Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Report Presentation
2.2. Systematic Review Design, Search Strategy and Study Selection
2.3. Data Extraction
2.4. Assessment of the Methodological Quality of Case Reports and Case Series
2.5. Statistical Analysis and Data Synthesis
3. Results
3.1. Case Report
3.2. Meta-Summary of Case Reports
3.3. Patient Baseline Characteristics
3.4. Procedural Characteristics
3.5. Investigation of CAD-Related Mutations
- Erythrocyte, leucocyte and chromosome polymorphisms (C and Q banding) [16];
- Apolipoprotein E genotypes [21];
- HLA [18];
- LDLR c.1060+10G>A (rs12710260) mutation, heterozygous for the LDLR c.542C>T (rs557344672) mutations, homozygous for the c.1060+7T>C (rs2738442) and c.1586+53A>G (rs1569372) mutations in the LDLR gene and homozygous for the c.4265A>T (rs568413) mutations in the APOB gene [34].
3.6. Methodological Quality Assessment
4. Discussion
4.1. Twin Studies in CAD Susceptibility
4.2. Genome
4.3. Exposome
4.4. Epigenome: “The Third Component”
4.5. Metagenome
4.6. Future Perspectives
4.7. Limitations of Our Meta-Summary
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kessler, T.; Schunkert, H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl. Sci. 2021, 6, 610–623. [Google Scholar] [CrossRef]
- de los Campos, G.; Sorensen, D.; Gianola, D. Genomic Heritability: What Is It? PLoS Genet. 2015, 11, e1005048. [Google Scholar] [CrossRef] [PubMed]
- Pjanic, M.; Miller, C.L.; Wirka, R.; Kim, J.B.; DiRenzo, D.M.; Quertermous, T. Genetics and Genomics of Coronary Artery Disease. Curr. Cardiol. Rep. 2016, 18, 102. [Google Scholar] [CrossRef]
- Burgess, S.; Ference, B.A.; Staley, J.R. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: A mendelian randomization analysis. JAMA Cardiol. 2018, 3, 619–627. [Google Scholar] [CrossRef]
- Robert Clarke, F.R.C.P. Variants Associated with Lp(a) Lipoprotein and Coronary Disease. 2009. Available online: www.ebi.ac.uk/ega/ (accessed on 1 August 2023).
- Nikpay, M.; Goel, A.; Won, H.-H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef]
- Evans, A.; van Baal, G.C.M.; McCaron, P.; deLange, M.; Soerensen, T.I.A.; de Geus, E.J.C.; Kyvik, K.; Pedersen, N.L.; Spector, T.D.; Andrew, T. The Genetics of Coronary Heart Disease: The Contribution of Twin Studies. Twin Res. 2003, 6, 432–441. [Google Scholar] [CrossRef]
- Mangino, M.; Spector, T. Understanding coronary artery disease using twin studies. Heart 2013, 99, 373–375. [Google Scholar] [CrossRef]
- Tarnoki, A.D.; Tarnoki, D.L.; Molnar, A.A. Past, present and future of cardiovascular twin studies. Cor et Vasa 2014, 56, e486–e493. [Google Scholar] [CrossRef]
- Nambiema, A.; Sembajew, G.; Lam, J.; Woodruff, T.; Mandrioli, D.; Chartres, N.; Fadel, M.; Guillou, A.L.; Valter, R.; Deguigne, M.; et al. A Protocol for the Use of Case Reports/Studies and Case Series in Systematic Reviews for Clinical Toxicology. Front. Med. 2021, 8, 708380. [Google Scholar] [CrossRef] [PubMed]
- Murad, M.H.; Sultan, S.; Haffar, S.; Bazerbachi, F. Methodological quality and synthesis of case series and case reports. Evid. Based Med. 2018, 23, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Giknis, F.L.; Holt, D.E.; Whiteman, H.W.; Singh, M.D.; Benchimol, A.; Dimond, E.G. Myocardial Infarction in Twenty-Year-Old Identical Twins. Am. J. Cardiol. 1965, 16, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Sidd, J.J.; Sasahara, A.A.; Littmann, D. Coronary-Artery Disease in Identical Twins. N. Engl. J. Med. 1966, 274, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Kreulen, T.H.; Cohn, P.F.; Gorlin, R. Case Report: Premature Coronary Artery Disease in Identical Male Twins Studied by Selective Coronary Arteriography. In Catheterization and Cardiovascular Diagnosis; Wiley: Hoboken, NJ, USA, 1975; Volume 1, pp. 91–96. [Google Scholar]
- Holmes, D.R.; Kennel, A.J.; Smith, H.C.; Gordon, H.; Moore, S.B. Coronary artery disease in twins. Br. Heart J. 1981, 45, 193–197. [Google Scholar] [CrossRef]
- Herrington, D.M.; Pearson, T.A. Clinical and Angiographic Similarities in Twins with Coronary Artery Disease. Am. J. Cardiol. 1987, 59, 366–367. [Google Scholar] [CrossRef]
- Kanda, T.; Ohshima, S.; Yuasa, K.; Toyama, T.; Takase, S. Painless Myocardial Infarction in Identical Diabetic Twins. Jpn. J. Med. 1991, 30, 170–174. [Google Scholar] [CrossRef]
- Samuels, L.E.; Samuels, F.S.; Thomas, M.P.; Morris, R.J.; Wechsler, A.S. Coronary artery disease in identical twins. Ann. Thorac. Surg. 1999, 68, 594–600. [Google Scholar] [CrossRef]
- Frings, A.M.; Mayer, B.; Böcker, W.; Hengstenberg, C.; Willemsen, D.; Riegger, G.A.; Schunkert, H. Comparative coronary anatomy in six twin pairs with coronary artery disease. Heart 2000, 83, 47–50. [Google Scholar] [CrossRef]
- Ener, S. Coronary artery disease in identical twins. Ann. Thorac. Surg. 2000, 70, 692. [Google Scholar] [CrossRef]
- Kaluźa, G.; Abukhalil, J.M.; Raizner, A.E. Identical atherosclerotic lesions in identical twins. Circulation 2000, 101, e63–e64. [Google Scholar] [CrossRef]
- Nathoe, H.M.W.; Stella, P.R.; Eefting, F.D.; de Jaegere, P.P.T. Angiographic findings in monozygotic twins with coronary artery disease. Am. J. Cardiol. 2002, 89, 1006–1009. [Google Scholar] [CrossRef]
- Cokkinos, P.; Sbarouni, E.; Kremastinos, D.T. Coronary angioplasty in identical twins. Int. J. Cardiol. 2006, 107, 434–435. [Google Scholar] [CrossRef]
- Gullu, A.U.; Kizilay, M.; Ates, M.; Akcar, M. The comparison of angiographic lesions and clinical outcomes in identical twins. Interact. Cardiovasc. Thorac. Surg. 2007, 6, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Segura, L.; Moreno, R.; Macaya, C. Coronary Artery Disease and Percutaneous Coronary Intervention in a Set of Twins. Rev. Esp. Cardiol. (Engl. Ed.) 2007, 60, 86–87. [Google Scholar] [CrossRef]
- Turley, A.J.; Chen, V.; Hall, J.A. Simultaneous presentation of coronary heart disease in identical twins. Postgrad. Med. J. 2008, 84, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Hanna, D. Coronary Artery Disease: Anatomy and Presentation in Identical Twins in Identical. Ulster Med. J. 2009, 78, 187–188. [Google Scholar]
- Kassab, K.; Gupta, V. Simultaneous ST-elevation myocardial infarction in monozygotic twins: A case report of entangled twins. Eur. Heart J. Case Rep. 2023, 7, ytad050. [Google Scholar] [CrossRef]
- Papanikolaou, J.; Platogiannis, N.; Nikoloulis, N.; Tsiampalis, A.; Karavidas, N.; Platogiannis, D. Twin Hearts in Identical Twins. J. Invasive Cardiol. 2017, 29, E86–E87. [Google Scholar]
- Grabowicz, W.; Masiarek, K.; Warchoł, I.; Górnik, T.; Lubiński, A. Déjà vu: Coronary artery disease in monozygotic twins. Kardiol. Pol. 2019, 77, 886–887. [Google Scholar] [CrossRef]
- Clement, A.; Picard, F.; Varenne, O. Myocardial infarction in monozygotic twins. BMJ Case Rep. 2020, 13, e238272. [Google Scholar] [CrossRef] [PubMed]
- Kern, A.; Bojko, K.; Sienkiewicz, E.; Zarzecki, A.; Bil, J. Non-st-elevation acute coronary syndrome due to a totally occluded coronary artery: A history of two twin brothers. Wiad. Lek. 2020, 73, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Kayikçio, M.; Uzun, H.G.; Vardarli, A.T.; Tokgözo, L. Monozygotic twins with familial hypercholesterolemia and high lipoprotein(a) levels leading to identical cardiovascular outcomes: Case report and review of the literature. Turk. Kardiyol. Dern. Ars. 2020, 48, 531–538. [Google Scholar] [CrossRef]
- Smith, M.C.; Baker, J.R.; Gleaves, E.; Singh, A.; Kazimuddin, M. Twinning: Coronary Artery Disease in Monozygotic Twins. Cureus 2021, 13, e16139. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Raj, A.; Bankar, B.; Nath, R.K. Enigma of Twins: Identical Presentation and Angiographic Lesion in Monozygotic Twins. J. Saudi Heart Assoc. 2022, 34, 6–10. [Google Scholar] [CrossRef]
- Goel, K.; Tweet, M.; Olson, T.M.; Maleszewski, J.J.; Gulati, R.; Hayes, S.N. Familial Spontaneous Coronary Artery Dissection: Evidence for Genetic Susceptibility. JAMA Intern. Med. 2015, 175, 821–826. [Google Scholar] [CrossRef]
- MacGregor, A.J.; Snieder, H.; Schork, N.J.; Spector, T.D. Twins. Novel uses to study complex traits and genetic diseases. Trends Genet. 2000, 16, 131–134. [Google Scholar] [CrossRef]
- Craig, J.M.; Calais-Ferreira, L.; Umstad, M.P.; Buchwald, D. The Value of Twins for Health and Medical Research: A Third of a Century of Progress. Twin Res. Hum. Genet. 2020, 23, 8–15. [Google Scholar] [CrossRef]
- Sahu, M.; Prasuna, J.G. Twin Studies: A Unique Epidemiological Tool. Indian J. Community Med. 2016, 41, 177–182. [Google Scholar] [CrossRef]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Marenberg, M.E.; Risch, N.; Berkman, L.F.; Floderus, B.; de Faire, U. Genetic susceptibility to death from coronary heart disease in a study of twins. N. Engl. J. Med. 1994, 330, 1041–1046. [Google Scholar] [CrossRef]
- Sørensen, T.I.; Nielsen, G.G.; Andersen, P.K.; Teasdale, T.W. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med. 1988, 318, 727–732. [Google Scholar] [CrossRef] [PubMed]
- de Lange, M.; Snieder, H.; Ariëns, R.A.; Spector, T.D.; Grant, P.J. The genetics of haemostasis: A twin study. Lancet 2001, 357, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.A.; Sandholzer, C.; Selby, J.V.; Newman, B.; Krauss, R.M.; Utermann, G. Lipoprotein(a) in women twins: Heritability and relationship to apolipoprotein(a) phenotypes. Am. J. Hum. Genet. 1992, 51, 829–840. [Google Scholar] [PubMed]
- Drobni, Z.D.; Kolossvary, M.; Karady, J.; Jermendy, A.L.; Tarnoki, A.D.; Tarnoki, D.L.; Simon, J.; Szilveszter, B.; Littvay, L.; Voros, S.; et al. Heritability of Coronary Artery Disease: Insights From a Classical Twin Study. Circ. Cardiovasc. Imaging 2022, 15, 133–141. [Google Scholar] [CrossRef]
- Peyser, P.A.; Bielak, L.F.; Chu, J.S.; Turner, S.T.; Ellsworth, D.L.; Boerwinkle, E.; Sheedy, P.F., 2nd. Heritability of coronary artery calcium quantity measured by electron beam computed tomography in asymptomatic adults. Circulation 2002, 106, 304–308. [Google Scholar] [CrossRef]
- Paixao, A.R.M.; Berry, J.D.; Neeland, I.J.; Ayers, C.R.; Rohatgi, A.; de Lemos, J.A.; Khera, A. Coronary artery calcification and family history of myocardial infarction in the Dallas heart study. JACC Cardiovasc. Imaging 2014, 7, 679–686. [Google Scholar] [CrossRef]
- Khera, A.; Joshi, P. What’s a Malignant Family History?: You’ll Know It When You See It. JACC Cardiovasc. Imaging 2017, 10, 1136–1138. [Google Scholar] [CrossRef]
- Rampersaud, E.; Bielak, L.F.; Parsa, A.; Shen, H.; Post, W.; Ryan, K.A.; Donnelly, P.; Rumberger, J.A.; Sheedy, P.F., II; Peyser, P.A.; et al. The association of coronary artery calcification and carotid artery intima-media thickness with distinct, traditional coronary artery disease risk factors in asymptomatic adults. Am. J. Epidemiol. 2008, 168, 1016–1023. [Google Scholar] [CrossRef]
- Wagenknecht, L.E.; Bowden, D.W.; Carr, J.J.; Langefeld, C.D.; Freedman, B.I.; Rich, S.S. Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes 2001, 50, 861–866. [Google Scholar] [CrossRef]
- Maurovich-Horvat, P.; Ferencik, M.; Voros, S.; Merkely, B.; Hoffmann, U. Comprehensive plaque assessment by coronary CT angiography. Nat. Rev. Cardiol. 2014, 11, 390–402. [Google Scholar] [CrossRef]
- Fischer, M.; Broeckel, U.; Holmer, S.; Baessler, A.; Hengstenberg, C.; Mayer, B.; Erdmann, J.; Klein, G.; Riegger, G.; Jacob, H.J.; et al. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation 2005, 111, 855–862. [Google Scholar] [CrossRef] [PubMed]
- von Lüdinghausen, M. The Clinical Anatomy of Coronary Arteries; Advances in Anatomy, Embryology and Cell Biology; Springer: Berlin/Heidelberg, Germany, 2003; Volume 167, pp. III–VIII. [Google Scholar] [CrossRef]
- Bogaty, P.; Brecker, S.J.; White, S.E.; Stevenson, R.N.; el-Tamimi, H.; Balcon, R.; Maseri, A. Comparison of coronary angiographic findings in acute and chronic first presentation of ischemic heart disease. Circulation 1993, 87, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Sharp, S.D.; Williams, R.R.; Hunt, S.C.; Schumacher, M.C. Coronary risk factors and the severity of angiographic coronary artery disease in members of high-risk pedigrees. Am. Heart J. 1992, 123, 279–285. [Google Scholar] [CrossRef]
- Juarez, P.D.; Hood, D.B.; Song, M.-A.; Ramesh, A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front. Public Health 2020, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Zyphur, M.J.; Zhang, Z.; Barsky, A.P.; Li, W.D. An ACE in the hole: Twin family models for applied behavioral genetics research. Leadersh. Q. 2013, 24, 572–594. [Google Scholar] [CrossRef]
- Heller, D.A.; de Faire, U.; Pedersen, N.L.; Dahlén, G.; McClearn, G.E. Genetic and environmental influences on serum lipid levels in twins. N. Engl. J. Med. 1993, 328, 1150–1156. [Google Scholar] [CrossRef]
- Wong, A.H.C.; Gottesman, I.I.; Petronis, A. Phenotypic differences in genetically identical organisms: The epigenetic perspective. Hum. Mol. Genet. 2005, 14, R11–R18. [Google Scholar] [CrossRef]
- Baranzini, S.E.; Mudge, J.; van Velkinburgh, J.C.; Khankhanian, P.; Khrebtukova, I.; Miller, N.A.; Zhang, L.; Farmer, A.D.; Bell, C.J.; Kim, R.W.; et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 2010, 464, 1351–1356. [Google Scholar] [CrossRef]
- Reynolds, L.M.; Lohman, K.; Pittman, G.S.; Barr, R.G.; Chi, G.C.; Kaufman, J.; Wan, M.; Bell, D.A.; Blaha, M.J.; Rodriguez, C.J.; et al. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: The Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2017, 12, 1092–1100. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, M.; You, L.; Lu, K.; Gao, L.; Hu, C.; Wu, S.; Chang, G.; Tao, H.; Zhang, D. DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease. Life Sci. 2019, 224, 241–248. [Google Scholar] [CrossRef]
- del Pilar Valencia-Morales, M.; Zaina, S.; Heyn, H.; Carmona, F.J.; Varol, N.; Sayols, S.; Condom, E.; Ramirez-Ruz, J.; Gomez, A.; Moran, S.; et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med. Genom. 2015, 8, 7. [Google Scholar] [CrossRef]
- Muka, T.; Koromani, F.; Portilla, E.; O’Connor, A.; Bramer, W.M.; Troup, J.; Chowdhury, R.; Dehghan, A.; Franco, O.H. The role of epigenetic modifications in cardiovascular disease: A systematic review. Int. J. Cardiol. 2016, 212, 174–183. [Google Scholar] [CrossRef]
- Friso, S.; Lotto, V.; Choi, S.-W.; Girelli, D.; Pinotti, M.; Guarini, P.; Udali, S.; Pattini, P.; Pizzolo, F.; Martinelli, N.; et al. Promoter methylation in coagulation F7 gene influences plasma FVII concentrations and relates to coronary artery disease. J. Med. Genet. 2012, 49, 192–199. [Google Scholar] [CrossRef]
- Chatzopoulou, F.; Kyritsis, K.A.; Papagiannopoulos, C.I.; Galatou, E.; Mittas, N.; Theodoroula, N.F.; Papazoglou, A.S.; Karagiannidis, E.; Chatzidimitriou, M.; Papa, A.; et al. Dissecting miRNA-Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.T.; Saffery, R. The value of twins in epigenetic epidemiology. Int. J. Epidemiol. 2012, 41, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Birney, E. Chromatin and heritability: How epigenetic studies can complement genetic approaches. Trends Genet. 2011, 27, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, Z.A.; Tang, T.; Wan, S.-C.; Ptak, C.; Oh, G.H.T.; Wong, A.H.C.; Feldcamp, L.A.; Virtanen, C.; Halfvarson, J.; Tysk, C.; et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 2009, 41, 240–245. [Google Scholar] [CrossRef]
- Martino, D.; Loke, Y.J.; Gordon, L.; Ollikainen, M.; Cruickshank, M.N.; Saffery, R.; Craig, J.M. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol. 2013, 14, R42. [Google Scholar] [CrossRef]
- Gordon, L.; Joo, J.-H.E.; Andronikos, R.; Ollikainen, M.; Wallace, E.M.; Umstad, M.P.; Permezel, M.; Oshlack, A.; Morley, R.; Carlin, J.B.; et al. Expression discordance of monozygotic twins at birth: Effect of intrauterine environment and a possible mechanism for fetal programming. Epigenetics 2011, 6, 579–592. [Google Scholar] [CrossRef]
Variable (N) | 31 pairs or 62 twins | |
Age, years | 45 ± 12 | |
Males (/31 pairs) | 25 (81) | |
Presenting Condition (/62 twins) | ||
Unstable Angina | 27 (43) | |
AMI | 25 (40) | |
Positive Stress Test | 2 (3) | |
Low blood pressure | 1 (2) | |
Cardiac Arrest | 1 (2) | |
None | 6 (10) | |
Presenting symptoms/signs (/62 twins) | ||
Chest pain | 38 (86) | |
Dyspnea/Respiratory distress | 6 (14) | |
4th heart sound | 2 (5) | |
Edema | 1 (2) | |
Nausea | 2 (5) | |
Hyperhidrosis | 3 (7) | |
None | 4 (9) | |
Missing data | 18 (29) | |
Cardiovascular risk factors (/62 twins) | ||
Current smoking | 30 (48) | |
Past smoking | 2 (3) | |
Dyslipidemia | 37 (60) | |
Hypertension | 21 (34) | |
Obesity | 7 (11) | |
Diabetes/prediabetes | 10 (16) | |
Familial Hypercholesterolemia | 2 (3) | |
Alcohol | 1 (2) | |
Cocaine | 1 (2) | |
Hypothyroidism | 2 (3) | |
None | 1 (2) | |
Family History of CAD (/31 pairs) | ||
Yes | 16 (80) | |
Missing data | 11 (35) | |
Laboratory workup (mg/dL) | ||
Total cholesterol | 8/31 pairs | 256 ± 44 |
Low density lipoprotein | 5/31 pars | 134 ± 76 |
High density lipoprotein | 2/31 pairs | 39 ± 11 |
Triglycerides | 19/62 twins | 189 ± 108 |
Lipoprotein(a) | 7/62 twins | 207 ± 73 |
Variable (N) | 31 pairs or 62 twins |
Anatomy Concordance (/31 pairs) | |
Yes | 19 (79) |
Missing data | 7 (23) |
Concordance of Lesions (/31 pairs) | 24 (77) |
Diseased vessel (/62 twins) | |
Right coronary artery | 33 (55) |
Left main coronary artery | 4 (7) |
Left anterior descending artery | 31 (52) |
Left circumflex artery | 24 (40) |
Obtuse marginal artery | 2 (3) |
Posterior left ventricular artery | 2 (3) |
Posterior descending artery | 3 (5) |
Diagonal branches of the left anterior descending artery | 1 (2) |
Three-vessel disease | 2 (3) |
Missing data | 3 (5) |
Site of occlusion (/62 twins) | |
Proximal | 37 (84) |
Distal | 1 (2) |
Both distal and proximal | 6 (14) |
Missing data | 18 (29) |
Revascularization Procedures (/62 twins) | |
PCI | 25 (56) |
CABG | 14 (31) |
PCI and CABG | 4 (9) |
None (died) | 2 (4) |
Missing data | 17 (28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamzolas, O.; Papazoglou, A.S.; Gemousakakis, E.; Moysidis, D.V.; Kyriakoulis, K.G.; Brilakis, E.S.; Milkas, A. Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. J. Clin. Med. 2023, 12, 5742. https://doi.org/10.3390/jcm12175742
Kamzolas O, Papazoglou AS, Gemousakakis E, Moysidis DV, Kyriakoulis KG, Brilakis ES, Milkas A. Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. Journal of Clinical Medicine. 2023; 12(17):5742. https://doi.org/10.3390/jcm12175742
Chicago/Turabian StyleKamzolas, Odysseas, Andreas S. Papazoglou, Eleftherios Gemousakakis, Dimitrios V. Moysidis, Kοnstantinos G. Kyriakoulis, Emmanouil S. Brilakis, and Anastasios Milkas. 2023. "Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review" Journal of Clinical Medicine 12, no. 17: 5742. https://doi.org/10.3390/jcm12175742
APA StyleKamzolas, O., Papazoglou, A. S., Gemousakakis, E., Moysidis, D. V., Kyriakoulis, K. G., Brilakis, E. S., & Milkas, A. (2023). Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. Journal of Clinical Medicine, 12(17), 5742. https://doi.org/10.3390/jcm12175742