Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. AI-Based CXR Results
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. AI-CXR Score as a Factor Associated with Unfavorable Corticosteroid Response
3.3. Association between AI-CXR Scores and Other Laboratory Tests Correlated with Unfavorable Corticosteroid Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | devere acute respiratory syndrome coronavirus-2 |
CXR | chest radiographs |
AI | artificial intelligence |
AI-CXR score | artificial intelligence-generated chest radiograph abnormality score |
DM | diabetes mellitus |
COPD | chronic obstructive pulmonary disease chronic kidney disease |
CKD | chronic kidney disease |
CCI | Charlson comorbidity index |
WBC | white blood cell count |
CRP | C-reactive protein |
IL | interleukin |
PCT | procalcitonin |
ROC | receiver operating characteristic |
aOR | adjusted odds ratio |
CI | confidence interval |
References
- Weekly Epidemiological Update on COVID-19—18 May 2023. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---18-may-2023 (accessed on 15 June 2023).
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Munch, M.W.; Myatra, S.N.; Vijayaraghavan, B.K.T.; Saseedharan, S.; Benfield, T.; Wahlin, R.R.; Rasmussen, B.S.; Andreasen, A.S.; Poulsen, L.M.; Cioccari, L.; et al. Effect of 12 mg vs. 6 mg of Dexamethasone on the Number of Days Alive without Life Support in Adults with COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA 2021, 326, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Maskin, L.P.; Bonelli, I.; Olarte, G.L.; Palizas, F., Jr.; Velo, A.E.; Lurbet, M.F.; Lovazzano, P.; Kotsias, S.; Attie, S.; Lopez Saubidet, I.; et al. High- versus Low-Dose Dexamethasone for the Treatment of COVID-19-Related Acute Respiratory Distress Syndrome: A Multicenter, Randomized Open-Label Clinical Trial. J. Intensive Care Med. 2022, 37, 491–499. [Google Scholar] [CrossRef]
- Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef]
- Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; et al. Coronavirus infections and immune responses. J. Med. Virol. 2020, 92, 424–432. [Google Scholar] [CrossRef]
- National Institutes of Health. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/about-the-guidelines/whats-new/ (accessed on 15 June 2023).
- Prescott, H.C.; Rice, T.W. Corticosteroids in COVID-19 ARDS: Evidence and Hope during the Pandemic. JAMA 2020, 324, 1292–1295. [Google Scholar] [CrossRef]
- Wang, J.; Yang, W.; Chen, P.; Guo, J.; Liu, R.; Wen, P.; Li, K.; Lu, Y.; Ma, T.; Li, X. The proportion and effect of corticosteroid therapy in patients with COVID-19 infection: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0249481. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Pappas, A.G.; Panagopoulos, A.; Rodopoulou, A.; Alexandrou, M.; Chaliasou, A.-L.; Skianis, K.; Kranidioti, E.; Chaini, E.; Papanikolaou, I.; Kalomenidis, I. Moderate COVID-19: Clinical Trajectories and Predictors of Progression and Outcomes. J. Pers. Med. 2022, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, R.F.; Waller, M.D.; Perrin, F.; Periselneris, J.; Norton, S.; Smith, L.-J.; Patrick, T.; Walder, D.; Heitmann, A.; Lee, K. Chest radiography is a poor predictor of respiratory symptoms and functional impairment in survivors of severe COVID-19 pneumonia. ERJ Open Res. 2021, 7, 00655-2020. [Google Scholar] [CrossRef]
- Chassagnon, G.; Vakalopoulou, M.; Battistella, E.; Christodoulidis, S.; Hoang-Thi, T.N.; Dangeard, S.; Deutsch, E.; Andre, F.; Guillo, E.; Halm, N.; et al. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med. Image Anal. 2021, 67, 101860. [Google Scholar] [CrossRef]
- Baltazar, L.R.; Manzanillo, M.G.; Gaudillo, J.; Viray, E.D.; Domingo, M.; Tiangco, B.; Albia, J. Artificial intelligence on COVID-19 pneumonia detection using chest xray images. PLoS ONE 2021, 16, e0257884. [Google Scholar] [CrossRef]
- Jiao, Z.; Choi, J.W.; Halsey, K.; Tran, T.M.L.; Hsieh, B.; Wang, D.; Eweje, F.; Wang, R.; Chang, K.; Wu, J. Prognostication of patients with COVID-19 using artificial intelligence based on chest X-rays and clinical data: A retrospective study. Lancet Digit. Health 2021, 3, e286–e294. [Google Scholar] [CrossRef] [PubMed]
- Haghanifar, A.; Majdabadi, M.M.; Choi, Y.; Deivalakshmi, S.; Ko, S. COVID-cxnet: Detecting COVID-19 in frontal chest X-ray images using deep learning. Multimed. Tools Appl. 2022, 81, 30615–30645. [Google Scholar] [CrossRef]
- Shin, H.J.; Son, N.-H.; Kim, M.J.; Kim, E.-K. Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs. Sci. Rep. 2022, 12, 10215. [Google Scholar] [CrossRef]
- Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M. Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019, 290, 218–228. [Google Scholar] [CrossRef]
- Ahn, J.S.; Ebrahimian, S.; McDermott, S.; Lee, S.; Naccarato, L.; Di Capua, J.F.; Wu, M.Y.; Zhang, E.W.; Muse, V.; Miller, B. Association of Artificial Intelligence–Aided Chest Radiograph Interpretation with Reader Performance and Efficiency. JAMA Netw. Open 2022, 5, e2229289. [Google Scholar] [CrossRef]
- People with Certain Medical Conditions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html#immunocompromised (accessed on 23 December 2022).
- Hwang, E.J.; Goo, J.M.; Yoon, S.H.; Beck, K.S.; Seo, J.B.; Choi, B.W.; Chung, M.J.; Park, C.M.; Jin, K.N.; Lee, S.M. Use of artificial intelligence-based software as medical devices for chest radiography: A position paper from the Korean Society of Thoracic Radiology. Korean J. Radiol. 2021, 22, 1743. [Google Scholar] [CrossRef]
- Lee, S.; Shin, H.J.; Kim, S.; Kim, E.-K. Successful implementation of an artificial intelligence-based computer-aided detection system for chest radiography in daily clinical practice. Korean J. Radiol. 2022, 23, 847–852. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, Y.J.; Choi, W.-J.; Jeon, J.S.; Kim, M.Y.; Oh, D.H.; Jin, K.N.; Cho, Y.J. Concordance rate of radiologists and a commercialized deep-learning solution for chest X-ray: Real-world experience with a multicenter health screening cohort. PLoS ONE 2022, 17, e0264383. [Google Scholar] [CrossRef]
- Murakami, K.; Sano, H.; Tode, N.; Tsukita, Y.; Sato, K.; Narita, D.; Kimura, N.; Matsumoto, S.; Ono, Y.; Iwasaki, C. Clinical features of COVID-19 patients with rebound phenomenon after corticosteroid therapy. BMJ Open Respir. Res. 2022, 9, e001332. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, X.; Jiao, X.; Yu, Y.; Chi, J.; Zhang, W.; Chen, L.; Li, S.; Gao, Q. PRCTC: A machine learning model for prediction of response to corticosteroid therapy in COVID-19 patients. Aging 2022, 14, 54. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Liu, H.; Zhen, Y.; Zhang, X.; Xiong, Q.; Luo, Y.; Gao, C.; Zeng, W. Chest CT severity score: An imaging tool for assessing severe COVID-19. Radiol. Cardiothorac. Imaging 2020, 2, e200047. [Google Scholar] [CrossRef]
- Abdollahi, I.; Nabahati, M.; Javanian, M.; Shirafkan, H.; Mehraeen, R. Can initial chest CT scan predict status and clinical outcomes of COVID-19 infection? A retrospective cohort study. Egypt. J. Radiol. Nucl. Med. 2021, 52, 158. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, C.; Hu, Y.; Lv, W.; Ai, T.; Xia, L. Chest CT imaging features and severity scores as biomarkers for prognostic prediction in patients with COVID-19. Ann. Transl. Med. 2020, 8, 1449. [Google Scholar] [CrossRef]
- Solinas, C.; Perra, L.; Aiello, M.; Migliori, E.; Petrosillo, N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev. 2020, 54, 8–23. [Google Scholar] [CrossRef]
- Matsumoto, T.; Walston, S.L.; Walston, M.; Kabata, D.; Miki, Y.; Shiba, M.; Ueda, D. Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs. J. Digit. Imaging 2023, 36, 178–188. [Google Scholar] [CrossRef]
- Constantinou, M.; Exarchos, T.; Vrahatis, A.G.; Vlamos, P. COVID-19 classification on chest X-ray images using deep learning methods. Int. J. Environ. Res. Public Health 2023, 20, 2035. [Google Scholar] [CrossRef]
- Drozdov, I.; Szubert, B.; Reda, E.; Makary, P.; Forbes, D.; Chang, S.L.; Ezhil, A.; Puttagunta, S.; Hall, M.; Carlin, C. Development and prospective validation of COVID-19 chest X-ray screening model for patients attending emergency departments. Sci. Rep. 2021, 11, 20384. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Conuel, E.; Chopra, A. The incidence of pleural effusion in COVID-19 pneumonia: State-of-the-art review. Heart Lung 2021, 50, 481–490. [Google Scholar] [CrossRef]
- Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial review. Clin. Imaging 2020, 64, 35–42. [Google Scholar] [CrossRef]
- Lombardi, Y.; Azoyan, L.; Szychowiak, P.; Bellamine, A.; Lemaitre, G.; Bernaux, M.; Daniel, C.; Leblanc, J.; Riller, Q.; Steichen, O. External validation of prognostic scores for COVID-19: A multicenter cohort study of patients hospitalized in Greater Paris University Hospitals. Intensive Care Med. 2021, 47, 1426–1439. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, W.; Zhang, F.; Huang, C.; Yang, M.; Tang, Z.; Li, Y.; Mi, J.; Zhong, W. Prognostic role and diagnostic power of seven indicators in COVID-19 patients. Front. Med. 2021, 8, 733274. [Google Scholar] [CrossRef]
- Yoon, S.H.; Lee, J.H.; Kim, B.-N. Chest CT findings in hospitalized patients with SARS-CoV-2: Delta versus Omicron variants. Radiology 2023, 306, 252–260. [Google Scholar] [CrossRef]
- Jin, K.N.; Kim, E.Y.; Kim, Y.J.; Lee, G.P.; Kim, H.; Oh, S.; Kim, Y.S.; Han, J.H.; Cho, Y.J. Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: A multicenter respiratory outpatient diagnostic cohort study. Eur. Radiol. 2022, 32, 3469–3479. [Google Scholar] [CrossRef]
- Hwang, E.J.; Kim, H.; Yoon, S.H.; Goo, J.M.; Park, C.M. Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19. Korean J. Radiol. 2020, 21, 1150. [Google Scholar] [CrossRef]
- WHO. R&D Blueprint and COVID-19. Available online: https://www.who.int/teams/blueprint/covid-19 (accessed on 30 August 2020).
Total | Unfavorable * (n = 52) | Favorable (n = 206) | p-Value | |
---|---|---|---|---|
Age (years) | 64.21 ± 18.88 | 69.67 ± 16.52 | 62.83 ± 19.19 | <0.001 |
Sex (male), n (%) | 147 (57.0) | 42 (80.8) | 105 (51.0) | <0.001 |
Re-infection, n (%) | 2 (0.8) | 0 (0.0) | 2 (1.0) | 0.371 † |
Comorbidities, n (%) | ||||
DM | 76 (29.5) | 17 (32.7) | 59 (28.6) | 0.220 |
COPD | 19 (7.4) | 4 (7.7) | 15 (7.3) | 0.882 † |
CHF | 16 (6.2) | 3 (5.8) | 13 (6.3) | 0.873 † |
CKD | 7 (2.7) | 2 (3.8) | 5 (2.4) | 0.243 † |
Chronic liver Dz. | 5 (1.9) | 1 (1.9) | 4 (1.9) | 1.00 † |
Malignancy | 42 (16.3) | 14 (26.9) | 28 (13.6) | <0.001 |
CCI | 1 [0–3] | 1.5 [0–4] | 1 [0–2] | <0.001 |
Immunocompromised, n (%) | 44 (17.1) | 17 (32.7) | 27 (13.1) | <0.001 |
Outcomes | ||||
Condition at discharge, n (%) | <0.001 | |||
Normal discharge | 205 (79.4) | 0 (0.0) | 205 (99.5) | |
Transfer | 51 (19.8) | 51 (98.1) | 0 (0.0) | |
Death | 1 (0.4) | 1 (1.9) | 0 (0.0) | |
Others | 1 (0.4) | 0 (0.0) | 1 (0.5) | |
Hospital days | 8 [6–12] | 4 [1–11.75] | 8 [6–12] | <0.001 |
Treatments | ||||
Oxygen requirements, n (%) | <0.001 | |||
None | 99 (38.4) | 0 (0.0) | 99 (48.1) | |
Low-flow oxygen | 101 (39.1) | 3 (5.8) | 98 (47.6) | |
High-flow oxygen | 55 (21.3) | 46 (88.5) | 9 (4.4) | |
Mechanical ventilation | 3 (1.2) | 3 (5.8) | 0 (0.0) | |
Monoclonal antibody, n (%) | 10 (3.9) | 0 (0.0) | 10 (4.9) | <0.001 |
Tocilizumab, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Antiviral agents, n (%) | 152 (58.9) | 40 (76.9) | 112 (54.4) | <0.001 |
Remdesivir | 146 (96.1) | 39 (97.5) | 107 (95.5) | |
Nirmatrevir/lopinavir | 3 (2.0) | 1 (2.5) | 2 (1.8) | |
Molnuprevir | 3 (2.0) | 0 (0.0) | 3 (2.7) | |
Antibacterial agents, n (%) | 201 (77.9) | 50 (96.2) | 151 (73.3) | <0.001 |
Vaccination, n (%) | 118 (49.0) | 21(43.8) | 97 (50.3) | 0.115 |
Primary vaccination | 97 (82.2) | 20 (95.2) | 77 (79.4) | |
Booster | 21 (17.8) | 1(4.8) | 20 (20.6) | |
Corticosteroid Treatment | ||||
Types, n (%) | 1.000 | |||
Dexamethasone | 243 (94.2) | 51 (98.1) | 192 (93.2) | |
Methylprednisolone | 8 (3.1) | 1 (1.9) | 7 (3.4) | |
Prednisolone | 4 (1.5) | 0 (0.0) | 4 (1.9) | |
Hydrocortisone | 3 (1.1) | 0 (0.0) | 3 (1.4) | |
Doses, n (%) | 0.300 | |||
6 mg equivalent | 255 (98.5) | 52 (100.0) | 203 (98.5) | |
less | 3 (1.2) | 0 (0.0) | 3 (1.5) | |
Days of steroid initiation ‡ | 4 [2–7] | 3 [2–6] | 4 [2–7] | 0.271 |
Treatment duration | 5 [4–8] | 3 [1.25–8] | 6 [4–8] | 0.350 |
Variables | Univariate | Multivariable | |||
---|---|---|---|---|---|
OR * (95% CI) | p-Value | aOR † (95% CI) | p-Value | ||
Total | Consolidation score (%) | 1.030 (1.017–1.042) | <0.001 | 1.022 (1.010–1.035) | <0.001 |
Pleural effusion score (%) | 1.020 (1.009–1.032) | 0.001 | 1.013 (1.001–1.026) | 0.040 | |
Category 0 ‡ | Consolidation score (%) | 1.025 (1.011–1.039) | <0.001 | 1.025 (1.006–1.045) | 0.010 |
Pleural effusion score (%) | 1.016 (0.999–1.033) | 0.068 | 1.003 (0.984–1.021) | 0.780 | |
Category 1 § | Consolidation score (%) | 1.035 (1.018–1.053) | <0.001 | 1.03 (1.011–1.051) | 0.002 |
Pleural effusion score (%) | 1.020 (1.004–1.035) | 0.013 | 1.017 (0.999–1.035) | 0.070 | |
Category 2 ‖ | Consolidation score (%) | 1.057 (1.022–1.093) | 0.001 | 1.052 (1.015–1.089) | 0.005 |
Pleural effusion score (%) | 1.025 (1.010–1.040) | 0.001 | 1.022 (1.003–1.042) | 0.020 | |
Category 3 ¶ | Consolidation score (%) | 1.058 (1.006–1.113) | 0.028 | 1.033 (0.988–1.080) | 0.158 |
Pleural effusion score (%) | 1.022 (1.006–1.039) | 0.006 | 1.003 (0.979–1.027) | 0.809 |
Variables | Consolidation Score | Pleural Effusion Score | |||||
---|---|---|---|---|---|---|---|
Parameter Estimate | t | p-Value | Parameter Estimate | t | p-Value | ||
Category 0 * | WBC (103/μL) | 1.27 | 1.70 | 0.09 | 0.803 | 1.69 | 0.09 |
PLT (103/μL) | 0.01 | 0.22 | 0.82 | 0.07 | 3.01 | <0.01 | |
Lymphocyte (%) | −0.23 | −0.61 | 0.54 | −0.12 | −0.49 | 0.63 | |
CRP (mg/L) | 0.15 | 2.5 | 0.01 | 0.10 | 2.66 | <0.01 | |
Albumin (g/dL) | −27.77 | −5.87 | <0.01 | −7.05 | −2.2 | 0.03 | |
IL-6 (pg/mL) | 0.72 | 1.32 | 0.24 | 0.00 | 0 | 0.99 | |
D-dimer (mcgFEU/mL) | 1.71 | 1.08 | 0.28 | 0.37 | 0.36 | 0.72 | |
Procalcitonin (ng/mL) | 2.02 | 1.88 | 0.07 | 1.49 | 1.99 | 0.054 | |
Category 1 † | WBC (103/μL) | 2.46 | 2.65 | <0.01 | 3.09 | 6.57 | <0.01 |
PLT (103/μL) | −0.01 | −0.17 | 0.87 | 0.06 | 3.00 | <0.01 | |
Lymphocyte (%) | −1.12 | −4 | <0.01 | −0.46 | −2.92 | <0.01 | |
CRP (mg/L) | 0.21 | 4.75 | <0.01 | 0.08 | 3.09 | <0.01 | |
Albumin (g/dL) | −24.59 | −4.74 | <0.01 | −13.41 | −4.69 | <0.01 | |
IL-6 (pg/mL) | 0.01 | 0.21 | 0.83 | 0.01 | 5.88 | <0.01 | |
D-dimer (mcgFEU/mL) | 6.84 | 1.41 | 0.17 | 4.25 | 1.38 | 0.17 | |
Procalcitonin (ng/mL) | 5.12 | 1.67 | 0.11 | 3.82 | 1.67 | 0.11 | |
Category 2 ‡ | WBC (103/μL) | 1.42 | 2.11 | 0.04 | 1.02 | 2.17 | 0.03 |
PLT (103/μL) | −0.001 | −0.03 | 0.97 | 0.01 | 0.41 | 0.68 | |
Lymphocyte (%) | −1.26 | −6.61 | <0.01 | −0.33 | −2.19 | 0.03 | |
CRP (mg/L) | 0.20 | 4.57 | <0.01 | 0.08 | 3.09 | 0.27 | |
Albumin (g/dL) | −16.08 | −3.33 | <0.01 | −18.61 | −5.83 | <0.01 | |
IL-6 (pg/mL) | 0.02 | 1.34 | 0.20 | −0.01 | −0.53 | 0.60 | |
D-dimer (mcgFEU/mL) | 8.93 | 1.09 | 0.29 | 1.75 | 0.35 | 0.73 | |
Procalcitonin (ng/mL) | 0.23 | 1.03 | 0.31 | −0.11 | −0.40 | 0.69 | |
Category 3 § | WBC (103/μL) | 1.16 | 1.69 | 0.09 | −0.19 | −0.38 | 0.70 |
PLT (103/μL) | −0.01 | −0.26 | 0.80 | −0.04 | −2.76 | <0.01 | |
Lymphocyte (%) | −0.67 | −2.49 | 0.01 | −0.31 | −1.61 | 0.11 | |
CRP (mg/L) | 0.08 | 1.79 | 0.08 | 0.07 | 2.11 | 0.04 | |
Albumin (g/dL) | −17.19 | −3.41 | <0.01 | −10.72 | −2.80 | <0.01 | |
IL-6 (pg/mL) | 0.34 | 2.80 | 0.03 | −0.14 | −0.38 | 0.72 | |
D-dimer (mcgFEU/mL) | 8.06 | 0.93 | 0.36 | 4.47 | 0.67 | 0.68 | |
Procalcitonin (ng/mL) | −2.86 | −0.19 | 0.85 | 4.45 | 0.42 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.H.; Shin, H.J.; Kim, J.; Jo, S.; Kim, E.-K.; Park, Y.S.; Kyong, T. Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs. J. Clin. Med. 2023, 12, 5852. https://doi.org/10.3390/jcm12185852
Kim MH, Shin HJ, Kim J, Jo S, Kim E-K, Park YS, Kyong T. Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs. Journal of Clinical Medicine. 2023; 12(18):5852. https://doi.org/10.3390/jcm12185852
Chicago/Turabian StyleKim, Min Hyung, Hyun Joo Shin, Jaewoong Kim, Sunhee Jo, Eun-Kyung Kim, Yoon Soo Park, and Taeyoung Kyong. 2023. "Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs" Journal of Clinical Medicine 12, no. 18: 5852. https://doi.org/10.3390/jcm12185852
APA StyleKim, M. H., Shin, H. J., Kim, J., Jo, S., Kim, E. -K., Park, Y. S., & Kyong, T. (2023). Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs. Journal of Clinical Medicine, 12(18), 5852. https://doi.org/10.3390/jcm12185852