after breast surgery. Pain Med. 2009, 10, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Kim, Y.; Lee, J.; Kim, H.; Song, J. The trend of prevalence of pain in Korea from 2005 to 2016. Korean J. Pain 2020, 33, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Bruckenthal, P.; Reid, M.C.; Reisner, L. Special issues in the management of chronic pain in older adults. Pain Med. 2009, 10 (Suppl. 2), S67–S78. [Google Scholar] [CrossRef]
- Shin, S.M. Prevalence and trends of pain associated with chronic diseases and personal out-of-pocket medical expenditures in Korea. Korean J. Pain 2017, 30, 142–150. [Google Scholar] [CrossRef]
- Kendall, N.A. Psychosocial approaches to the prevention of chronic pain: The low back paradigm. Best Pract. Res. Clin. Rheumatol. 1999, 13, 545–554. [Google Scholar] [CrossRef]
- Merlijn, V.P.; Hunfeld, J.A.; van der Wouden, J.C.; Hazebroek-Kampschreur, A.A.; Koes, B.W.; Passchier, J. Psychosocial factors associated with chronic pain in adolescents. Pain 2003, 101, 33–43. [Google Scholar] [CrossRef]
- Hinrichs-Rocker, A.; Schulz, K.; Järvinen, I.; Lefering, R.; Simanski, C.; Neugebauer, E.A. Psychosocial predictors and correlates for chronic post-surgical pain (CPSP)—A systematic review. Eur. J. Pain 2009, 13, 719–730. [Google Scholar] [CrossRef]
- Fancourt, D.; Steptoe, A. Physical and Psychosocial Factors in the Prevention of Chronic Pain in Older Age. J. Pain 2018, 19, 1385–1391. [Google Scholar] [CrossRef]
- Breivik, E.K.; Björnsson, G.A.; Skovlund, E. A comparison of pain rating scales by sampling from clinical trial data. Clin. J. Pain 2000, 16, 22–28. [Google Scholar] [CrossRef] [PubMed]
- König, S.L.; Prusak, M.; Pramhas, S.; Windpassinger, M. Correlation between the Neuropathic PainDETECT Screening Questionnaire and Pain Intensity in Chronic Pain Patients. Medicina 2021, 57, 353. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, S.; Maher, C.G.; Terwee, C.B.; Folly de Campos, T.; Lin, C.W. Neuropathic pain screening questionnaires have limited measurement properties. A systematic review. J. Clin. Epidemiol. 2015, 68, 957–966. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Rolke, R.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, D.R.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Bötefür, I.C.; et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Standardized protocol and reference values. Pain 2006, 123, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.D. The role of quantitative sensory testing in the prediction of chronic pain. Pain 2019, 160 (Suppl. 1), S66–S69. [Google Scholar] [CrossRef] [PubMed]
- Gröne, E.; Crispin, A.; Fleckenstein, J.; Irnich, D.; Treede, R.D.; Lang, P.M. Test order of quantitative sensory testing facilitates mechanical hyperalgesia in healthy volunteers. J. Pain 2012, 13, 73–80. [Google Scholar] [CrossRef]
- Rommel, O.; Malin, J.P.; Zenz, M.; Jänig, W. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits. Pain 2001, 93, 279–293. [Google Scholar] [CrossRef]
- Inoue, T.; Soshi, S.; Kubota, M.; Marumo, K. Efficacy of Laminoplasty in Improving Sensory Disturbances in Patients with Cervical Spondylotic Myelopathy: A Prospective Study. World Neurosurg. 2020, 134, e581–e588. [Google Scholar] [CrossRef]
- Gu, Y.; Zhao, Y.; Dai, M.; Ma, J.; Feng, B.; Li, X.; Wang, Q. PainVisionTM: A simple, rapid, and objective method with potential for screening diabetic peripheral neuropathy. Int. J. Clin. Exp. Med. 2017, 10, 1043–1050. [Google Scholar]
- Wang, B.K.; Liu, T.H.; Xie, F.; Liu, Y.Q. Pain Vision System for Evaluating Chronic Pain: A Comparison with VAS Scoring. Pain Res. Manag. 2020, 2020, 6312581. [Google Scholar] [CrossRef]
- Ohtori, S.; Kawaguchi, H.; Takebayashi, T.; Orita, S.; Inoue, G.; Yamauchi, K.; Aoki, Y.; Nakamura, J.; Ishikawa, T.; Miyagi, M.; et al. PainVision Apparatus Is Effective for Assessing Low Back Pain. Asian Spine J. 2014, 8, 793–798. [Google Scholar] [CrossRef]
- Borovskis, J.; Cavaleri, R.; Blackstock, F.; Summers, S.J. Transcranial Direct Current Stimulation Accelerates The Onset of Exercise-Induced Hypoalgesia: A Randomized Controlled Study. J. Pain 2021, 22, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, R.; Imam, J.; Rio, E.; Moukhaiber, N.; Thomson, D.; Suhood, A.; Summers, S.J. Investigating interindividual variability in corticomotor reorganization during sustained hamstring pain: A randomized experimental study. Brain Behav. 2023, 13, e2996. [Google Scholar] [CrossRef] [PubMed]
- Furuse, N.; Kimoto, S.; Nakashima, Y.; Ogawa, T.; Furokawa, S.; Okubo, M.; Yamaguchi, H.; Kawai, Y. Verification of the reliability of current perception threshold and pain threshold testing by application of an electrical current stimulus to mandibular mucosa in young adults. J. Oral Rehabil. 2019, 46, 556–562. [Google Scholar] [CrossRef]
- Ogawa, T.; Kimoto, S.; Nakashima, Y.; Furuse, N.; Ono, M.; Furokawa, S.; Okubo, M.; Yazaki, T.; Kawai, Y. Measurement reliability of current perception threshold and pain threshold in parallel with blood sampling. Clin. Exp. Dent. Res. 2017, 3, 154–159. [Google Scholar] [CrossRef]
- Uddin, Z.; MacDermid, J.C.; Galea, V.; Gross, A.R.; Pierrynowski, M.R. The current perception threshold test differentiates categories of mechanical neck disorder. J. Orthop. Sports Phys. Ther. 2014, 44, 532-C1. [Google Scholar] [CrossRef]
- Tsui, B.C.; Shakespeare, T.J.; Leung, D.H.; Tsui, J.H.; Corry, G.N. Reproducibility of current perception threshold with the Neurometer(®) vs the Stimpod NMS450 peripheral nerve stimulator in healthy volunteers: An observational study. Can. J. Anaesth. 2013, 60, 753–760. [Google Scholar] [CrossRef]
- Park, R.; Wallace, M.S.; Schulteis, G. Relative sensitivity to alfentanil and reliability of current perception threshold vs von Frey tactile stimulation and thermal sensory testing. J. Peripher. Nerv. Syst. 2001, 6, 232–240. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Yokoi, N.; Kato, H.; Sakai, R.; Komuro, A.; Sonomura, Y.; Ikeda, T.; Sotozono, C. Evaluation of Eye-Pain Severity between Dry-Eye Subtypes. Diagnostics 2021, 11, 166. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.S.; Kong, S.W.; Kim, T.; Kim, M.J.; Park, S.B.; Lee, K.H. Correlations Between Electrically Quantified Pain Degree, Subjectively Assessed Visual Analogue Scale, and the McGill Pain Questionnaire: A Pilot Study. Ann. Rehabil. Med. 2014, 38, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Soshi, S.; Kubota, M.; Marumo, K. New Method for the Quantitative Assessment of Sensory Disturbances in Cervical Myelopathy: Application for Neurological Level Diagnosis. Spine Surg. Relat. Res. 2020, 4, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, K.; Han, S.; Yu, L. PainVision® Apparatus for Assessment of Efficacy of Pulsed Radiofrequency Combined with Pharmacological Therapy in the Treatment of Postherpetic Neuralgia and Correlations with Measurements. BioMed Res. Int. 2017, 2017, 5670219. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Mogi, A.; Yamada, T.; Aisu, N.; Matsuoka, T.; Kojima, D.; Tanimura, S.; Koganemaru, T.; Oda, M.; Fukuda, M.; et al. Subjective and objective assessment of oxaliplatin-induced peripheral neuropathy. SpringerPlus 2015, 4, 822. [Google Scholar] [CrossRef] [PubMed]
- Baquis, G.D. Technology review: The Neurometer Current Perception Threshold (CPT). AAEM Equipment and Computer Committee. American Association of Electrodiagnostic Medicine. Muscle Nerve 1999, 22, 523–531. [Google Scholar]
- Nakatani-Enomoto, S.; Yamazaki, M.; Kamimura, Y.; Abe, M.; Asano, K.; Enomoto, H.; Wake, K.; Watanabe, S.; Ugawa, Y. Frequency-dependent current perception threshold in healthy Japanese adults. Bioelectromagnetics 2019, 40, 150–159. [Google Scholar] [CrossRef]
- Seno, S.I.; Shimazu, H.; Kogure, E.; Watanabe, A.; Kobayashi, H. Factors Affecting and Adjustments for Sex Differences in Current Perception Threshold With Transcutaneous Electrical Stimulation in Healthy Subjects. Neuromodulation 2019, 22, 573–579. [Google Scholar] [CrossRef]
- Oishi, M.; Mochizuki, Y.; Suzuki, Y.; Ogawa, K.; Naganuma, T.; Nishijo, Y.; Mizutani, T. Current perception threshold and sympathetic skin response in diabetic and alcoholic polyneuropathies. Intern. Med. 2002, 41, 819–822. [Google Scholar] [CrossRef]
- Kudoh, A.; Ishihara, H.; Matsuki, A. Current perception thresholds and postoperative pain in schizophrenic patients. Reg. Anesth. Pain Med. 2000, 25, 475–479. [Google Scholar] [CrossRef]
- Milstein, N.; Gordon, I. Validating Measures of Electrodermal Activity and Heart Rate Variability Derived From the Empatica E4 Utilized in Research Settings That Involve Interactive Dyadic States. Front. Behav. Neurosci. 2020, 14, 148. [Google Scholar] [CrossRef]
- Lima, R.; de Noronha Osório, D.F.; Gamboa, H. Heart Rate Variability and Electrodermal Activity in Mental Stress Aloud: Predicting the Outcome. In Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Prague, Czech Republic, 22–24 February 2019; pp. 42–51. [Google Scholar]
- Gkikas, S.; Tsiknakis, M. Automatic assessment of pain based on deep learning methods: A systematic review. Comput. Methods Programs Biomed. 2023, 231, 107365. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Schiavo, D.; Cuomo, A.; Ottaiano, A.; Perri, F.; Patrone, R.; Migliarelli, S.; Bignami, E.G.; Vittori, A.; Cutugno, F. Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Res. Manag. 2023, 2023, 6018736. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Abbod, M.; Shieh, J.S. Pain and Stress Detection Using Wearable Sensors and Devices—A Review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef] [PubMed]
Subjects | ||
---|---|---|
Total numbers | 398 (100) | |
Age, years | 54.4 ± 16.0 | |
Gender, n (%) | Male | 158 (39.7) |
Female | 240 (60.3) | |
Diagnosis, n (%) | Spinal disease | 180 (45.2) |
NeP disease | 73 (18.3) | |
CRPS | 37 (9.3) | |
Normal | 26 (6.5) | |
OA | 10 (2.5) | |
FBSS | 9 (2.3) | |
Fibromyalgia | 7 (1.8) | |
Headache | 7 (1.8) | |
Cancer | 2 (0.5) | |
Other | 47 (11.8) | |
Duration of the disease, n (%) | <3 months | 323 (81.1) |
≥3 months | 75 (18.9) |
Pain Group | No-Pain Group | p-Value | |
---|---|---|---|
Subjects, n (%) | 355 (89.2) | 43 (10.8) | |
NRS | 5.5 ± 2.8 | 0 | |
CPT, µA | 12.5 ± 6.9 | 15.6 ± 6.7 | 0.005 |
QPD | 377.8 ± 383.4 | 196.8 ± 192.3 | 0.002 |
PEC, µA | 55.2 ± 43.6 | 42.5 ± 25.2 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Kim, J.B.; Lee, J.W.; Woo, A.M.; Kim, C.J.; Chung, M.Y.; Moon, H.S. A Quantitative Measure of Pain with Current Perception Threshold, Pain Equivalent Current, and Quantified Pain Degree: A Retrospective Study. J. Clin. Med. 2023, 12, 5476. https://doi.org/10.3390/jcm12175476
Lee SY, Kim JB, Lee JW, Woo AM, Kim CJ, Chung MY, Moon HS. A Quantitative Measure of Pain with Current Perception Threshold, Pain Equivalent Current, and Quantified Pain Degree: A Retrospective Study. Journal of Clinical Medicine. 2023; 12(17):5476. https://doi.org/10.3390/jcm12175476
Chicago/Turabian StyleLee, So Yeon, Joong Baek Kim, Jung Woong Lee, A Mi Woo, Chang Jae Kim, Mee Young Chung, and Ho Sik Moon. 2023. "A Quantitative Measure of Pain with Current Perception Threshold, Pain Equivalent Current, and Quantified Pain Degree: A Retrospective Study" Journal of Clinical Medicine 12, no. 17: 5476. https://doi.org/10.3390/jcm12175476
APA StyleLee, S. Y., Kim, J. B., Lee, J. W., Woo, A. M., Kim, C. J., Chung, M. Y., & Moon, H. S. (2023). A Quantitative Measure of Pain with Current Perception Threshold, Pain Equivalent Current, and Quantified Pain Degree: A Retrospective Study. Journal of Clinical Medicine, 12(17), 5476. https://doi.org/10.3390/jcm12175476