Pregnant Women at Low Risk of Having a Child with Fetal and Neonatal Alloimmune Thrombocytopenia Do Not Require Treatment with Intravenous Immunoglobulin
Abstract
:1. Introduction
2. Intravenous Immunoglobulin Is the Predominant Treatment for Platelet-Immunized Women
3. The Traditional View on the Severity of FNAIT in Subsequent Pregnancies
4. Identification of Less Severe Courses of FNAIT
5. What Are the Risks of Not Treating Low-Risk Pregnancies with IVIg?
- HPA-1a-immunized and HLA-DRB3*01:01-negative;
- HPA-1a-immunized with a previous child with FNAIT but without ICH;
- HPA-5b-immunized;
6. Abstaining from IVIg Treatment for Low-Risk Pregnancies Would Significantly Reduce the Amount of IVIg Used for Women with Platelet Antibodies
- HPA-1a-immunized women with a previous child without ICH. Based on the data from Ernstsen and co-workers [25], 80% of all subsequent pregnancies of HPA-1a-immunized women belonged to the low-risk category (of a total of 474 women, 375 belonged to the low-risk group). Given that 80% of all FNAIT cases are associated with HPA-1a antibodies, approximately 64% (80% × 80%) will belong to the low-risk group.
- HPA-5b-immunized women. If 15% of FNAIT cases are associated with HPA-5b antibodies, and if we assume that all HPA-5b-immunized women belong to the low-risk category, there will be an additional 15% of all FNAIT cases that can be considered as low-risk pregnancies.
- HPA-1a-negative and HLA-DRB3*01:01-negative women. As these women only rarely become immunized, the majority of women belonging to this category will be identified by virtue of being HPA-1a-typed as a potential platelet donor or because they have a sister who has had a child with FNAIT. Hence, this group will be negligible compared to the other two groups of low-risk pregnancies.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Vos, T.W.; Winkelhorst, D.; de Haas, M.; Lopriore, E.; Oepkes, D. Epidemiology and management of fetal and neonatal alloimmune thrombocytopenia. Transfus. Apher. Sci. 2020, 59, 102704. [Google Scholar] [CrossRef]
- Kamphuis, M.M.; Paridaans, N.P.; Porcelijn, L.; Lopriore, E.; Oepkes, D. Incidence and consequences of neonatal alloimmune thrombocytopenia: A systematic review. Pediatrics 2014, 133, 715–721. [Google Scholar] [CrossRef]
- Alm, J.; Duong, Y.; Wienzek-Lischka, S.; Cooper, N.; Santoso, S.; Sachs, U.J.; Kiefel, V.; Bein, G. Anti-human platelet antigen-5b antibodies and fetal and neonatal alloimmune thrombocytopenia; incidental association or cause and effect? Br. J. Haematol. 2022, 198, 14–23. [Google Scholar] [CrossRef]
- Ohto, H.; Miura, S.; Ariga, H.; Ishii, T.; Fujimori, K.; Morita, S. The natural history of maternal immunization against foetal platelet alloantigens. Transfus. Med. 2004, 14, 399–408. [Google Scholar] [CrossRef]
- Valentin, N.; Vergracht, A.; Bignon, J.D.; Cheneau, M.L.; Blanchard, D.; Kaplan, C.; Reznikoff-Etievant, M.F.; Muller, J.Y. HLA-DRw52a is involved in alloimmunization against PL-A1 antigen. Hum. Immunol. 1990, 27, 73–79. [Google Scholar] [CrossRef]
- Kjeldsen-Kragh, J.; Fergusson, D.A.; Kjaer, M.; Lieberman, L.; Greinacher, A.; Murphy, M.F.; Bussel, J.; Bakchoul, T.; Corke, S.; Bertrand, G.; et al. Fetal/neonatal alloimmune thrombocytopenia: A systematic review of impact of HLA-DRB3*01:01 on fetal/neonatal outcome. Blood Adv. 2020, 4, 3368–3377. [Google Scholar] [CrossRef]
- Santoso, S.; Wihadmadyatami, H.; Bakchoul, T.; Werth, S.; Al-Fakhri, N.; Bein, G.; Kiefel, V.; Zhu, J.; Newman, P.J.; Bayat, B.; et al. Antiendothelial alphavbeta3 Antibodies Are a Major Cause of Intracranial Bleeding in Fetal/Neonatal Alloimmune Thrombocytopenia. Arter. Thromb. Vasc. Biol. 2016, 36, 1517–1524. [Google Scholar] [CrossRef]
- Bussel, J.B. Neonatal alloimmune thrombocytopenia (NAlT): A prospective case accumulation study. Pediatr. Res. 1988, 23, 337a. [Google Scholar]
- Pearson, H.A.; Shulman, N.R.; Marder, V.J.; Cone, T.E., Jr. Isoimmune Neonatal Thrombocytopenic Purpura. Clin. Ther. Consid. Blood 1964, 23, 154–177. [Google Scholar] [CrossRef]
- Blanchette, V.S. Neonatal alloimmune thrombocytopenia: A clinical perspective. Curr. Stud. Hematol. Blood Transfus. 1988, 54, 112–126. [Google Scholar]
- Mueller-Eckhardt, C.; Kiefel, V.; Grubert, A.; Kroll, H.; Weisheit, M.; Schmidt, S.; Mueller-Eckhardt, G.; Santoso, S. 348 cases of suspected neonatal alloimmune thrombocytopenia. Lancet 1989, 1, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Shulman, N.R.; Jordan, J.V.J. Platelet immunology. In Hemostasis and Thrombosis: Basic Principles and Clinical Practice; Colman, R.W., Hirsh, J., Manier, V.J., Salzman, E.W., Eds.; J.B. Lippincott: Philadelphia, PE, USA, 1982; pp. 274–342. [Google Scholar]
- Bussel, J.B.; Berkowitz, R.L.; McFarland, J.G.; Lynch, L.; Chitkara, U. Antenatal treatment of neonatal alloimmune thrombocytopenia. N. Engl. J. Med. 1988, 319, 1374–1378. [Google Scholar] [CrossRef]
- Rayment, R.; Brunskill, S.J.; Soothill, P.W.; Roberts, D.J.; Bussel, J.B.; Murphy, M.F. Antenatal interventions for fetomaternal alloimmune thrombocytopenia. Cochrane Database Syst. Rev. 2011, 5, CD004226. [Google Scholar] [CrossRef] [PubMed]
- Winkelhorst, D.; Murphy, M.F.; Greinacher, A.; Shehata, N.; Bakchoul, T.; Massey, E.; Baker, J.; Lieberman, L.; Tanael, S.; Hume, H.; et al. Antenatal management in fetal and neonatal alloimmune thrombocytopenia: A systematic review. Blood 2017, 129, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Wabnitz, H.; Khan, R.; Lazarus, A.H. The use of IVIg in fetal and neonatal alloimmune thrombocytopenia—Principles and mechanisms. Transfus. Apher. Sci. 2020, 59, 102710. [Google Scholar] [CrossRef] [PubMed]
- National Blood Authority. Australia. Available online: https://www.blood.gov.au/system/files/documents/Fetal-and-neonatal-alloimmune-thrombocytopenia-FNAIT-CV3.pdf (accessed on 15 August 2023).
- Regan, F.; Lees, C.C.; Jones, B.; Nicolaides, K.H.; Wimalasundera, R.C.; Mijovic, A. Prenatal Management of Pregnancies at Risk of Fetal Neonatal Alloimmune Thrombocytopenia (FNAIT): Scientific Impact Paper No. 61. BJOG Int. J. Obstet. Gynaecol. 2019, 126, e173–e185. [Google Scholar] [CrossRef] [PubMed]
- Winkelhorst, D.; Oepkes, D.; Lopriore, E. Fetal and neonatal alloimmune thrombocytopenia: Evidence based antenatal and postnatal management strategies. Expert. Rev. Hematol. 2017, 10, 729–737. [Google Scholar] [CrossRef]
- Rossi, K.Q.; Lehman, K.J.; O’Shaughnessy, R.W. Effects of antepartum therapy for fetal alloimmune thrombocytopenia on maternal lifestyle. J. Matern. Fetal Neonatal Med. 2015, 29, 1783–1788. [Google Scholar] [CrossRef]
- Cherin, P.; Cabane, J. Relevant criteria for selecting an intravenous immunoglobulin preparation for clinical use. BioDrugs 2010, 24, 211–223. [Google Scholar] [CrossRef]
- Radder, C.M.; Brand, A.; Kanhai, H.H. Will it ever be possible to balance the risk of intracranial haemorrhage in fetal or neonatal alloimmune thrombocytopenia against the risk of treatment strategies to prevent it? Vox Sang 2003, 84, 318–325. [Google Scholar] [CrossRef]
- Killie, M.K.; Husebekk, A.; Kjeldsen-Kragh, J.; Skogen, B. A prospective study of maternal anti-HPA 1a antibody level as a potential predictor of alloimmune thrombocytopenia in the newborn. Haematologica 2008, 93, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Tiller, H.; Husebekk, A.; Skogen, B.; Kjeldsen-Kragh, J.; Kjaer, M. True risk of fetal/neonatal alloimmune thrombocytopenia in subsequent pregnancies: A prospective observational follow-up study. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Ernstsen, S.L.; Ahlen, M.T.; Johansen, T.; Bertelsen, E.L.; Kjeldsen-Kragh, J.; Tiller, H. Antenatal intravenous immunoglobulins in pregnancies at risk of fetal and neonatal alloimmune thrombocytopenia: Comparison of neonatal outcome in treated and nontreated pregnancies. Am. J. Obs. Gynecol. 2022, 227, 506.e1–506.e12. [Google Scholar] [CrossRef] [PubMed]
- Tiller, H.; Ahlen, M.T.; Akkok, C.A.; Husebekk, A. Fetal and neonatal alloimmune thrombocytopenia—The Norwegian management model. Transfus. Apher. Sci. 2020, 59, 102711. [Google Scholar] [CrossRef]
- de Vos, T.W.; Porcelijn, L.; Hofstede-van Egmond, S.; Pajkrt, E.; Oepkes, D.; Lopriore, E.; van der Schoot, C.E.; Winkelhorst, D.; de Haas, M. Clinical characteristics of human platelet antigen (HPA)-1a and HPA-5b alloimmunised pregnancies and the association between platelet HPA-5b antibodies and symptomatic fetal neonatal alloimmune thrombocytopenia. Br. J. Haematol. 2021, 195, 595–603. [Google Scholar] [CrossRef]
- Refsum, E.; Hakansson, S.; Mortberg, A.; Wikman, A.; Westgren, M. Intracranial hemorrhages in neonates born from 32 weeks of gestation-low frequency of associated fetal and neonatal alloimmune thrombocytopenia: A register-based study. Transfusion 2018, 58, 223–231. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Smith, J.W.; Hayward, C.P.; Ali, A.M.; Kelton, J.G. Thrombocytopenia caused by passive transfusion of anti-glycoprotein Ia/IIa alloantibody (anti-HPA-5b). Blood 1992, 79, 2480–2484. [Google Scholar] [CrossRef]
- Delbos, F.; Bertrand, G.; Croisille, L.; Ansart-Pirenne, H.; Bierling, P.; Kaplan, C. Fetal and neonatal alloimmune thrombocytopenia: Predictive factors of intracranial hemorrhage. Transfusion 2016, 56, 59–66. [Google Scholar] [CrossRef]
- Looney, C.B.; Smith, J.K.; Merck, L.H.; Wolfe, H.M.; Chescheir, N.C.; Hamer, R.M.; Gilmore, J.H. Intracranial hemorrhage in asymptomatic neonates: Prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 2007, 242, 535–541. [Google Scholar] [CrossRef]
- Giovangrandi, Y.; Daffos, F.; Kaplan, C.; Forestier, F.; Mac Aleese, J.; Moirot, M. Very early intracranial haemorrhage in alloimmune fetal thrombocytopenia. Lancet 1990, 336, 310. [Google Scholar] [CrossRef]
- Kuhn, M.J.; Couch, S.M.; Binstadt, D.H.; Rightmire, D.A.; Morales, A.; Khanna, N.N.; Long, S.D. Prenatal recognition of central nervous system complications of alloimmune thrombocytopenia. Comput. Med. Imaging Graph. 1992, 16, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lipitz, S.; Ryan, G.; Murphy, M.F.; Robson, S.C.; Haeusler, M.C.; Metcalfe, P.; Kelsey, H.; Rodeck, C.H. Neonatal alloimmune thrombocytopenia due to anti-P1A1 (anti-HPA-1a): Importance of paternal and fetal platelet typing for assessment of fetal risk. Prenat. Diagn. 1992, 12, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Khouzami, A.N.; Kickler, T.S.; Callan, N.A.; Shumway, J.B.; Perlman, E.J.; Blakemore, K.J. Devastating sequelae of alloimmune thrombocytopenia: An entity that deserves more attention. J. Matern. Fetal Med. 1996, 5, 137–141. [Google Scholar] [CrossRef]
- Bussel, J.B.; Berkowitz, R.L.; Hung, C.; Kolb, E.A.; Wissert, M.; Primiani, A.; Tsaur, F.W.; Macfarland, J.G. Intracranial hemorrhage in alloimmune thrombocytopenia: Stratified management to prevent recurrence in the subsequent affected fetus. Am. J. Obs. Gynecol. 2010, 203, 135.e1–135.e14. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, K.; Patriquin, C.J.; Deniz, S.; Dzaja, N.; Smith, J.W.; Wang, G.; Nazy, I.; Kelton, J.G.; Arnold, D.M. Clinical and laboratory predictors of fetal and neonatal alloimmune thrombocytopenia. Transfusion 2022, 62, 2213–2222. [Google Scholar] [CrossRef]
- Coste, T.; Vincent-Delorme, C.; Stichelbout, M.; Devisme, L.; Gelot, A.; Deryabin, I.; Pelluard, F.; Aloui, C.; Leutenegger, A.L.; Jouannic, J.M.; et al. COL4A1/COL4A2 and inherited platelet disorder gene variants in fetuses showing intracranial hemorrhage. Prenat. Diagn. 2022, 42, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.B.; Vander Haar, E.L.; Berkowitz, R.L. Fetal and Neonatal Alloimmune Thrombocytopenia in 2022. Am. J. Obstet. Gynecol. 2023, 228, 759. [Google Scholar] [CrossRef]
- Pharmaceutical Technology. Available online: https://www.pharmaceutical-technology.com/features/immune-globulin-shortages/ (accessed on 15 August 2023).
- Verywellfit. Available online: https://www.verywellfit.com/average-weight-for-a-woman-statistics-2632138 (accessed on 15 August 2023).
- Pacheco, L.D.; Berkowitz, R.L.; Moise, K.J., Jr.; Bussel, J.B.; McFarland, J.G.; Saade, G.R. Fetal and neonatal alloimmune thrombocytopenia: A management algorithm based on risk stratification. Obs. Gynecol. 2011, 118, 1157–1163. [Google Scholar] [CrossRef]
- Available online: https://www.howmuchisit.org/how-much-does-ivig-cost/ (accessed on 15 August 2023).
- Buchacher, A.; Curling, J.M. Current Manufacturing of Human Plasma lmmunoglobulin G. In Biopharmaceutical Processing Development, Design, and Implementation of Manufacturing Process; Jagschies, G., Lindskog, E., Lacki, K., Galliher, P., Eds.; Elsevier: Amsterdam, The Netherlands; Oxford, UK; Cambridge, UK, 2018; pp. 857–876. [Google Scholar]
- Radosevich, M.; Burnouf, T. Intravenous immunoglobulin G: Trends in production methods, quality control and quality assurance. Vox Sang. 2010, 98, 12–28. [Google Scholar] [CrossRef]
- Miller-Keystone Blood Center. Available online: https://www.giveapint.org/ufaqs/how-long-does-it-take-to-donate-plasma/ (accessed on 15 August 2023).
- Kapur, R.; Kustiawan, I.; Vestrheim, A.; Koeleman, C.A.; Visser, R.; Einarsdottir, H.K.; Porcelijn, L.; Jackson, D.; Kumpel, B.; Deelder, A.M.; et al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. Blood 2014, 123, 471–480. [Google Scholar] [CrossRef]
Monetary costs | ||
Body weight [41] | a | 76 kg |
No. of treatment weeks [42] | b | 20 |
Dose of IVIg per week [14,42] | c | 1–2 g/kg/week * |
Total dose of IgG | d = a × b × c | 1520–3040 g * |
Price for IgG [43] | e | USD 100/g |
Price for total dose of IgG | d × e | USD 152,000–304,000 * |
Donor engagement | ||
Amount of plasma per plasmapheresis [44] | f | 0.7 L |
Amount of extractable IgG per L plasma [44,45] | g | 5 g/L |
Amount of plasma for treatment of one woman | h = d/g | 304–608 L * |
No. of apheresis procedures for treatment of one woman | i = h/f | 869 |
Time for one apheresis procedure [46] | j | 1.5 h |
No. of apheresis hours for treatment of one woman | k = i × j | 652–1303 h * |
One man-month | l | 80 |
No. of man-months for treatment of one woman | k/l | 4–8 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjeldsen-Kragh, J.; Bein, G.; Tiller, H. Pregnant Women at Low Risk of Having a Child with Fetal and Neonatal Alloimmune Thrombocytopenia Do Not Require Treatment with Intravenous Immunoglobulin. J. Clin. Med. 2023, 12, 5492. https://doi.org/10.3390/jcm12175492
Kjeldsen-Kragh J, Bein G, Tiller H. Pregnant Women at Low Risk of Having a Child with Fetal and Neonatal Alloimmune Thrombocytopenia Do Not Require Treatment with Intravenous Immunoglobulin. Journal of Clinical Medicine. 2023; 12(17):5492. https://doi.org/10.3390/jcm12175492
Chicago/Turabian StyleKjeldsen-Kragh, Jens, Gregor Bein, and Heidi Tiller. 2023. "Pregnant Women at Low Risk of Having a Child with Fetal and Neonatal Alloimmune Thrombocytopenia Do Not Require Treatment with Intravenous Immunoglobulin" Journal of Clinical Medicine 12, no. 17: 5492. https://doi.org/10.3390/jcm12175492
APA StyleKjeldsen-Kragh, J., Bein, G., & Tiller, H. (2023). Pregnant Women at Low Risk of Having a Child with Fetal and Neonatal Alloimmune Thrombocytopenia Do Not Require Treatment with Intravenous Immunoglobulin. Journal of Clinical Medicine, 12(17), 5492. https://doi.org/10.3390/jcm12175492