Recent Advances in the Prevention and Screening of Preeclampsia
Abstract
:1. Introduction
1.1. The Epidemiology and the Definition of Preeclampsia
1.2. Theories and Hypotheses on the Pathophysiology of Preeclampsia
1.3. The Purpose of This Current Review
2. Aspirin and LMWH in Preeclampsia Prevention
3. Calcium Supplements, Vitamin Supplements, and Other Dietary Interventions in Preeclampsia Prevention
4. Endothelin Receptor Antagonists
5. The Usage of Statins in Preeclampsia
6. New Approaches to the Pregnancy Lifestyle
7. Novel Markers in Preeclampsia
8. Micro-RNAs and Preeclampsia
9. Early Detection and Monitoring with the Help of Rapidly Advancing Softwares and Artificial Intelligence (AI)
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.N.; Oparil, S. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.; Keyes, K.; Wapner, R. Pre-eclampsia rates in the United States, 1980–2010: Age-period-cohort analysis. BMJ 2013, 347, f6564. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. International society for the study of hypertension in pregnancy (ISSHP). Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Turbeville, H.R.; Sasser, J.M. Preeclampsia beyond pregnancy: Long-term consequences for mother and child. Am. J. Physiol. Renal Physiol. 2020, 318, F1315–F1326. [Google Scholar] [CrossRef]
- Ma’ayeh, M.; Rood, K.; Kniss, D.; Costantine, M. Novel interventions for the prevention of preeclampsia. Curr. Hypertens. Rep. 2020, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Ishimwe, J. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol. Rep. 2021, 9, e14875. [Google Scholar] [CrossRef]
- Hod, T.; Cerdeira, A.S.; Karumanchi, S.A. Molecular mechanisms of preeclampsia. Cold Spring Harb. Perspect. Med. 2015, 5, a023473. [Google Scholar] [CrossRef]
- Lecarpentier, É.; Vieillefosse, S.; Haddad, B.; Fournier, T.; Leguy, M.C.; Guibourdenche, J.; Tsatsaris, V. Placental growth factor (PlGF) and sFlt-1 during pregnancy: Physiology, assay and interest in preeclampsia. Ann. Biol. Clin. 2016, 74, 259–267. [Google Scholar] [CrossRef]
- Dymara-Konopka, W.; Laskowska, M.; Błażewicz, A. Angiogenic Imbalance as a Contributor of Preeclampsia. Curr. Pharm. Biotechnol. 2018, 19, 797–815. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Rich-Edwards, J.W.; McElrath, T.F.; Garmire, L.; Myatt, L.; Global Pregnancy Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness. Hypertension 2021, 77, 1430–1441. [Google Scholar] [CrossRef]
- Szalai, G.; Romero, R.; Chaiworapongsa, T.; Xu, Y.; Wang, B.; Ahn, H.; Xu, Z.; Chiang, P.J.; Sundell, B.; Wang, R.; et al. Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLoS ONE 2015, 10, e0119547. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.-H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Stepan, H.; Galindo, A.; Hund, M.; Schlembach, D.; Sillman, J.; Surbek, D.; Vatish, M. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet. Gynecol. 2023, 61, 168–180. [Google Scholar] [CrossRef]
- Erez, O.; Romero, R.; Jung, E.; Chaemsaithong, P.; Bosco, M.; Suksai, M.; Gallo, D.M.; Gotsch, F. Preeclampsia and eclampsia: The conceptual evolution of a syndrome. Am. J. Obstet. Gynecol. 2022, 226, S786–S803. [Google Scholar] [CrossRef]
- Amosco, M.D.; Villar, V.A.; Naniong, J.M.; David-Bustamante, L.M.; Jose, P.A.; Palmes-Saloma, C.P. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population. Clin. Exp. Hypertens. 2016, 38, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Esparvarinha, M.; Madadi, S.; Aslanian-Kalkhoran, L.; Nickho, H.; Dolati, S.; Pia, H.; Danaii, S.; Taghavi, S.; Yousefi, M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol. Int. 2023, 47, 507–519. [Google Scholar] [CrossRef]
- Doria, A.; Iaccarino, L.; Arienti, S.; Ghirardello, A.; Zampieri, S.; Rampudda, M.E.; Cutolo, M.; Tincani, A.; Todesco, S. Th2 immune deviation induced by pregnancy: The two faces of autoimmune rheumatic diseases. Reprod. Toxicol. 2006, 22, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112, Erratum in Circ. Res. 2020, 126, e8. [Google Scholar] [CrossRef] [PubMed]
- Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative Stress in Preeclampsia and Placental Diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef] [PubMed]
- Taysi, S.; Tascan, A.S.; Ugur, M.G.; Demir, M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini Rev. Med. Chem. 2019, 19, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Than, N.G.; Romero, R.; Tarca, A.L.; Kekesi, K.A.; Xu, Y.; Xu, Z.; Juhasz, K.; Bhatti, G.; Leavitt, R.J.; Gelencser, Z.; et al. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front. Immunol. 2018, 9, 1661. [Google Scholar] [CrossRef]
- Gajzlerska-Majewska, W.; Bomba-Opon, D.A.; Wielgos, M. Is pravastatin a milestone in the prevention and treatment of preeclampsia? J. Perinat. Med. 2018, 46, 825–831. [Google Scholar] [CrossRef]
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Dymara-Konopka, W.; Laskowska, M.; Oleszczuk, J. Preeclampsia—Current Management and Future Approach. Curr. Pharm. Biotechnol. 2018, 19, 786–796. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Nicolaides, K.H.; Poon, L.C. Prevention of preeclampsia with aspirin. Am. J. Obstet. Gynecol. 2022, 226, S1108–S1119. [Google Scholar] [CrossRef] [PubMed]
- Huai, J.; Lin, L.; Juan, J.; Chen, J.; Li, B.; Zhu, Y.; Yu, M.; Yang, H. Preventive effect of aspirin on preeclampsia in high-risk pregnant women with stage 1 hypertension. J. Clin. Hypertens. 2021, 23, 1060–1067. [Google Scholar] [CrossRef]
- Mastrolia, S.A.; Novack, L.; Thachil, J.; Rabinovich, A.; Pikovsky, O.; Klaitman, V.; Loverro, G.; Erez, O. LMWH in the prevention of preeclampsia and fetal growth restriction in women without thrombophilia. A systematic review and meta-analysis. Thromb. Haemost. 2016, 116, 868–878. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, F.; Deng, C.; Huang, G.; Li, J.; Wang, X. Low-dose aspirin for preventing preeclampsia and its complications: A meta-analysis. J. Clin. Hypertens. 2015, 17, 567–573. [Google Scholar] [CrossRef]
- Mayer-Pickel, K.; Kolovetsiou-Kreiner, V.; Stern, C.; Münzker, J.; Eberhard, K.; Trajanoski, S.; Lakovschek, I.-C.; Ulrich, D.; Csapo, B.; Lang, U.; et al. Effect of Low-Dose Aspirin on Soluble FMS-Like Tyrosine Kinase 1/Placental Growth Factor (sFlt-1/PlGF Ratio) in Pregnancies at High Risk for the Development of Preeclampsia. J. Clin. Med. 2019, 8, 1429. [Google Scholar] [CrossRef]
- Atallah, A.; Lecarpentier, E.; Goffinet, F.; Gaucherand, P.; Doret-Dion, M.; Tsatsaris, V. Aspirine et prééclampsie [Aspirin and preeclampsia]. Presse Med. 2019, 48 Pt 1, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Wright, D.; Rolnik, D.L.; Syngelaki, A.; Delgado, J.L.; Tsokaki, T.; Leipold, G.; Akolekar, R.; Shearing, S.; De Stefani, L.; et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: Effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am. J. Obstet. Gynecol. 2017, 217, 585.e1–585.e5, Correction in Am. J. Obstet. Gynecol. 2018, 217, 586. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.K.; Goudar, S.S.; Kodkany, B.S.; Metgud, M.; Somannavar, M.; Okitawutshu, J.; Lokangaka, A.; Tshefu, A.; Bose, C.L.; Mwapule, A.; et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): A randomised, double-blind, placebo-controlled trial. Lancet 2020, 395, 285–293, Correction in Lancet 2020, 395, e53. [Google Scholar] [CrossRef] [PubMed]
- Roberge, S.; Nicolaides, K.; Demers, S.; Hyett, J.; Chaillet, N.; Bujold, E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 110–120.e6. [Google Scholar] [CrossRef]
- Van Doorn, R.; Mukhtarova, N.; Flyke, I.P.; Lasarev, M.; Kim, K.; Hennekens, C.H.; Hoppe, K.K. Dose of aspirin to prevent preterm preeclampsia in women with moderate or high-risk factors: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0247782. [Google Scholar] [CrossRef]
- Sinkey, R.G.; Battarbee, A.N.; Bello, N.A.; Ives, C.W.; Oparil, S.; Tita, A.T.N. Prevention, Diagnosis, and Management of Hypertensive Disorders of Pregnancy: A Comparison of International Guidelines. Curr. Hypertens. Rep. 2020, 22, 66. [Google Scholar] [CrossRef]
- Roberge, S.; Demers, S.; Nicolaides, K.H.; Bureau, M.; Côté, S.; Bujold, E. Prevention of pre-eclampsia by low-molecular-weight heparin in addition to aspirin: A meta-analysis. Ultrasound Obstet. Gynecol. 2016, 47, 548–553. [Google Scholar] [CrossRef]
- Long, S.; Zhang, L.; Li, X.; He, Y.; Wen, X.; Xu, N.; Li, X.; Wang, J. Maternal and perinatal outcomes of low-dose aspirin plus low-molecular-weight heparin therapy on antiphospholipid antibody-positive pregnant women with chronic hypertension. Front. Pediatr. 2023, 11, 1148547. [Google Scholar] [CrossRef]
- Hamulyák, E.N.; Scheres, L.J.; Marijnen, M.C.; Goddijn, M.; Middeldorp, S. Aspirin or heparin or both for improving pregnancy outcomes in women with persistent antiphospholipid antibodies and recurrent pregnancy loss. Cochrane Database Syst. Rev. 2020, 5, CD012852. [Google Scholar] [CrossRef]
- Cruz-Lemini, M.; Vázquez, J.C.; Ullmo, J.; Llurba, E. Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 226, S1126–S1144.e17. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Zhang, J.; Song, Y. Efficacy and safety of low-dose aspirin combined with low-molecular-weight heparin in treatment of preeclampsia: A meta-analysis and systematic review. Arch. Med. Sci. 2021, 18, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Villa-Etchegoyen, C.; Lombarte, M.; Matamoros, N.; Belizán, J.M.; Cormick, G. Mechanisms Involved in the Relationship between Low Calcium Intake and High Blood Pressure. Nutrients 2019, 11, 1112. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Yuasa, S.; Shoji, T.; Miki, S.; Fujioka, H.; Uchida, K.; Sumikura, T.; Takamitsu, Y.; Yura, T.; Matsuo, H. Effect of Low Dietary Calcium Intake on Blood Pressure and Pressure Natriuresis Response in Rats: A Possible Role of the Renin-Angiotensin System. Blood Press. 1996, 5, 121–127. [Google Scholar]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizán, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst. Rev. 2015, 30, CD010037. [Google Scholar] [CrossRef]
- Belizan, J.M.; Villar, J.; Bergel, E.; del Pino, A.; Di Fulvio, S.; Galliano, S.V.; Kattan, C. Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: Follow up of a randomised controlled trial. BMJ 1997, 315, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Bergel, E.; Gibbons, L.; Rasines, M.G.; Luetich, A.; Belizán, J.M. Maternal calcium supplementation during pregnancy and dental caries of children at 12 years of age: Follow-up of a randomized controlled trial. Acta Obstet. Gynecol. Scand. 2010, 89, 1396–1402. [Google Scholar] [CrossRef]
- Woo Kinshella, M.L.; Sarr, C.; Sandhu, A.; Bone, J.N.; Vidler, M.; Moore, S.E.; Elango, R.; Cormick, G.; Belizan, J.M.; Hofmeyr, G.J.; et al. Calcium for pre-eclampsia prevention: A systematic review and network meta-analysis to guide personalised antenatal care. BJOG 2022, 129, 1833–1843. [Google Scholar] [CrossRef]
- Patrelli, T.S.; Dall’asta, A.; Gizzo, S.; Pedrazzi, G.; Piantelli, G.; Jasonni, V.M.; Modena, A.B. Calcium supplementation and prevention of preeclampsia: A meta-analysis. J. Matern. Fetal Neonatal Med. 2012, 25, 2570–2574. [Google Scholar] [CrossRef]
- de Souza, E.A.; Pisani, L.P. The relationship among vitamin D, TLR4 pathway and preeclampsia. Mol. Biol. Rep. 2020, 47, 6259–6267. [Google Scholar] [CrossRef]
- Oh, C.; Keats, E.C.; Bhutta, Z.A. Vitamin and Mineral Supplementation During Pregnancy on Maternal, Birth, Child Health and Development Outcomes in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 491. [Google Scholar] [CrossRef]
- Nema, J.; Sundrani, D.; Joshi, S. Role of vitamin D in influencing angiogenesis in preeclampsia. Hypertens. Pregnancy 2019, 38, 201–207. [Google Scholar] [CrossRef]
- Khaing, W.; Vallibhakara, S.A.; Tantrakul, V.; Vallibhakara, O.; Rattanasiri, S.; McEvoy, M.; Attia, J.; Thakkinstian, A. Calcium and Vitamin D Supplementation for Prevention of Preeclampsia: A Systematic Review and Network Meta-Analysis. Nutrients 2017, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.C.; Bruce-Mensah, A.; Whitmire, M.; Rizvi, A.A. Hypercalcemia Associated with Calcium Supplement Use: Prevalence and Characteristics in Hospitalized Patients. J. Clin. Med. 2015, 4, 414–424. [Google Scholar] [CrossRef]
- Turner, J.J.O. Hypercalcaemia—Presentation and management. Clin. Med. 2017, 17, 270–273. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Chappell, L.C. Is oxidative stress involved in the aetiology of pre-eclampsia? Acta Paediatr. Suppl. 2001, 90, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Tóth, M.; Kukor, Z.; Valent, S. Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: Contribution to placental endothelial nitric oxide synthase activity. Mol. Hum. Reprod. 2002, 8, 271–280. [Google Scholar] [CrossRef]
- Valent, S.; Tóth, M. Spectrophotometric analysis of the protective effect of ascorbate against spontaneous oxidation of tetrahydrobiopterin in aqueous solution: Kinetic characteristics and potentiation by catalase of ascorbate action. Int. J. Biochem. Cell. Biol. 2004, 36, 1266–1280. [Google Scholar] [CrossRef]
- Polyzos, N.P.; Mauri, D.; Tsappi, M.; Tzioras, S.; Kamposioras, K.; Cortinovis, I.; Casazza, G. Combined vitamin C and E supplementation during pregnancy for preeclampsia prevention: A systematic review. Obstet. Gynecol. Surv. 2007, 62, 202–206. [Google Scholar] [CrossRef]
- Basaran, A.; Basaran, M.; Topatan, B. Combined vitamin C and E supplementation for the prevention of preeclampsia: A systematic review and meta-analysis. Obstet. Gynecol. Surv. 2010, 65, 653–667. [Google Scholar] [CrossRef]
- Duan, S.; Jiang, Y.; Mou, K.; Wang, Y.; Zhou, S.; Sun, B. Correlation of serum vitamin A and vitamin E levels with the occurrence and severity of preeclampsia. Am. J. Transl. Res. 2021, 13, 14203–14210. [Google Scholar]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Zhou, S.J.; Yelland, L.; McPhee, A.J.; Quinlivan, J.; Gibson, R.A.; Makrides, M. Fish-oil supplementation in pregnancy does not reduce the risk of gestational diabetes or preeclampsia. Am. J. Clin. Nutr. 2012, 95, 1378–1384. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guasch-Ferré, M.; Chung, W.; Ruiz-Canela, M.; Toledo, E.; Corella, D.; Bhupathiraju, S.N.; Tobias, D.K.; Tabung, F.K.; Hu, J.; et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020, 41, 41–2645. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef]
- Minhas, A.S.; Hong, X.; Wang, G.; Rhee, D.K.; Liu, T.; Zhang, M.; Michos, E.D.; Wang, X.; Mueller, N.T. Mediterranean-Style Diet and Risk of Preeclampsia by Race in the Boston Birth Cohort. J. Am. Heart Assoc. 2022, 11, e022589. [Google Scholar] [CrossRef]
- Tomimatsu, T.; Mimura, K.; Matsuzaki, S.; Endo, M.; Kumasawa, K.; Kimura, T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int. J. Mol. Sci. 2019, 20, 4246. [Google Scholar] [CrossRef] [PubMed]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Buttrup Larsen, S.; Wallukat, G.; Schimke, I.; Sandager, A.; Christensen, T.T.; Uldbjerg, N.; Tørring, N. Functional autoantibodies against Endothelin-1 receptor type A and Angiotensin II receptor type 1 in patients with preeclampsia. Pregnancy Hypertens. 2018, 14, 189–194. [Google Scholar] [CrossRef]
- Saleh, L.; Danser, J.A.; van den Meiracker, A.H. Role of endothelin in preeclampsia and hypertension following antiangiogenesis treatment. Curr. Opin. Nephrol. Hypertens. 2016, 25, 94–99. [Google Scholar] [CrossRef]
- Bakrania, B.; Duncan, J.; Warrington, J.P.; Granger, J.P. The Endothelin Type A Receptor as a Potential Therapeutic Target in Preeclampsia. Int. J. Mol. Sci. 2017, 18, 522. [Google Scholar] [CrossRef] [PubMed]
- Hitzerd, E.; Neuman, R.I.; Broekhuizen, M.; Simons, S.H.; Schoenmakers, S.; Reiss, I.K.; Koch, B.C.; Meiracker, A.H.v.D.; Versmissen, J.; Visser, W.; et al. Transfer and Vascular Effect of Endothelin Receptor Antagonists in the Human Placenta. Hypertension 2020, 75, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Koch, C. Statin therapy. Curr. Pharm. Des. 2012, 18, 6284–6290. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Costantine, M. The role of statins in the prevention of preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S1171–S1181. [Google Scholar] [CrossRef]
- Xiang, Q.Q.; Yang, Z.; Huai, J.; Wang, G.J. Different effects of pravastatin on sFlt-1, PlGF and VEGF in different preeclampsia-like mouse models. Zhonghua Fu Chan Ke Za Zhi 2019, 54, 601–607. [Google Scholar] [CrossRef]
- Pánczél, Z.; Supák, D.; Kovács, B.; Kukor, Z.; Valent, S. A pravasztatin hatása tetrahidrobiopterin-érzékeny és -rezisztens praeeclampsiás placenták NO-szintáz-aktivitására [Effect of pravastatin on tetrahydrobiopterin-sensitive and -resistant NO synthase activity of preeclamptic placentas]. Orv. Hetil. 2020, 161, 389–395. [Google Scholar] [CrossRef]
- Pánczél, Z.; Kukor, Z.; Supák, D.; Kovács, B.; Kecskeméti, A.; Czizel, R.; Djurecz, M.; Alasztics, B.; Csomó, K.B.; Hrabák, A.; et al. Pravastatin induces NO synthesis by enhancing microsomal arginine uptake in healthy and preeclamptic placentas. BMC Pregnancy Childbirth 2019, 19, 426. [Google Scholar] [CrossRef]
- Meyer, N.; Brodowski, L.; Richter, K.; von Kaisenberg, C.S.; Schröder-Heurich, B.; von Versen-Höynck, F. Pravastatin Promotes Endothelial Colony-Forming Cell Function, Angiogenic Signaling and Protein Expression In Vitro. J. Clin. Med. 2021, 10, 183. [Google Scholar] [CrossRef]
- Saad, A.F.; Kechichian, T.; Yin, H.; Sbrana, E.; Longo, M.; Wen, M.; Tamayo, E.; Hankins, G.D.V.; Saade, G.R.; Costantine, M.M. Effects of pravastatin on angiogenic and placental hypoxic imbalance in a mouse model of preeclampsia. Reprod. Sci. 2014, 21, 138–145. [Google Scholar] [CrossRef]
- Girardi, G. Pravastatin to treat and prevent preeclampsia. Preclinical and clinical studies. J. Reprod. Immunol. 2017, 124, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Zarek, J.; DeGorter, M.K.; Lubetsky, A.; Kim, R.; Laskin, C.; Berger, H.; Koren, G. The transfer of pravastatin in the dually perfused human placenta. Placenta 2013, 34, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.F.; Diken, Z.M.; Kechichian, T.B.; Clark, S.M.; Olson, G.L.; Saade, G.R.; Costantine, M.M. Pravastatin Effects on Placental Prosurvival Molecular Pathways in a Mouse Model of Preeclampsia. Reprod. Sci. 2016, 23, 1593–1599. [Google Scholar] [CrossRef]
- Carver, A.R.; Tamayo, E.; Perez-Polo, J.R.; Saade, G.R.; Hankins, G.D.; Costantine, M.M. The effect of maternal pravastatin therapy on adverse sensorimotor outcomes of the offspring in a murine model of preeclampsia. Int. J. Dev. Neurosci. 2014, 33, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lefkou, E.; Mamopoulos, A.; Fragakis, N.; Dagklis, T.; Vosnakis, C.; Nounopoulos, E.; Rousso, D.; Girardi, G. Clinical improvement and successful pregnancy in a preeclamptic patient with antiphospholipid syndrome treated with pravastatin. Hypertension 2014, 63, e118–e119. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Kaneko, K.; Abe, S.; Yakuwa, N.; Kawasaki, H.; Suzuki, T.; Yamatani, A.; Sago, H.; Murashima, A. Pravastatin concentrations in maternal serum, umbilical cord serum, breast milk and neonatal serum during pregnancy and lactation: A case study. J. Clin. Pharm. Ther. 2022, 47, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Kupferminc, M.; Kliger, C.; Rimon, E.; Asher-Landsberg, J.; Skornick-Rapaport, A.; Gamzu, R.; Yogev, Y. Pravastatin is useful for prevention of recurrent severe placenta-mediated complications—A pilot study. J. Matern. Fetal Neonatal Med. 2022, 35, 8055–8061. [Google Scholar] [CrossRef]
- Akbar, M.I.A.; Yosediputra, A.; Pratama, R.E.; Fadhilah, N.L.; Sulistyowati, S.; Amani, F.Z.; Ernawati, E.; Dachlan, E.G.; Angsar, M.D.; Dekker, G. INOVASIA Study: A Randomized Open Controlled Trial to Evaluate Pravastatin to Prevent Preeclampsia and Its Effects on sFlt1/PlGF Levels. Am. J. Perinatol. 2021; ahead of print. [Google Scholar] [CrossRef]
- Akbar, M.I.A.; Azis, M.A.; Riu, D.S.; Wawengkang, E.; Ernawati, E.; Bachnas, M.A.; Sulistyowati, S.; Dachlan, E.G.; Mose, J.C.; Dekker, G. INOVASIA Study: A Multicenter Randomized Clinical Trial of Pravastatin to Prevent Preeclampsia in High-Risk Patients. Am. J. Perinatol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Akbar, M.I.A.; Yosediputra, A.; Pratama, R.E.; Fadhilah, N.L.; Sulistyowati, S.; Amani, F.Z.; Dachlan, E.G.; Angsar, M.D.; Dekker, G.A. Pravastatin suppresses inflammatory cytokines and endothelial activation in patients at risk of developing preeclampsia: INOVASIA study. J. Matern Fetal Neonatal Med. 2022, 35, 5375–5382. [Google Scholar] [CrossRef]
- Costantine, M.M.; West, H.; Wisner, K.L.; Caritis, S.; Clark, S.; Venkataramanan, R.; Stika, C.S.; Rytting, E.; Wang, X.; Ahmed, M.S.; et al. A randomized pilot clinical trial of pravastatin versus placebo in pregnant patients at high risk of preeclampsia. Am. J. Obstet. Gynecol. 2021, 225, e1–e666. [Google Scholar] [CrossRef]
- Costantine, M.M.; Cleary, K.; Eunice Kennedy Shriver National Institute of Child Health. Pravastatin for the prevention of preeclampsia in high-risk pregnant women. Obstet. Gynecol. 2013, 121 Pt 1, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Döbert, M.; Varouxaki, A.N.; Mu, A.C.; Syngelaki, A.; Ciobanu, A.; Akolekar, R.; Matallana, C.D.P.; Cicero, S.; Greco, E.; Singh, M.; et al. Pravastatin Versus Placebo in Pregnancies at High Risk of Term Preeclampsia. Circulation 2021, 144, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, B.; Veres, D.S.; Nagyistók, L.; Somogyi, A.; Rosta, K.; Herold, Z.; Kukor, Z.; Valent, S. Pravastatin in preeclampsia: A meta-analysis and systematic review. Front. Med. 2023, 9, 1076372. [Google Scholar] [CrossRef]
- Costantine, M.M.; Clifton, R.G.; Boekhoudt, T.M.; Lawrence, K.; Gyamfi-Bannerman, C.; Wisner, K.L.; Grobman, W.; Caritis, S.N.; Simhan, H.N.; Hebert, M.F.; et al. Long-term neurodevelopmental follow-up of children exposed to pravastatin in utero. Am. J. Obstet. Gynecol. 2023, 229, e1–e153. [Google Scholar] [CrossRef]
- Poornima, I.G.; Pulipati, V.P.; Brinton, E.A.; Wild, R.A. Update on Statin Use in Pregnancy. Am. J. Med. 2023, 136, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Murai, J.T.; Muzykanskiy, E.; Taylor, R.N. Maternal and fetal modulators of lipid metabolism correlate with the development of preeclampsia. Metabolism 1997, 46, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Ogunyemi, D.; Hullett, S.; Leeper, J.; Risk, A. Prepregnancy body mass index, weight gain during pregnancy, and perinatal outcome in a rural black population. J. Matern Fetal Med. 1998, 7, 190–193. [Google Scholar] [CrossRef]
- Bowers, D.; Cohen, W.R. Obesity and related pregnancy complications in an inner-city clinic. J. Perinatol. 1999, 19, 216–219. [Google Scholar] [CrossRef]
- Watkins, V.Y.; O’Donnell, C.M.; Perez, M.; Zhao, P.; England, S.; Carter, E.B.; Kelly, J.C.; Frolova, A.; Raghuraman, N.T. The impact of physical activity during pregnancy on labor and delivery. Am. J. Obstet. Gynecol. 2021, 225, e1–e437. [Google Scholar] [CrossRef]
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.; Bergström, A.; Charles, M.; Chatzi, L.; Chevrier, C.; Chrousos, G.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. BJOG 2019, 126, 984–995. [Google Scholar] [CrossRef]
- Gascoigne, E.L.; Webster, C.M.; Honart, A.W.; Wang, P.; Smith-Ryan, A.; Manuck, T.A. Physical activity and pregnancy outcomes: An expert review. Am. J. Obstet. Gynecol. MFM 2023, 5, 100758. [Google Scholar] [CrossRef]
- Poniedziałek-Czajkowska, E.; Mierzyński, R.; Leszczyńska-Gorzelak, B. Preeclampsia and Obesity-The Preventive Role of Exercise. Int. J. Environ. Res. Public Health 2023, 20, 1267. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.H.; Ruchat, S.M.; Poitras, V.J.; Jaramillo Garcia, A.; Gray, C.E.; Barrowman, N.; Skow, R.J.; Meah, V.L.; Riske, L.; Sobierajski, F.; et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Zhang, Y.S.; Chen, J.Y.; Wang, Z.J.; Liu, Y.X.; Li, J.Q.; Xu, X.J.; Xie, N.J.; Lye, S.; Tan, N.; et al. Comparative effectiveness of prophylactic strategies for preeclampsia: A network meta-analysis of randomized controlled trials. Am. J. Obstet. Gynecol. 2023, 228, 535–546. [Google Scholar] [CrossRef]
- Magro-Malosso, E.R.; Saccone, G.; Di Tommaso, M.; Roman, A.; Berghella, V. Exercise during pregnancy and risk of gestational hypertensive disorders: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Vandermeer, B.; Khurana, R.; Nerenberg, K.; Featherstone, R.; Sebastianski, M.; Davenport, M.H. The impact of occupational shift work and working hours during pregnancy on health outcomes: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019, 221, 563–576. [Google Scholar] [CrossRef]
- Cai, C.; Vandermeer, B.; Khurana, R.; Nerenberg, K.; Featherstone, R.; Sebastianski, M.; Davenport, M.H. The impact of occupational activities during pregnancy on pregnancy outcomes: A systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2020, 222, 224–238. [Google Scholar] [CrossRef]
- Traylor, C.S.; Johnson, J.D.; Kimmel, M.C.; Manuck, T.A. Effects of psychological stress on adverse pregnancy outcomes and nonpharmacologic approaches for reduction: An expert review. Am. J. Obstet. Gynecol. MFM 2020, 2, 100229. [Google Scholar] [CrossRef]
- Cuckle, H. Prenatal Screening Using Maternal Markers. J. Clin. Med. 2014, 3, 504–520. [Google Scholar] [CrossRef]
- Zorba, E.; Vavilis, D.; Venetis, C.A.; Zournatzi, V.; Kellartzis, D.; Tarlatzis, B.C. Visfatin serum levels are increased in women with preeclampsia: A case-control study. J. Matern. Fetal Neonatal Med. 2012, 25, 1668–1673. [Google Scholar] [CrossRef]
- Bellos, I.; Pergialiotis, V.; Loutradis, D.; Daskalakis, G. The prognostic role of serum uric acid levels in preeclampsia: A meta-analysis. J. Clin. Hypertens 2020, 22, 826–834. [Google Scholar] [CrossRef]
- Garrido-Giménez, C.; Cruz-Lemini, M.; Álvarez, F.V.; Nan, M.N.; Carretero, F.; Fernández-Oliva, A.; Mora, J.; Sánchez-García, O.; García-Osuna, Á.; Alijotas-Reig, J.; et al. Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers. J. Clin. Med. 2023, 12, 431. [Google Scholar] [CrossRef]
- Piani, F.; Agnoletti, D.; Baracchi, A.; Scarduelli, S.; Verde, C.; Tossetta, G.; Montaguti, E.; Simonazzi, G.; Degli Esposti, D.; Borghi, C. Serum uric acid to creatinine ratio and risk of preeclampsia and adverse pregnancy outcomes. J. Hypertens. 2023, 41, 1333–1338. [Google Scholar] [CrossRef]
- Gülmezoğlu, A.M.; Hofmeyr, G.J.; Oosthuisen, M.M. Antioxidants in the treatment of severe pre-eclampsia: An explanatory randomised controlled trial. Br. J. Obstet. Gynaecol. 1997, 104, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Morales-Prieto, D.M.; Favaro, R.R.; Markert, U.R. Placental miRNAs in feto-maternal communication mediated by extracellular vesicles. Placenta 2020, 102, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Morales-Prieto, D.M.; Ospina-Prieto, S.; Chaiwangyen, W.; Schoenleben, M.; Markert, U.R. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013, 97, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Zhafir Asyura, M.M.A.; Komariah, M.; Amirah, S.; Faisal, E.G.; Maulana, S.; Platini, H.; Pahria, T. Analysis of Varying MicroRNAs as a Novel Biomarker for Early Diagnosis of Preeclampsia: A Scoping Systematic Review of the Observational Study. Int. J. Prev. Med. 2023, 14, 36. [Google Scholar] [CrossRef]
- Inno, R.; Kikas, T.; Lillepea, K.; Laan, M. Coordinated Expressional Landscape of the Human Placental miRNome and Transcriptome. Front. Cell Dev. Biol. 2021, 9, 697947. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Sun, N.; Xu, L.; Xu, Y.; Tang, Q.; Tan, L.; Chen, A.; Zhang, L.; Liu, S. The Value of Circulating microRNAs for Diagnosis and Prediction of Preeclampsia: A Meta-analysis and Systematic Review. Reprod. Sci. 2022, 29, 3078–3090. [Google Scholar] [CrossRef]
- Fu, J.Y.; Xiao, Y.P.; Ren, C.L.; Guo, Y.W.; Qu, D.H.; Zhang, J.H.; Zhu, Y.J. Up-regulation of miR-517-5p inhibits ERK/MMP-2 pathway: Potential role in preeclampsia. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6599–6608. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Zhang, Y.; Yang, H.; Long, Y.; Liang, Q.; Zheng, Z. MiR-942 decreased before 20 weeks gestation in women with preeclampsia and was associated with the pathophysiology of preeclampsia in vitro. Clin. Exp. Hypertens. 2017, 39, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lu, Z.; Zhi, Z.; Liu, L.; Deng, L.; Jiang, X.; Pang, L. Increased miRNA-518b inhibits trophoblast migration and angiogenesis by targeting EGR1 in early embryonic arrest. Biol. Reprod. 2019, 101, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Hromadnikova, I.; Kotlabova, K.; Ivankova, K.; Krofta, L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS ONE 2017, 12, 1–17. [Google Scholar] [CrossRef]
- Zhang, M.; Li, P.; Mao, X.; Zhang, H. Regulatory mechanism of miR-525-5p in over-invasion of trophoblast. J. Obstet. Gynaecol. Res. 2021, 47, 679–688. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Xu, P.; Yin, L.; Si, Y.; Zhang, C.; Meng, Y.; Feng, W.; Pan, Z.; Gao, Z.; et al. Elevated microRNA-125b inhibits cytotrophoblast invasion and impairs endothelial cell function in preeclampsia. Cell Death Discov. 2020, 6, 35. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; An, P.; Zhao, H.; Li, X.; Xiong, Y. Hsa_circ_0002348 regulates trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia. J. Transl. Med. 2023, 21, 509. [Google Scholar] [CrossRef]
- Jaszczuk, I.; Winkler, I.; Koczkodaj, D.; Skrzypczak, M.; Filip, A. The Role of Cluster C19MC in Pre-Eclampsia Development. Int. J. Mol. Sci. 2022, 23, 13836. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Rao, S.; He, J.R. Perinatal health predictors using artificial intelligence: A review. Women’s Health 2021, 17, 17455065211046132. [Google Scholar] [CrossRef]
- Sufriyana, H.; Wu, Y.W.; Su, E.C. Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia. EBioMedicine 2020, 54, 102710. [Google Scholar] [CrossRef]
- Liu, S.; Xie, X.; Lei, H.; Zou, B.; Xie, L. Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis. Med. Sci. Monit. 2019, 25, 1679–1693. [Google Scholar] [CrossRef] [PubMed]
- Alkhodari, M.; Xiong, Z.; Khandoker, A.H.; Hadjileontiadis, L.J.; Leeson, P.; Lapidaire, W. The role of artificial intelligence in hypertensive disorders of pregnancy: Towards personalized healthcare. Expert Rev. Cardiovasc. Ther. 2023, 21, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Grünebaum, A.; Chervenak, J.; Pollet, S.L.; Katz, A.; Chervenak, F.A. The exciting potential for ChatGPT in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 228, 696–705. [Google Scholar] [CrossRef] [PubMed]
miR | Cluster | Change | Potential Effect of Changed miR in Preeclampsia |
---|---|---|---|
miR-517-5p | C19MC | ↑ | inhibits the proliferation and invasion of JAR cell line [122] |
miR-942 | - | ↓ | inhibition of trophoblast invasion and angiogenesis [123] |
miR-517a | C19MC | ↑ | decreased trophoblast invasion and antiangiogenic effect [123] |
miR-517c | C19MC | ↑ | decreased trophoblast invasion and antiangiogenic effect [123] |
miR-518b | C19MC | ↑ | inhibits trophoblast migration and angiogenesis [124] |
miR-516b-5p | C19MC | ↑ | N.D. |
miR-520a-5p | C19MC | ↑ | N.D. |
miR-520h | C19MC | ↑ | N.D. |
miR-525-5p | C19MC | ↑ [125] ↓ [126] | overexpression mediates the invasion of trophoblast cells [123] |
miR-125b | - | ↑ | inhibits cytotrophoblast invasion and impairs endothelial cell function [127] |
miR-126-3p | - | ↓ | inhibits trophoblast proliferation and promotes trophoblast apoptosis [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mészáros, B.; Kukor, Z.; Valent, S. Recent Advances in the Prevention and Screening of Preeclampsia. J. Clin. Med. 2023, 12, 6020. https://doi.org/10.3390/jcm12186020
Mészáros B, Kukor Z, Valent S. Recent Advances in the Prevention and Screening of Preeclampsia. Journal of Clinical Medicine. 2023; 12(18):6020. https://doi.org/10.3390/jcm12186020
Chicago/Turabian StyleMészáros, Balázs, Zoltán Kukor, and Sándor Valent. 2023. "Recent Advances in the Prevention and Screening of Preeclampsia" Journal of Clinical Medicine 12, no. 18: 6020. https://doi.org/10.3390/jcm12186020
APA StyleMészáros, B., Kukor, Z., & Valent, S. (2023). Recent Advances in the Prevention and Screening of Preeclampsia. Journal of Clinical Medicine, 12(18), 6020. https://doi.org/10.3390/jcm12186020