The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness
Abstract
:1. Introduction
2. Materials & Methods
2.1. Participants and Procedures
2.2. Measures
2.3. Statistical Analyses
3. Results
3.1. Participant Demographics and Baseline Differences
3.2. Prevalence and Incidence of High Fatigue at Baseline and Follow-Up
3.3. COVID-19 Testing and Positivity Rates
3.4. Effects of COVID-19 on Fatigue at Follow-Up
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. pp. 1–33. Available online: https://apps.who.int/iris/bitstream/handle/10665/340087/nCoV-weekly-sitrep9Mar21-eng.pdf?sequence=1 (accessed on 21 March 2023).
- World Health Organization. Weekly Epidemiological Update on COVID-19. 3 May 2023. Available online: https://covid19.who.int/?mapFilter=cases (accessed on 3 May 2023).
- Tian, S.; Chang, Z.; Wang, Y.; Wu, M.; Zhang, W.; Zhou, G.; Zou, X.; Tian, H.; Xiao, T.; Xing, J.; et al. Clinical Characteristics and Reasons for Differences in Duration From Symptom Onset to Release from Quarantine Among Patients with COVID-19 in Liaocheng, China. Front. Med. 2020, 7, 210. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J. Med. Virol. 2020, 93, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.R.; Martin, M.R.; Martin, J.D.; Kuhn, P.; Hicks, J.B. Modeling the Onset of Symptoms of COVID-19. Front. Public Health 2020, 8, 473. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, F.; Pizzol, D.; Marotta, C.; Antunes, M.; Racalbuto, V.; Veronese, N.; Smith, L. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narra-tive Review. Int. J. Environ. Res. Public Health 2020, 17, 2690. [Google Scholar] [CrossRef]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, D.; Ullum, H.; Brunak, S. Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef] [PubMed]
- Rudroff, T.; Fietsam, A.C.; Deters, J.R.; Bryant, A.D.; Kamholz, J. Post-COVID-19 fatigue: Potential contributing factors. Brain Sci. 2020, 10, 1012. [Google Scholar] [CrossRef]
- Glaus, A.; Crow, R.; Hammond, S. A qualitative study to explore the concept of fatigue/tiredness in cancer patients and in healthy individuals. Support Care Cancer 1996, 4, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Morrow, G.R.; Shelke, A.R.; Roscoe, J.A.; Hickok, J.T.; Mustian, K. Management of cancer-related fatigue. Cancer Investig. 2005, 23, 229–239. [Google Scholar] [CrossRef]
- Junghaenel, D.U.; Christodoulou, C.; Lai, J.S.; Stone, A.A. Demographic correlates of fatigue in the US general population: Results from the patient-reported outcomes measurement information system (PROMIS) initiative. J. Psychosom. Res. 2011, 71, 117–123. [Google Scholar] [CrossRef]
- Franzen, K.; Blomqvist, K.; Saveman, B.I. Impact of chronic heart failure on elderly persons’ daily life: A validation study. Eur. J. Cardiovasc. Nurs. 2006, 5, 137–145. [Google Scholar] [CrossRef]
- Prue, G.; Rankin, J.; Allen, J.; Gracey, J.; Cramp, F. Cancer-related fatigue: A critical appraisal. Eur. J. Cancer 2006, 42, 846–863. [Google Scholar] [CrossRef]
- Brown, M.M.; Bell, D.S.; Jason, L.A.; Christos, C.; Bell, D.E. Understanding long-term outcomes of chronic fatigue syndrome. J. Clin. Psychol. 2012, 68, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Kamal, M.; Abo Omirah, M.; Hussein, A.; Saeed, H. Assessment and characterisation of post-COVID-19 manifestations. Int. J. Clin. Pract. 2021, 75, e13746. [Google Scholar] [CrossRef]
- Carfi, A.; Bernabei, R.; Landi, F.; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Cha, C.; Baek, G. Symptoms and management of long COVID: A scoping review. J. Clin. Nurs. 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Joli, J.; Buck, P.; Zipfel, S.; Stengel, A. Post-COVID-19 fatigue: A systematic review. Front. Psychiatry 2022, 13, 947973. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-term neurological manifestations of COVID-19: Prevalence and predictive factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Manganotti, P.; Michelutti, M.; Furlanis, G.; Deodato, M.; Buoite Stella, A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin. Neurophysiol. 2023, 151, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Ajcevic, M.; Iscra, K.; Furlanis, G.; Michelutti, M.; Miladinovic, A.; Buoite Stella, A.; Ukmar, M.; Cova, M.A.; Accardo, A.; Manganotti, P. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci. Rep. 2023, 13, 5808. [Google Scholar] [CrossRef] [PubMed]
- Vargas, I.; Howie, E.K.; Muench, A.; Perlis, M.L. Measuring the Effects of Social Isolation and Dissatisfaction on Depressive Symptoms during the COVID-19 Pandemic: The Moderating Role of Sleep and Physical Activity. Brain Sci. 2021, 11, 1449. [Google Scholar] [CrossRef]
- Terwee, C.B.; Elsman, E.; Roorda, L.D. Towards standardization of fatigue measurement: Psychometric properties and reference values of the PROMIS Fatigue item bank in the Dutch general population. Res. Methods Med. Health Sci. 2022, 3, 86–98. [Google Scholar] [CrossRef]
- Ameringer, S.; Elswick, R.K., Jr.; Menzies, V.; Robins, J.L.; Starkweather, A.; Walter, J.; Gentry, A.E.; Jallo, N. Psychometric Evaluation of the Patient-Reported Outcomes Measurement Information System Fatigue-Short Form Across Diverse Populations. Nurs. Res. 2016, 65, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.J.; Klinedinst, N.J.; Resnick, B. Measuring Fatigue in Older Adults With Joint Pain: Reliability and Validity Testing of the PROMIS Fatigue Short Forms. J. Nurs. Meas. 2019, 27, 534–553. [Google Scholar] [CrossRef]
- Yang, M.; Keller, S.; Lin, J.S. Psychometric properties of the PROMIS((R)) Fatigue Short Form 7a among adults with myalgic encephalomyelitis/chronic fatigue syndrome. Qual. Life Res. 2019, 28, 3375–3384. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Wulf Hanson, S.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; Borzakova, S.; et al. A global systematic analysis of the occurrence, severity, and recovery pattern of long COVID in 2020 and 2021. medRxiv 2022. [Google Scholar] [CrossRef]
- Brusaferri, L.; Alshelh, Z.; Martins, D.; Kim, M.; Weerasekera, A.; Housman, H.; Morrissey, E.J.; Knight, P.C.; Castro-Blanco, K.A.; Albrecht, D.S.; et al. The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic. Brain Behav. Immun. 2022, 102, 89–97. [Google Scholar] [CrossRef]
- Frontera, J.A.; Lewis, A.; Melmed, K.; Lin, J.; Kondziella, D.; Helbok, R.; Yaghi, S.; Meropol, S.; Wisniewski, T.; Balcer, L.; et al. Prevalence and Predictors of Prolonged Cognitive and Psychological Symptoms Following COVID-19 in the United States. Front. Aging Neurosci. 2021, 13, 690383. [Google Scholar] [CrossRef] [PubMed]
Total Sample (n = 1417) | High Fatigue (n = 310) | Low Fatigue (n = 1107) | p-Value | |
---|---|---|---|---|
Age, mean (SD) | 43.63 (16.58) | 40.62 (15.24) | 44.48 (16.85) | <0.001 * |
Gender, n (%) | <0.001 * | |||
Female | 1148 (81.02) | 258 (83.23) | 890 (80.40) | |
Male | 237 (16.73) | 34 (10.97) | 203 (18.34) | |
Transgender Female | 2 (0.14) | 0 (0) | 2 (0.18) | |
Transgender Male | 4 (0.28) | 2 (0.65) | 2 (0.18) | |
Gender Variant/Non-Conforming | 18 (1.27) | 13 (4.19) | 5 (0.45) | |
Other | 8 (0.62) | 3 (0.97) | 5 (0.45) | |
Race/Ethnicity, n (%) | 0.29 | |||
American Indian, Native American, or Alaska Native | 2 (0.14) | 1 (0.32) | 1 (0.0001) | |
Asian or Asian American | 66 (4.65) | 9 (2.90) | 57 (5.15) | |
Black, African American, or African | 57 (4.02) | 17 (5.48) | 40 (3.61) | |
Latino or Latina | 46 (3.25) | 12 (3.87) | 34 (3.07) | |
Middle Eastern or Arab | 7 (0.49) | 2 (0.65) | 5 (0.45) | |
Native Hawaiian or Other Pacific Islander | 3 (0.21) | 1 (0.32) | 0 (0) | |
White or Caucasian | 1180 (83.27) | 251 (80.97) | 929 (83.92) | |
Multi-racial | 43 (3.03) | 14 (4.52) | 29 (2.62) | |
Other | 13 (0.92) | 3 (0.97) | 10 (0.90) | |
Marital Status, n (%) | 0.15 | |||
Married | 589 (41.57) | 110 (35.48) | 479 (43.27) | |
Widowed | 43 (3.03) | 8 (2.58) | 35 (3.16) | |
Divorced | 171 (12.07) | 42 (13.55) | 129 (11.65) | |
Separated | 13 (0.92) | 3 (0.97) | 10 (0.90) | |
Never Married | 600 (42.34) | 146 (47.10) | 454 (41.01) | |
Educational History, n (%) | <0.001 * | |||
less than high school | 4 (0.28) | 0 (0) | 4 (0.36) | |
high school graduate | 46 (3.25) | 11 (3.55) | 35 (3.16) | |
some college | 152 (10.73) | 49 (15.81) | 103 (9.30) | |
2-year degree | 97 (6.85) | 30 (9.68) | 67 (6.05) | |
4-year degree | 529 (37.33) | 120 (31.71) | 409 (36.95) | |
professional degree | 476 (33.59) | 75 (24.19) | 401 (36.22) | |
doctorate | 113 (7.97) | 25 (8.06) | 88 (7.95) | |
Employment, n (%) | 0.02 * | |||
Unemployed | 467 (32.96) | 123 (39.68) | 344 (31.07) | |
employed 1–20 h | 139 (9.81) | 24 (7.74) | 115 (37.10) | |
employed 20–30 h | 104 (7.34) | 17 (5.48) | 87 (7.86) | |
employed full time (40+ hours) | 700 (49.40) | 145 (46.77) | 555 (50.14) | |
Chronic Illness, n (%) | <0.001 * | |||
No | 682 (48.13) | 115 (37.10) | 567 (51.22) | |
Yes | 735 (51.87) | 195 (62.90) | 540 (48.78) |
Predictor | B | S.E. | t | p-Value | f2 | 95% C.I. for f2 |
---|---|---|---|---|---|---|
Positive COVID-19 test | 1.88 | 0.60 | 3.13 | 0.002 * | 0.06 | 0.02–0.09 |
COVID-19 Symptom Severity | 1.30 | 0.52 | 2.48 | 0.015 * | 0.15 | 0.03–0.26 |
COVID-19 Symptom Duration | 0.05 | 0.03 | 2.11 | 0.037 * | 0.13 | 0.01–0.24 |
Predictor | B | S.E. | z | p-Value | OR | 95% C.I. for OR |
---|---|---|---|---|---|---|
Positive COVID-19 test | 0.162 | 0.324 | 0.499 | 0.618 | 0.05 | −0.15–0.22 |
COVID-19 Symptom Severity | 0.558 | 0.326 | 1.709 | 0.088 | 0.56 | −0.07–1.25 |
COVID-19 Symptom Duration | 0.023 | 0.014 | 1.675 | 0.094 | 0.48 | −0.12–1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muench, A.; Lampe, E.W.; Boyle, J.T.; Seewald, M.; Thompson, M.G.; Perlis, M.L.; Vargas, I. The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness. J. Clin. Med. 2023, 12, 5910. https://doi.org/10.3390/jcm12185910
Muench A, Lampe EW, Boyle JT, Seewald M, Thompson MG, Perlis ML, Vargas I. The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness. Journal of Clinical Medicine. 2023; 12(18):5910. https://doi.org/10.3390/jcm12185910
Chicago/Turabian StyleMuench, Alexandria, Elizabeth W. Lampe, Julia T. Boyle, Mark Seewald, Michelle G. Thompson, Michael L. Perlis, and Ivan Vargas. 2023. "The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness" Journal of Clinical Medicine 12, no. 18: 5910. https://doi.org/10.3390/jcm12185910
APA StyleMuench, A., Lampe, E. W., Boyle, J. T., Seewald, M., Thompson, M. G., Perlis, M. L., & Vargas, I. (2023). The Assessment of Post-COVID Fatigue and Its Relationship to the Severity and Duration of Acute COVID Illness. Journal of Clinical Medicine, 12(18), 5910. https://doi.org/10.3390/jcm12185910