The Role and Efficiency of an AI-Powered Software in the Evaluation of Lower Limb Radiographs before and after Total Knee Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objective of the Study
2.2. Study Data
- The patient was at least 18 years of age.
- The patient had undergone TKA surgery within the past five years.
- The TKA surgery was a primary procedure due to gonarthrosis.
- The patient was referred for both pre- and post-surgical full-length AP standing lower extremity imaging.
- The digital X-ray image was acquired within the last five years.
- The patient had fractures at the time of imaging.
- There was evidence of implant failure in the postoperative X-ray.
- Visible knee implants were present presurgically (such as TKA, unicondylar knee arthroplasty (UKA), high tibia osteotomy (HTO), surgical screws, plates).
- Image quality issues prevented the identification of markers necessary for measurements.
- The surgical indication for TKA was for reasons other than gonarthrosis.
2.3. Evaluation of Radiographs
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Measurement of Radiograph Parameters
3.3. Agreement between Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques Luís, N.; Varatojo, R. Radiological assessment of lower limb alignment. EFORT Open Rev. 2021, 6, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Reina-Bueno, M.; Lafuente-Sotillos, G.; Castillo-Lopez, J.M.; Gomez-Aguilar, E.; Munuera-Martinez, P.V. Radiographic Assessment of Lower-Limb Discrepancy. J. Am. Podiatr. Med. Assoc. 2017, 107, 393–398. [Google Scholar] [CrossRef]
- Matsumoto, T.; Hashimura, M.; Takayama, K.; Ishida, K.; Kawakami, Y.; Matsuzaki, T.; Nakano, N.; Matsushita, T.; Kuroda, R.; Kurosaka, M. A radiographic analysis of alignment of the lower extremities—Initiation and progression of varus-type knee osteoarthritis. Osteoarthr. Cartil. 2015, 23, 217–223, Erratum in Osteoarthr. Cartil. 2015, 23, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.H.; Hoshino, H.; Togawa, D.; Matsuyama, Y. Characteristics of radiographic morphometries of the lower leg in subjects with progression of knee osteoarthritis in the TOEI cohort. Aging Clin. Exp. Res. 2020, 32, 67–76. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Saito, H.; Saito, K.; Yoshikawa, T.; Oba, M.; Sasaki, K.; Sato, C.; Akagawa, M.; Takahashi, Y.; Miyakoshi, N.; et al. Radiographic deformities of the lower extremity in patients with spontaneous osteonecrosis of the knee. Knee 2020, 27, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Yadav, C.; Raj, R.; Anand, S. How to interpret postoperative X-rays after total knee arthroplasty. Orthop. Surg. 2014, 6, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.A.; Mullaji, A.B.; Mostafa, A.M.; Farouk, O.A. A Protocol to Systematic Radiographic Assessment of Primary Total Knee Arthroplasty. Orthop. Res. Rev. 2021, 13, 95–106. [Google Scholar] [CrossRef]
- Den Boer, R.B.; de Jongh, C.; Huijbers, W.T.E.; Jaspers, T.J.M.; Pluim, J.P.W.; van Hillegersberg, R.; Van Eijnatten, M.; Ruurda, J.P. Computer-aided anatomy recognition in intrathoracic and -abdominal surgery: A systematic review. Surg. Endosc. 2022, 36, 8737–8752. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, D.; Song, Y.; Sachdev, P.S.; Wen, W. Computer-aided extraction of select MRI markers of cerebral small vessel disease: A systematic review. Neuroimage 2022, 261, 119528. [Google Scholar] [CrossRef]
- Al’Aref, S.J.; Anchouche, K.; Singh, G.; Slomka, P.J.; Kolli, K.K.; Kumar, A.; Pandey, M.; Maliakal, G.; van Rosendael, A.R.; Beecy, A.N.; et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur. Heart J. 2019, 40, 1975–1986. [Google Scholar] [CrossRef]
- Chea, P.; Mandell, J.C. Current applications and future directions of deep learning in musculoskeletal radiology. Skelet. Radiol. 2020, 49, 183–197. [Google Scholar] [CrossRef]
- Bousson, V.; Benoist, N.; Guetat, P.; Attané, G.; Salvat, C.; Perronne, L. Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going? Jt. Bone Spine 2023, 90, 105493. [Google Scholar] [CrossRef]
- Chen, K.; Stotter, C.; Klestil, T.; Nehrer, S. Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review. Diagnostics 2022, 12, 2235. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Schwarz, G.M.; Aichmair, A.; Frank, B.J.H.; Hummer, A.; DiFranco, M.D.; Dominkus, M.; Hofstaetter, J.G. Fully automated deep learning for knee alignment assessment in lower extremity radiographs: A cross-sectional diagnostic study. Skelet. Radiol. 2022, 51, 1249–1259. [Google Scholar] [CrossRef]
- Schwarz, G.M.; Simon, S.; Mitterer, J.A.; Frank, B.J.H.; Aichmair, A.; Dominkus, M.; Hofstaetter, J.G. Artificial intelligence enables reliable and standardized measurements of implant alignment in long leg radiographs with total knee arthroplasties. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 2538–2547. [Google Scholar] [CrossRef]
- Simon, S.; Fischer, B.; Rinner, A.; Hummer, A.; Frank, B.J.H.; Mitterer, J.A.; Huber, S.; Aichmair, A.; Schwarz, G.M.; Hofstaetter, J.G. Body height estimation from automated length measurements on standing long leg radiographs using artificial intelligence. Sci. Rep. 2023, 13, 8504. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef]
- Kwiecien, R.; Kopp-Schneider, A.; Blettner, M. Concordance analysis: Part 16 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 2011, 108, 515–521. [Google Scholar] [CrossRef]
- Parratte, S.; Pagnano, M.W.; Trousdale, R.T.; Berry, D.J. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J. Bone Jt. Surg. Am. Vol. 2010, 92, 2143–2149. [Google Scholar] [CrossRef]
- Knutson, G.A. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part I, anatomic leg-length inequality: Prevalence, magnitude, effects and clinical significance. Chiropr. Osteopat. 2005, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [PubMed]
- Bowman, A.; Shunmugam, M.; Watts, A.R.; Bramwell, D.C.; Wilson, C.; Krishnan, J. Inter-observer and intra-observer reliability of mechanical axis alignment before and after total knee arthroplasty using long leg radiographs. Knee 2016, 23, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.S.; Judge, C.; Bollard, S.M.; Clifford, S.M.; Healy, G.M.; Aziz, A.; Mathur, P.; Islam, S.; Yeom, K.W.; Lawlor, A.; et al. Radiology artificial intelligence: A systematic review and evaluation of methods (RAISE). Eur. Radiol. 2022, 32, 7998–8007. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. AJR Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, S.; Lee, Y.H. AI musculoskeletal clinical applications: How can AI increase my day-to-day efficiency? Skelet. Radiol. 2022, 51, 293–304. [Google Scholar] [CrossRef]
- Kuo, R.Y.L.; Harrison, C.; Curran, T.A.; Jones, B.; Freethy, A.; Cussons, D.; Stewart, M.; Collins, G.S.; Furniss, D. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology 2022, 304, 50–62. [Google Scholar] [CrossRef]
- Yi, P.H.; Mutasa, S.; Fritz, J. AI MSK clinical applications: Orthopedic implants. Skelet. Radiol. 2022, 51, 305–313. [Google Scholar] [CrossRef]
Post-Operative | Total | ||||
---|---|---|---|---|---|
Number of Measured Parameters | 0 | 8 | 9 | ||
Pre-operative | 0 | 11 | 2 | 12 | 25 |
7 | 0 | 4 | 0 | 4 | |
8 | 0 | 2 | 2 | 4 | |
9 | 9 | 3 | 55 | 67 | |
Total | 20 | 11 | 69 | 100 |
Body Mass Index | Total | |||||
---|---|---|---|---|---|---|
18.5–24.9 | 25.0–29.9 | >30 | ||||
Normal Weight | Overweight | Obesity | ||||
Evaluation of radiographs | Failure | n | 2 | 12 | 31 | 45 |
(no parameter was measured) | % | 4.40% | 26.70% | 68.90% | 100.00% | |
Success | n | 28 | 66 | 61 | 155 | |
(more than half of the parameters were measured) | % | 18.10% | 42.60% | 39.40% | 100.00% | |
Total | n | 30 | 78 | 92 | 200 | |
% | 15.00% | 39.00% | 46.00% | 100.00% | ||
p < 0.001 |
Inter-Rater Reliability-Rater 1 vs. Rater 2 vs. Software | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Pre-Operative | Post-Operative | ||||||||||
n | ICC | 95% CI | n | ICC | 95% CI | n | ICC | 95% CI | ||||
MAD | 150 | 1 | 0.99 | 1 | 70 | 1 | 1 | 1 | 80 | 0.99 | 0.99 | 1 |
mLPFA | 155 | 0.93 | 0.91 | 0.95 | 75 | 0.93 | 0.89 | 0.95 | 80 | 0.94 | 0.91 | 0.96 |
AMA | 155 | 0.81 | 0.75 | 0.86 | 75 | 0.89 | 0.83 | 0.92 | 80 | 0.73 | 0.61 | 0.82 |
mLDFA | 155 | 0.87 | 0.85 | 0.91 | 75 | 0.83 | 0.75 | 0.89 | 80 | 0.98 | 0.96 | 0.98 |
JLCA | 150 | 0.79 | 0.72 | 0.84 | 74 | 0.49 | 0.25 | 0.66 | 76 | 0.47 | 0.23 | 0.65 |
mMPTA | 155 | 0.86 | 0.82 | 0.89 | 75 | 0.82 | 0.73 | 0.88 | 80 | 0.93 | 0.88 | 0.96 |
mLDTA | 155 | 0.95 | 0.92 | 0.96 | 75 | 0.95 | 0.92 | 0.97 | 80 | 0.94 | 0.91 | 0.97 |
HKA | 155 | 0.99 | 0.99 | 0.99 | 75 | 0.99 | 0.99 | 0.99 | 80 | 1 | 0.99 | 1 |
Mikulicz line | 142 | 0.78 | 0.32 | 0.9 | 69 | 0.95 | 0.83 | 0.98 | 73 | 0.69 | 0.03 | 0.89 |
n | Kappa | 95% CI | n | Kappa | 95% CI | n | Kappa | 95% CI | ||||
Leg Axis | 153 | 0.92 | 0.83 | 1.01 | 75 | 0.93 | 0.8 | 1.06 | 78 | 0.9 | 0.77 | 1.02 |
Inter-Rater Reliability | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rater 1 vs. Software | Rater 2 vs. Software | Rater 1 vs. Rater 2 | ||||||||||
n | ICC | 95% CI | n | ICC | 95% CI | n | ICC | 95% CI | ||||
MAD | 150 | 0.99 | 0.99 | 0.99 | 150 | 0.99 | 0.99 | 0.99 | 200 | 1 | 1 | 1 |
mLPFA | 155 | 0.87 | 0.79 | 0.91 | 155 | 0.88 | 0.83 | 0.91 | 200 | 0.96 | 0.94 | 0.97 |
AMA | 155 | 0.69 | 0.58 | 0.78 | 155 | 0.91 | 0.85 | 0.94 | 200 | 0.61 | 0.48 | 0.71 |
mLDFA | 155 | 0.81 | 0.74 | 0.86 | 155 | 0.77 | 0.69 | 0.83 | 200 | 0.97 | 0.96 | 0.98 |
JLCA | 150 | 0.58 | 0.43 | 0.7 | 150 | 0.63 | 0.49 | 0.73 | 200 | 0.94 | 0.92 | 0.96 |
mMPTA | 155 | 0.75 | 0.65 | 0.82 | 155 | 0.71 | 0.6 | 0.79 | 200 | 0.97 | 0.95 | 0.97 |
mLDTA | 155 | 0.9 | 0.83 | 0.94 | 155 | 0.89 | 0.8 | 0.94 | 200 | 0.97 | 0.96 | 0.98 |
HKA | 155 | 0.99 | 0.98 | 0.99 | 155 | 0.98 | 0.98 | 0.99 | 200 | 1 | 1 | 1 |
Mikulicz line | 142 | 0.59 | −0.19 | 0.83 | 142 | 0.61 | −0.18 | 0.84 | 200 | 1 | 1 | 1 |
n | Kappa | 95% CI | n | Kappa | 95% CI | n | Kappa | 95% CI | ||||
Leg Axis | 153 | 0.93 | 0.87 | 0.99 | 153 | 0.92 | 0.86 | 0.98 | 200 | 0.9 | 0.83 | 0.96 |
Rater 1 vs. Software | Rater 2 vs. Software | Rater 1 vs. Rater 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinically Relevant Difference (>2°, >5 mm, >0.5 cm) | ||||||||||||
n | Yes | No | Discrepancy (%) | n | Yes | No | Discrepancy (%) | n | Yes | No | Discrepancy (%) | |
MAD | 150 | 8 | 142 | 5.3 | 150 | 10 | 140 | 6.7 | 200 | 0 | 200 | 0 |
mLPFA | 155 | 65 | 90 | 41.9 | 155 | 69 | 86 | 44.5 | 200 | 73 | 127 | 36.5 |
AMA | 155 | 14 | 141 | 9 | 155 | 1 | 154 | 0.6 | 200 | 35 | 165 | 17.5 |
mLDFA | 155 | 20 | 135 | 12.9 | 155 | 22 | 133 | 14.2 | 200 | 4 | 196 | 2 |
JLCA | 150 | 29 | 121 | 19.3 | 150 | 34 | 116 | 22.7 | 200 | 15 | 185 | 7.5 |
mMPTA | 155 | 24 | 131 | 15.5 | 155 | 36 | 119 | 23.2 | 200 | 7 | 193 | 3.5 |
mLDTA | 155 | 20 | 105 | 12.9 | 155 | 58 | 97 | 37.4 | 200 | 32 | 168 | 16 |
HKA | 155 | 5 | 150 | 3.2 | 155 | 7 | 148 | 4.5 | 200 | 1 | 199 | 0.5 |
Mikulicz line | 142 | 135 | 7 | 95.1 | 142 | 135 | 7 | 95.1 | 200 | 10 | 190 | 5 |
Varus/Valgus Deviation | ||||||||||||
n | No Agreement | Agreement | Discrepancy (%) | n | No Agreement | Agreement | Discrepancy (%) | n | No Agreement | Agreement | Discrepancy (%) | |
Leg Axis | 153 | 5 | 148 | 3.3 | 153 | 6 | 147 | 3.9 | 200 | 10 | 190 | 5 |
Intra-Rater Reliability-Rater 1 First vs. Second Measurement | Clinically Relevant Difference | |||||
---|---|---|---|---|---|---|
(>2°, >5 mm, >0.5 cm) | ||||||
n | ICC | 95% CI | Yes | No | ||
MAD | 200 | 1 | 1 | 1 | 0 | 200 |
mLPFA | 200 | 0.97 | 0.96 | 0.98 | 45 | 155 |
AMA | 200 | 0.67 | 0.57 | 0.75 | 48 | 152 |
mLDFA | 200 | 0.97 | 0.97 | 0.98 | 5 | 195 |
JLCA | 200 | 0.95 | 0.94 | 0.97 | 10 | 190 |
mMPTA | 200 | 0.98 | 0.98 | 0.99 | 5 | 195 |
mLDTA | 200 | 0.97 | 0.96 | 0.98 | 25 | 175 |
HKA | 200 | 1 | 1 | 1 | 1 | 198 |
Mikulicz line | 200 | 0.97 | 0.96 | 0.98 | 108 | 92 |
n | Kappa | 95% CI | No Agreement | Agreement | ||
Leg Axis | 200 | 0.95 | 0.9 | 0.99 | 5 | 195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagano, S.; Müller, K.; Götz, J.; Reinhard, J.; Schindler, M.; Grifka, J.; Maderbacher, G. The Role and Efficiency of an AI-Powered Software in the Evaluation of Lower Limb Radiographs before and after Total Knee Arthroplasty. J. Clin. Med. 2023, 12, 5498. https://doi.org/10.3390/jcm12175498
Pagano S, Müller K, Götz J, Reinhard J, Schindler M, Grifka J, Maderbacher G. The Role and Efficiency of an AI-Powered Software in the Evaluation of Lower Limb Radiographs before and after Total Knee Arthroplasty. Journal of Clinical Medicine. 2023; 12(17):5498. https://doi.org/10.3390/jcm12175498
Chicago/Turabian StylePagano, Stefano, Karolina Müller, Julia Götz, Jan Reinhard, Melanie Schindler, Joachim Grifka, and Günther Maderbacher. 2023. "The Role and Efficiency of an AI-Powered Software in the Evaluation of Lower Limb Radiographs before and after Total Knee Arthroplasty" Journal of Clinical Medicine 12, no. 17: 5498. https://doi.org/10.3390/jcm12175498
APA StylePagano, S., Müller, K., Götz, J., Reinhard, J., Schindler, M., Grifka, J., & Maderbacher, G. (2023). The Role and Efficiency of an AI-Powered Software in the Evaluation of Lower Limb Radiographs before and after Total Knee Arthroplasty. Journal of Clinical Medicine, 12(17), 5498. https://doi.org/10.3390/jcm12175498