Safety and Efficacy of Orbital Atherectomy in the All-Comer Population: Mid-Term Results of the Lower Silesian Orbital Atherectomy Registry (LOAR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. PCI Procedure
2.3. Study Device
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, J.; Psaltis, P.J.; Di Bartolo, B.A.; Nicholls, S.J.; Puri, R. Coronary arterial calcification: A review of mechanisms, promoters and imaging. Trends Cardiovasc. Med. 2018, 28, 491–501. [Google Scholar] [PubMed]
- Madhavan, M.V.; Tarigopula, M.; Mintz, G.S.; Maehara, A.; Stone, G.W.; Généreux, P. Coronary artery calcification: Pathogenesis and prognostic implications. J. Am. Coll. Cardiol. 2014, 63, 1703–1714. [Google Scholar] [PubMed]
- Ming Fam, J.; van Der Sijde, J.N.; Karanasos, A.; Felix, C.; Diletti, R.; van Mieghem, N.; de Jaegere, P.; Zijlstra, F.; Jan van Geuns, R.; Regar, E. Comparison of acute expansion of bioresorbable vascular scaffolds versus metallic drug-eluting stents in different degrees of calcification: An Optical Coherence Tomography Study. Catheter. Cardiovasc. Interv. 2017, 89, 798–810. [Google Scholar] [CrossRef]
- Fujino, A.; Mintz, G.S.; Matsumura, M.; Lee, T.; Kim, S.Y.; Hoshino, M.; Usui, E.; Yonetsu, T.; Haag, E.S.; Shlofmitz, R.A.; et al. A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention 2018, 13, e2182–e2189. [Google Scholar] [CrossRef] [PubMed]
- Doost, A.; Rankin, J.; Sapontis, J.; Ko, B.; Lo, S.; Jaltotage, B.; Dwivedi, G.; Wood, D.; Byrne, J.; Sathananthan, J.; et al. Contemporary Evidence-Based Diagnosis and Management of Severe Coronary Artery Calcification. Heart Lung Circ. 2022, 31, 766–778. [Google Scholar] [CrossRef] [PubMed]
- Wańha, W.; Tomaniak, M.; Wańczura, P.; Bil, J.; Januszek, R.; Wolny, R.; Opolski, M.P.; Kuźma, Ł.; Janas, A.; Figatowski, T.; et al. Intravascular Lithotripsy for the Treatment of Stent Underexpansion: The Multicenter IVL-DRAGON Registry. J. Clin. Med. 2022, 11, 1779. [Google Scholar] [CrossRef]
- Ng, J.C.K.; Lian, S.S.; Zhong, L.; Collet, C.; Foin, N.; Ang, H.Y. Stent malapposition generates stent thrombosis: Insights from a thrombosis model. Int. J. Cardiol. 2022, 353, 43–45. [Google Scholar] [CrossRef]
- Bourantas, C.V.; Zhang, Y.J.; Garg, S.; Iqbal, J.; Valgimigli, M.; Windecker, S.; Mohr, F.W.; Silber, S.; Vries, T.D.; Onuma, Y.; et al. Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: A patient-level pooled analysis of 7 contemporary stent trials. Heart 2014, 100, 1158–1164. [Google Scholar] [CrossRef]
- Singbal, Y.; Fryer, M.; Garrahy, P.; Lim, R. Baseline and residual SYNTAX score in predicting outcomes after acute infarct angioplasty. EuroIntervention 2017, 12, 1995–2000. [Google Scholar] [CrossRef]
- Li, C.; Li, J.Y.; Feng, D.J.; Yang, X.C.; Wang, L.F.; Xia, K. Holistic review and meta-analysis of independent impact of the residual SYNTAX score on prognosis in patients with acute coronary syndrome. Scand. Cardiovasc. J. 2022, 56, 187–197. [Google Scholar] [CrossRef]
- Fan, L.M.; Tong, D.; Mintz, G.S.; Mamas, M.A.; Javed, A. Breaking the deadlock of calcified coronary artery lesions: A contemporary review. Catheter. Cardiovasc. Interv. 2021, 97, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Dobrzycki, S.; Reczuch, K.; Legutko, J.; Pawłowski, T.; Grygier, M.; Ochała, A.; Wójcik, J.; Buszman, P.; Dudek, D.; Gąsior, M.; et al. Rotational atherectomy in everyday clinical practice. Association of Cardiovascular Interventions of the Polish Society of Cardiology (Asocjacja Interwencji Sercowo-Naczyniowych Polskiego Towarzystwa Kardiologicznego—AISN PTK): Expert opinion. Kardiol. Pol. 2018, 76, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, K.; Ito, Y.; Shibata, Y.; Okamura, A.; Kashima, Y.; Nakamura, S.; Hamazaki, Y.; Ako, J.; Yokoi, H.; Kobayashi, Y.; et al. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc. Interv. Ther. 2021, 36, 1–18. [Google Scholar] [CrossRef]
- Shlofmitz, E.; Martinsen, B.J.; Lee, M.; Rao, S.V.; Généreux, P.; Higgins, J.; Chambers, J.W.; Kirtane, A.J.; Brilakis, E.S.; Kandzari, D.E.; et al. Orbital atherectomy for the treatment of severely calcified coronary lesions: Evidence, technique, and best practices. Expert Rev. Med. Devices 2017, 14, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Matsumura, M.; Usui, E.; Noguchi, M.; Fujimura, T.; Fall, K.N.; Zhang, Z.; Nazif, T.M.; Parikh, S.A.; Rabbani, L.E.; et al. Intravascular Ultrasound-Derived Calcium Score to Predict Stent Expansion in Severely Calcified Lesions. Circ. Cardiovasc. Interv. 2021, 14, e010296. [Google Scholar] [CrossRef]
- Hennessey, B.; Pareek, N.; Macaya, F.; Yeoh, J.; Shlofmitz, E.; Gonzalo, N.; Hill, J.; Escaned, J. Contemporary percutaneous management of coronary calcification: Current status and future directions. Open Heart 2023, 10, e002182. [Google Scholar] [CrossRef]
- Mintz, G.S.; Popma, J.J.; Pichard, A.D.; Kent, K.M.; Satler, L.F.; Chuang, Y.C.; Ditrano, C.J.; Leon, M.B. Patterns of calcification in coronary artery disease. A statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 1995, 91, 1959–1965. [Google Scholar] [CrossRef]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 2018, 14, 656–677. [Google Scholar] [CrossRef]
- Angsubhakorn, N.; Kang, N.; Fearon, C.; Techorueangwiwat, C.; Swamy, P.; Brilakis, E.S.; Bharadwaj, A.S. Contemporary Management of Severely Calcified Coronary Lesions. J. Pers. Med. 2022, 12, 1638. [Google Scholar] [CrossRef]
- Sabatowski, K.; Malinowski, K.P.; Siudak, Z.; Reczuch, K.; Dobrzycki, S.; Lesiak, M.; Hawranek, M.; Gil, R.J.; Witkowski, A.; Wojakowski, W.; et al. Sex-related differences and rotational atherectomy: Analysis of 5177 percutaneous coronary interventions based on a large national registry from 2014 to 2020. Kardiol. Pol. 2021, 79, 1320–1327. [Google Scholar] [CrossRef]
- Rola, P.; Włodarczak, A.; Barycki, M.; Kulczycki, J.J.; Engel, B.; Doroszko, A. “All hands on deck”—Rota-lithotripsy—A combination of rotational atherectomy and intravascular lithotripsy (shockwave) with additional use of a Turnpike Gold microcatheter and guide extension as a novel approach for calcified lesions. Postepy Kardiol. Interwencyjnej 2021, 17, 214–217. [Google Scholar] [CrossRef]
- Włodarczak, A.; Kulczycki, J.; Furtan, Ł.; Rola, P.; Barycki, M.; Łanocha, M.; Szudrowicz, M.; Lesiak, M. Rotational atherectomy and intravascular lithotripsy: Two methods versus a single lesion. Kardiol. Pol. 2021, 79, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Gupta, S.; Pratap Singh, V.; Kumar, V. Expert Opinion: Optimising Stent Deployment in Contemporary Practice: The Role of Intracoronary Imaging and Non-compliant Balloons. Interv. Cardiol. 2017, 12, 81–84. [Google Scholar] [CrossRef]
- Rheude, T.; Fitzgerald, S.; Allali, A.; Mashayekhi, K.; Gori, T.; Cuculi, F.; Kufner, S.; Hemetsberger, R.; Sulimov, D.S.; Rai, H.; et al. Rotational Atherectomy or Balloon-Based Techniques to Prepare Severely Calcified Coronary Lesions. JACC Cardiovasc. Interv. 2022, 15, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Bamford, P.; Collins, N.; Boyle, A. A State-of-the-Art Review: The Percutaneous Treatment of Highly Calcified Lesions. Heart Lung Circ. 2022, 31, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Barbato, E.; Shlofmitz, E.; Milkas, A.; Shlofmitz, R.; Azzalini, L.; Colombo, A. State of the art: Evolving concepts in the treatment of heavily calcified and undilatable coronary stenoses—From debulking to plaque modification, a 40-year-long journey. EuroIntervention 2017, 13, 696–705. [Google Scholar] [CrossRef]
- Karimi Galougahi, K.; Shlofmitz, E.; Jeremias, A.; Gogia, S.; Kirtane, A.J.; Hill, J.M.; Karmpaliotis, D.; Mintz, G.S.; Maehara, A.; Stone, G.W.; et al. Therapeutic Approach to Calcified Coronary Lesions: Disruptive Technologies. Curr. Cardiol. Rep. 2021, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Allali, A.; Abdel-Wahab, M.; Elbasha, K.; Mankerious, N.; Traboulsi, H.; Kastrati, A.; El-Mawardy, M.; Hemetsberger, R.; Sulimov, D.S.; Neumann, F.J.; et al. Rotational atherectomy of calcified coronary lesions: Current practice and insights from two randomized trials. Clin. Res. Cardiol. 2022, 112, 1143–1163. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Chandra, P.; Choksi, N.; Khanna, P.; Chambers, J. Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: The ORBIT I trial. Catheter. Cardiovasc. Interv. 2013, 81, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.W.; Feldman, R.L.; Himmelstein, S.I.; Bhatheja, R.; Villa, A.E.; Strickman, N.E.; Shlofmitz, R.A.; Dulas, D.D.; Arab, D.; Khanna, P.K.; et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc. Interv. 2014, 7, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Parikh, P.; Patel, A.; Chag, M.; Chandarana, A.; Parikh, R.; Parikh, K. Long-term safety and performance of the orbital atherectomy system for treating calcified coronary artery lesions: 5-Year follow-up in the ORBIT I trial. Cardiovasc. Revasc. Med. 2015, 16, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Généreux, P.; Shlofmitz, R.; Phillipson, D.; Anose, B.M.; Martinsen, B.J.; Himmelstein, S.I.; Chambers, J.W. Orbital atherectomy for treating de novo, severely calcified coronary lesions: 3-year results of the pivotal ORBIT II trial. Cardiovasc. Revasc. Med. 2017, 18, 261–264. [Google Scholar] [CrossRef]
- Généreux, P.; Lee, A.C.; Kim, C.Y.; Lee, M.; Shlofmitz, R.; Moses, J.W.; Stone, G.W.; Chambers, J.W. Orbital Atherectomy for Treating De Novo Severely Calcified Coronary Narrowing (1-Year Results from the Pivotal ORBIT II Trial). Am. J. Cardiol. 2015, 115, 1685–1690. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.-S.; Lee, J.; Kim, Y.-H.; Kim, J.-S.; Lim, S.-Y.; Kim, S.H.; Ahn, J.-C.; Song, W.-H. Fifteen-Year Nationwide Trend in Antiplatelet Treatment among Drug-Eluting Stent Recipients in Korea: Many Patients Receive Very Prolonged Dual-Antiplatelet Treatment, and Newer Drugs Are Replacing the Older Ones. J. Clin. Med. 2023, 12, 2675. [Google Scholar] [CrossRef]
- Faridi, K.F.; Garratt, K.N.; Kennedy, K.F.; Maddox, T.M.; Secemsky, E.A.; Butala, N.M.; Yeh, R.W. Physician and Hospital Utilization of P2Y12 Inhibitors in ST-Segment-Elevation Myocardial Infarction in the United States: A Study from the National Cardiovascular Data Registry’s Research to Practice Initiative. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006275. [Google Scholar] [CrossRef] [PubMed]
- Rakowski, T.; Siudak, Z.; Dziewierz, A.; Plens, K.; Kleczyński, P.; Dudek, D. Contemporary use of P2Y12 inhibitors in patients with ST-segment elevation myocardial infarction referred to primary percutaneous coronary interventions in Poland: Data from ORPKI national registry. J. Thromb. Thrombolysis 2018, 45, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Javed, H.; Rogers, T.; Hashim, H.; Shlofmitz, E.; Wermers, J.P.; Chen, Y.; Musallam, A.; Khan, J.M.; Torguson, R.; et al. Adverse events with orbital atherectomy: An analytic review of the MAUDE database. EuroIntervention 2020, 16, e325–e327. [Google Scholar] [CrossRef]
- Rola, P.; Furtan, Ł.; Włodarczak, S.; Jastrzębski, A.; Barycki, M.; Kędzierska, M.; Szudrowicz, M.; Kulczycki, J.J.; Doroszko, A.; Lesiak, M.; et al. Orbital atherectomy for treatment of calcified coronary artery lesions. First experiences in Poland: Short-term outcomes of the Lower-Silesia Orbital Atherectomy Registry (LOAR). Kardiol. Pol. 2023, 81, 174–176. [Google Scholar] [CrossRef]
- Megaly, M.; Brilakis, E.S.; Sedhom, R.; Tawadros, M.; Elbadawi, A.; Mentias, A.; Alaswad, K.; Kirtane, A.J.; Garcia, S.; Pershad, A. Outcomes with Orbital and Rotational Atherectomy for Inpatient Percutaneous Coronary Intervention. Cardiol. Ther. 2021, 10, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Włodarczak, S.; Furtan, Ł.; Doroszko, A.; Lesiak, M.; Włodarczak, A. First experience with orbital atherectomy in calcified unprotected left main percutaneous coronary intervention. Postepy Kardiol. Interwencyjnej 2023, 19, 64–66. [Google Scholar] [CrossRef]
- Kralisz, P.; Legutko, J.; Tajstra, M.; Kleczyński, P.; Wilczek, K.; Zajdel, W.; Derewońko, M.; Nowak, K.; Kuźma, Ł.; Gąsior, M.; et al. Use of orbital atherectomy in coronary artery disease with severe calcification: A preliminary study. Kardiol. Pol. 2023, 81, 61–63. [Google Scholar] [CrossRef]
- Lee, M.S.; Shlofmitz, E.; Kong, J.; Srivastava, P.K.; Al Yaseen, S.; Sosa, F.A.; Gallant, M.; Shlofmitz, R. Outcomes of patients with severely calcified aorto-ostial coronary lesions who underwent orbital atherectomy. J. Interv. Cardiol. 2018, 31, 15–20. [Google Scholar] [CrossRef]
- Liang, B.; Gu, N. High-speed rotational atherectomy in coronary artery calcification: The randomized ROTAXUS and PREPARE-CALC trials. Catheter. Cardiovasc. Interv. 2022, 100, 61–71. [Google Scholar] [CrossRef]
- De Waha, S.; Allali, A.; Büttner, H.J.; Toelg, R.; Geist, V.; Neumann, F.J.; Khattab, A.A.; Richardt, G.; Abdel-Wahab, M. Rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: Two-year clinical outcome of the randomized ROTAXUS trial. Catheter. Cardiovasc. Interv. 2016, 87, 691–700. [Google Scholar] [CrossRef]
- Goel, S.; Pasam, R.T.; Chava, S.; Gotesman, J.; Sharma, A.; Malik, B.A.; Frankel, R.; Shani, J.; Gidwani, U.; Latib, A. Orbital atherectomy versus rotational atherectomy: A systematic review and meta-analysis. Int. J. Cardiol. 2020, 303, 16–21. [Google Scholar] [CrossRef]
- Rola, P.; Kulczycki, J.J.; Barycki, M.; Włodarczak, S.; Furtan, Ł.; Kędzierska, M.; Giniewicz, K.; Doroszko, A.; Lesiak, M.; Włodarczak, A. Comparison of Orbital Atherectomy and Rotational Atherectomy in Calcified Left Main Disease: Short-Term Outcomes. J. Clin. Med. 2023, 12, 4025. [Google Scholar] [CrossRef]
- Rola, P.; Furtan, Ł.; Włodarczak, S.; Barycki, M.; Kędzierska, M.; Doroszko, A.; Włodarczak, A.; Lesiak, M. Safety and efficacy of a novel calcified plaque modification device—Shockwave Intravascular Lithotripsy—in all-commers with Coronary Artery Disease: Mid-term outcomes. Kardiol. Pol. 2023. [Google Scholar]
- Brinton, T.J.; Ali, Z.A.; Hill, J.M.; Meredith, I.T.; Maehara, A.; Illindala, U.; Lansky, A.; Götberg, M.; Van Mieghem, N.M.; Whitbourn, R.; et al. Feasibility of Shockwave Coronary Intravascular Lithotripsy for the Treatment of Calcified Coronary Stenoses. Circulation 2019, 139, 834–836. [Google Scholar] [CrossRef]
- Rola, P.; Włodarczak, A.; Kulczycki, J.J.; Barycki, M.; Furtan, Ł.; Szudrowicz, M.; Jastrzębski, A.; Pęcherzewski, M.; Doroszko, A.; Lesiak, M. Feasibility of the intravascular lithotripsy in coronary artery disease. Short-term outcomes of the Lower-Silesia Shockwave Registry. Kardiol. Pol. 2021, 79, 1133–1135. [Google Scholar] [CrossRef]
- Yamamoto, M.H.; Maehara, A.; Karimi Galougahi, K.; Mintz, G.S.; Parviz, Y.; Kim, S.S.; Koyama, K.; Amemiya, K.; Kim, S.Y.; Ishida, M.; et al. Mechanisms of Orbital versus Rotational Atherectomy Plaque Modification in Severely Calcified Lesions Assessed by Optical Coherence Tomography. JACC Cardiovasc. Interv. 2017, 10, 2584–2586. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, G.; Di Mario, C.; Kedhi, E.; De Luca, G. Current Management of Highly Calcified Coronary Lesions: An Overview of the Current Status. J. Clin. Med. 2023, 12, 4844. [Google Scholar] [CrossRef] [PubMed]
- Rola, P.; Włodarczak, A.; Barycki, M.; Doroszko, A. Use of the Shock Wave Therapy in Basic Research and Clinical Applications-from Bench to Bedsite. Biomedicines 2022, 10, 568. [Google Scholar] [CrossRef] [PubMed]
- Legutko, J.; Bryniarski, K.L.; Kaluza, G.L.; Roleder, T.; Pociask, E.; Kedhi, E.; Wojakowski, W.; Jang, I.K.; Kleczynski, P. Intracoronary Imaging of Vulnerable Plaque—From Clinical Research to Everyday Practice. J. Clin. Med. 2022, 11, 6639. [Google Scholar] [CrossRef] [PubMed]
- Ochijewicz, D.; Tomaniak, M.; Koltowski, L.; Rdzanek, A.; Pietrasik, A.; Kochman, J. Intravascular imaging of coronary artery disease: Recent progress and future directions. J. Cardiovasc. Med. 2017, 18, 733–741. [Google Scholar] [CrossRef]
- Wańha, W.; Januszek, R.; Kołodziejczak, M.; Kuźma, Ł.; Tajstra, M.; Figatowski, T.; Smolarek-Nicpoń, M.; Gruz-Kwapisz, M.; Tomasiewicz, B.; Bartuś, J.; et al. Procedural and 1-year outcomes following large vessel coronary artery perforation treated by covered stents implantation: Multicentre CRACK registry. PLoS ONE 2021, 16, e0249698. [Google Scholar] [CrossRef]
- Roczniak, J.; Koziołek, W.; Piechocki, M.; Tokarek, T.; Surdacki, A.; Bartuś, S.; Chyrchel, M. Comparison of Access Site-Related Complications and Quality of Life in Patients after Invasive Cardiology Procedures According to the Use of Radial, Femoral, or Brachial Approach. Int. J. Environ. Res. Public Health 2021, 18, 6151. [Google Scholar] [CrossRef]
Orbital Atherectomy N-96 | |
---|---|
Clinical Features | |
Age, mean (SD) | 71.6 (7.9) |
Gender male, n (%) | 64 (66.6) |
Stable angina, n (%) | 26 (27) |
Unstable angina, n (%) | 7 (7.3) |
NSTEMI, n (%) | 61 (63.5) |
STEMI, n (%) | 2 (2.1) |
Non-diabetic hyperglycemia, n (%) | 13 (13.5) |
Diabetes mellitus, n (%) | 44 (45.5) |
Chronic heart failure, n (%) | 47 (48.9) |
Hypertension, n (%) | 88 (91.6) |
Hyperlipidemia, n (%) | 93 (96.8) |
Atrial Fibrillation, n (%) | 33 (34.3) |
History of PCI, n (%) | 38 (39.5) |
History of MI, n (%) | 37 (38.5) |
History of CABG, n (%) | 9 (9.4) |
COPD, n (%) | 32 (33.3) |
History of stroke, n (%) | 11 (8.4) |
Moderate/severe valvular heart disease, n (%) | 18 (18.7) |
Chronic kidney disease, n (%) | 23 (23.9) |
LVEF (%), mean (SD) | 47.8 (12.7) |
Creatinine level (µmol/L), median (Q1–Q3) | 85.1 (68.2–93) |
Post-procedural Pharmacotherapy | |
Acetylsalicylic Acid, n (%) | 91 (94.7) |
Clopidogrel, n (%) | 61 (63.5) |
Ticagrelor, n (%) | 20 (20.8) |
Prasugrel, n (%) | 15 (15.6) |
Statins, n (%) | 90 (93.8) |
NOAC/VKA, n (%) | 34 (35.4) |
ACEI/ARB, n (%) | 89 (92.7) |
B-blocker, n (%) | 87 (90.6) |
CCB, n (%) | 43 (44.7) |
Oral antidiabetic, n (%) | 49 (51.0) |
Insulin, n (%) | 10 (10.4) |
Orbital Atherectomy N-96 | |
---|---|
Vessel treated: | |
LM, n (%) | 29 (30.2) |
LAD, n (%) | 37 (38.5) |
LCX, n (%) | 9 (9.4) |
RCA, n (%) | 21 (21.8) |
Syntax I score, median (Q1–Q3) | 22.5 (15.8–25) |
Syntax II—PCI score, mean (SD) | 41.9 (12.6) |
Syntax II PCI four-year mortality, median (Q1–Q3) | 24.5 (9.1–32.6) |
Syntax II—CABG score, mean (SD) | 39.2 (10.7) |
Syntax II CABG year mortality, median (Q1–Q3) | 19.3 (8.2–28.3) |
Primary orbital atherectomy procedure, n (%) | 65 (75.6) |
Unsuccessful predilatation, n (%) | 32 (33.4) |
Uncrossable lesion | 12 (12.5) |
CTO lesions, n (%) | 4 (4.6) |
Post atherectomy S-IVL use, n (%) | 7 (7.3) |
Reference vessel diameter (RVD) (mm), mean (SD) | 3.1 (0.5) |
Initial stenosis diameter (%), mean (SD) | 86.1 (7.4) |
Final stenosis diameter (%), mean (SD) | 8.1 (3.1) |
Low-speed OA use, n (%) | 96 (100) |
High-speed OA use, n (%) | 55 (57.2) |
OA duration time (s), mean (SD) | 246.7 (86.5) |
Postdilatation, n (%) | 91 (94.7) |
Post-dilatation pressure (atm), mean (SD) | 18.6 (2.5) |
Number of DES per procedure, mean (SD) | 1.8 (0.4) |
Total DES length per procedure (mm), median (Q1–Q3) | 57.7 (39–72) |
Intravascular guidance, n (%) | 52 (54.1) |
Clinical success, n (%) | 89 (92.7) |
Slow-flow phenomena, n (%) | 2 (2) |
Vessel perforations, n (%) | 1 (1) |
Radial access, n (%) | 86 (89.6) |
6F guide catheter, n (%) | 76 (79.1) |
7F or larger guide catheter, n (%) | 20 (23.2) |
Radiation dose (mGy), n (%), median (Q1–Q3) | 1442.8 (792.2–1921.0) |
Contrast volume, n (%), median (Q1–Q3) | 258.2 (157.7–300.0) |
Orbital Atherectomy N-96 | |
---|---|
In-hospital period | |
MACCE, n (%) | 5 (5.2) |
Death, n (%) | 2 (3.1) |
Myocardial infarction, n (%) | 1 (1.0) |
Target lesion revascularization, n (%) | 0 (0) |
Any other revascularization, n (%) | 33 (34.3) |
Stent thrombosis, n (%) | 0 (0) |
Stent restenosis, n (%) | 0 (0) |
Cerebrovascular episodes, n (%) | 2 (2.1) |
6-month follow-up | |
MACCE, n (%) | 10 (10.4) |
Death, n (%) | 5 (5.2) |
Myocardial infarction, n (%) | 3 (3.1) |
Target lesion revascularization, n (%) | 1 (1.0) |
Any other revascularization, n (%) | 38 (39.5) |
Stent thrombosis, n (%) | 1 (1.0) |
Stent restenosis, n (%) | 0 (0) |
Cerebrovascular episodes, n (%) | 3 (3.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rola, P.; Włodarczak, S.; Barycki, M.; Furtan, Ł.; Jastrzębski, A.; Kędzierska, M.; Doroszko, A.; Lesiak, M.; Włodarczak, A. Safety and Efficacy of Orbital Atherectomy in the All-Comer Population: Mid-Term Results of the Lower Silesian Orbital Atherectomy Registry (LOAR). J. Clin. Med. 2023, 12, 5842. https://doi.org/10.3390/jcm12185842
Rola P, Włodarczak S, Barycki M, Furtan Ł, Jastrzębski A, Kędzierska M, Doroszko A, Lesiak M, Włodarczak A. Safety and Efficacy of Orbital Atherectomy in the All-Comer Population: Mid-Term Results of the Lower Silesian Orbital Atherectomy Registry (LOAR). Journal of Clinical Medicine. 2023; 12(18):5842. https://doi.org/10.3390/jcm12185842
Chicago/Turabian StyleRola, Piotr, Szymon Włodarczak, Mateusz Barycki, Łukasz Furtan, Artur Jastrzębski, Michalina Kędzierska, Adrian Doroszko, Maciej Lesiak, and Adrian Włodarczak. 2023. "Safety and Efficacy of Orbital Atherectomy in the All-Comer Population: Mid-Term Results of the Lower Silesian Orbital Atherectomy Registry (LOAR)" Journal of Clinical Medicine 12, no. 18: 5842. https://doi.org/10.3390/jcm12185842
APA StyleRola, P., Włodarczak, S., Barycki, M., Furtan, Ł., Jastrzębski, A., Kędzierska, M., Doroszko, A., Lesiak, M., & Włodarczak, A. (2023). Safety and Efficacy of Orbital Atherectomy in the All-Comer Population: Mid-Term Results of the Lower Silesian Orbital Atherectomy Registry (LOAR). Journal of Clinical Medicine, 12(18), 5842. https://doi.org/10.3390/jcm12185842