The Immunomodulatory Effect of Various Anaesthetic Practices in Patients Undergoing Gastric or Colon Cancer Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Outcome Measurements
2.3. Data Collection and Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Search Results
3.2. Baseline Characteristics
3.3. Risk of Bias of the Included Studies
3.3.1. Analysis of Primary Outcomes
- a.
- NK cell counts: propofol versus sevoflurane
- b.
- NK cell counts: general anaesthesia versus general anaesthesia plus epidural anaesthesia
- c.
- CD3+, CD4+, CD8+ and C4+/CD8+ ratio: propofol versus sevoflurane
- d.
- CD3+, CD4+, CD8+ and CD4+/CD8+: general anaesthesia versus general anaesthesia plus epidural anaesthesia
3.3.2. Analysis of Secondary Outcomes
- a.
- NLR
- b.
- IL-6
- c.
- TNF-a
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | Confidence interval |
COX | Cyclooxygenase |
LNR | Lymphocyte-to-neutrophil ratio |
MOR | μ-Opioid receptor |
N/A | Not Available |
NK-cells | Natural Killer cells |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
OR | Odds Ratio |
PRBC | Packed red blood cell |
PEG | Prostaglandin |
RCT | Randomised Clinical Trial |
IL-6 | Interleukin 6 |
RoB | Risk of Bias |
SMD | Standardized mean difference |
TILs | Tumour-infiltrating lymphocytes |
TIVA | Volatile-based or total intravenous |
TNF-a | Tumour necrosis factor a |
TLR 4 | Toll-like-receptor 4 |
TNM | Tumour, Node and Metastasis |
TRIM | Transfusion-related immunomodulation |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Talmadge, J.E.; Fidler, I.J. AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Res. 2010, 70, 5649–5669. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Pikarsky, E.; Karin, M.; Coussens, L.M.; Chen, Y.-C.; El-Omar, E.M.; Trinchieri, G.; Dubinett, S.M.; Mao, J.T.; Szabo, E.; et al. Cancer and Inflammation: Promise for Biologic Therapy. J. Immunother. 2010, 33, 335–351. [Google Scholar] [CrossRef]
- Hussain, M.; Javeed, A.; Ashraf, M.; Al-Zaubai, N.; Stewart, A.; Mukhtar, M.M. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy. Pharmacol. Res. 2012, 66, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.H.; De Souza, C.T.; Bélanger, S.; Ly, L.; Alkayyal, A.A.; Zhang, J.; Rintoul, J.L.; Ananth, A.A.; Lam, T.; Breitbach, C.J.; et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res. 2013, 73, 97–107. [Google Scholar] [CrossRef]
- Choileain, N.N.; Redmond, H.P. Cell response to surgery. Arch. Surg. 2006, 141, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Byrne, K.; Levins, K.J.; Buggy, D.J. Can anesthetic-analgesic technique during primary cancer surgery affect recurrence or metastasis? Can. J. Anaesth. 2016, 63, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Exadaktylos, A.K.; Buggy, D.J.; Moriarty, D.C.; Mascha, E.; Sessler, D.I. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology 2006, 105, 660–664. [Google Scholar] [CrossRef]
- Gupta, K.; Kshirsagar, S.; Chang, L.; Schwartz, R.; Law, P.-Y.; Yee, D.; Hebbel, R.P. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002, 62, 4491–4498. [Google Scholar]
- Li, R.; Huang, Y.; Lin, J. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat. Commun. 2020, 11, 642. [Google Scholar] [CrossRef]
- Inada, T.; Kubo, K.; Kambara, T.; Shingu, K. Propofol inhibits cyclo-oxygenase activity in human monocytic THP-1 cells. Can. J. Anaesth. 2009, 56, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kushida, A.; Inada, T.; Shingu, K. Enhancement of Antitumor Immunity after Propofol Treatment in Mice. Immunopharmacol. Immunotoxicol. 2007, 29, 477–486. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Wan, H.; Chen, L.; Wang, F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. BioMedicine 2010, 64, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Benzonana, L.L.; Zhao, H.; Watts, H.R.; Perry, N.J.S.; Bevan, C.; Brown, R.; Ma, D. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br. J. Cancer 2014, 111, 1338–1349. [Google Scholar] [CrossRef]
- Lucchinetti, E.; Awad, A.E.; Rahman, M.; Feng, J.; Lou, P.H.; Zhang, L.; Ionescu, L.; Lemieux, H.; Thébaud, B.; Zaugg, M. Antiproliferative effects of local anesthetics on mesenchymal stem cells: Potential implications for tumor spreading and wound healing. Anesthesiology 2012, 116, 841–856. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Kuroda, Y.; Hirose, M. The Antiproliferative Effect of Lidocaine on Human Tongue Cancer Cells with Inhibition of the Activity of Epidermal Growth Factor Receptor. Obstet. Anesthesia Dig. 2006, 102, 1103–1107. [Google Scholar] [CrossRef]
- Higgins, J.P.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 205–228. [Google Scholar] [CrossRef]
- Higgins, J.P.T.T.J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.3 (Updated February 2022); Cochrane: London, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 28 May 2023).
- Chen, Y.; Liang, M.; Zhu, Y.; Zhou, D. The effect of propofol and sevoflurane on the perioperative immunity in patients under laparoscopic radical resection of colorectal cancer. Zhonghua Yi Xue Za Zhi 2015, 95, 3440–3444. [Google Scholar]
- Kim, N.Y.; Kim, K.J.; Lee, K.-Y.; Shin, H.J.; Cho, J.; Nam, D.J.; Kim, S.Y. Effect of volatile and total intravenous anesthesia on syndecan-1 shedding after minimally invasive gastrectomy: A randomized trial. Sci. Rep. 2021, 11, 1511. [Google Scholar] [CrossRef]
- Oh, C.-S.; Park, H.-J.; Piao, L.; Sohn, K.-M.; Koh, S.-E.; Hwang, D.-Y.; Kim, S.-H. Expression Profiles of Immune Cells after Propofol or Sevoflurane Anesthesia for Colorectal Cancer Surgery: A Prospective Double-blind Randomized Trial. Anesthesiology 2022, 136, 448–458. [Google Scholar] [CrossRef]
- Siekmann, W.; Eintrei, C.; Magnuson, A.; Sjölander, A.; Matthiessen, P.; Myrelid, P.; Gupta, A. Surgical and not analgesic technique affects postoperative inflammation following colorectal cancer surgery: A prospective, randomized study. Color. Dis. 2017, 19, O186–O195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mo, H. The Impact of Different Anesthesia Methods on Stress Reaction and Immune Function of the Patients with Gastric Cancer during Peri-Operative Period. J. Med. Assoc. Thail. 2015, 98, 568–573. [Google Scholar]
- Zhou, M.; Liu, W.; Peng, J.; Wang, Y. Impact of propofol epidural anesthesia on immune function and inflammatory factors in patients undergoing gastric cancer surgery. Am. J. Transl. Res. 2021, 13, 3064–3073. [Google Scholar]
- Wang, F.; Lau, J.K.C.; Yu, J. The role of natural killer cell in gastrointestinal cancer: Killer or helper. Oncogene 2021, 40, 717–730. [Google Scholar] [CrossRef]
- Dang, Y.; Shi, X.; Xu, W.; Zuo, M. The Effect of Anesthesia on the Immune System in Colorectal Cancer Patients. Can. J. Gastroenterol. Hepatol. 2018, 2018, 7940603. [Google Scholar] [CrossRef]
- Chan, I.S.; Ewald, A.J. The changing role of natural killer cells in cancer metastasis. J. Clin. Investig. 2022, 132, e143762. [Google Scholar] [CrossRef]
- Morvan, M.G.; Lanier, L.L. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 2016, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Reid, F.S.W.; Egoroff, N.; Pockney, P.G.; Smith, S.R. A systematic scoping review on natural killer cell function in colorectal cancer. Cancer Immunol. Immunother. 2021, 70, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Soltanizadeh, S.; Degett, T.H.; Gögenur, I. Outcomes of cancer surgery after inhalational and intravenous anesthesia: A systematic review. J. Clin. Anesthesia 2017, 42, 19–25. [Google Scholar] [CrossRef]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of Natural Killer Cell Activity and Promotion of Tumor Metastasis by Ketamine, Thiopental, and Halothane, but Not by Propofol: Mediating Mechanisms and Prophylactic Measures. Obstet. Anesthesia Dig. 2003, 97, 1331–1339. [Google Scholar] [CrossRef]
- Welden, B.; Gates, G.; Mallari, R.; Garrett, N. Effects of anesthetics and analgesics on natural killer cell activity. AANA J. 2009, 77, 287–292. [Google Scholar] [PubMed]
- Markovic, S.N.; Knight, P.R.; Murasko, D.M. Inhibition of Interferon Stimulation of Natural Killer Cell Activity in Mice Anesthetized with Halothane or Isoflurane. Anesthesiology 1993, 78, 700–706. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Yu, P.-C.; Long, D.; Liao, C.-C.; Zhang, S. Association between density of tumor-infiltrating lymphocytes and prognoses of patients with gastric cancer. Medicine 2018, 97, e11387. [Google Scholar] [CrossRef]
- Song, H.; Srivastava, A.; Lee, J.; Kim, Y.S.; Kim, K.; Kang, W.K.; Kim, M.; Kim, S.; Park, C.K.; Kim, S. Host Inflammatory Response Predicts Survival of Patients with Epstein-Barr Virus–Associated Gastric Carcinoma. Gastroenterology 2010, 139, 84–92.e2. [Google Scholar] [CrossRef] [PubMed]
- Sprung, J.; Scavonetto, F.; Yeoh, T.Y.; Kramer, J.M.; Karnes, R.J.; Eisenach, J.H.; Schroeder, D.R.; Weingarten, T.N. Outcomes after radical prostatectomy for cancer: A comparison between general anesthesia and epidural anesthesia with fentanyl analgesia: A matched cohort study. Anesth. Analg. 2014, 119, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, B. Anaesthesia in cancer surgery: Can it affect cancer survival? Curr. Clin. Pharmacol. 2016, 11, 4–20. [Google Scholar] [CrossRef]
- Hou, B.J.; Du, Y.; Gu, S.X.; Fan, J.; Wang, R.; Deng, H.; Guo, D.X.; Wang, L.; Wang, Y.Y. General anesthesia combined with epidural anesthesia maintaining appropriate anesthesia depth may protect excessive production of inflammatory cytokines and stress hormones in colon cancer patients during and after surgery. Medicine 2019, 98, e16610. [Google Scholar] [CrossRef]
- Misiewicz, A.; Dymicka-Piekarska, V. Fashionable, but What is Their Real Clinical Usefulness? NLR, LMR, and PLR as a Promising Indicator in Colorectal Cancer Prognosis: A Systematic Review. J. Inflamm. Res. 2023, 16, 69–81. [Google Scholar] [CrossRef]
- Okamura, Y.; Sugiura, T.; Ito, T.; Yamamoto, Y.; Ashida, R.; Mori, K.; Uesaka, K. Neutrophil to lymphocyte ratio as an indicator of the malignant behaviour of hepatocellular carcinoma. Br. J. Surg. 2016, 103, 891–898. [Google Scholar] [CrossRef]
- Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018, 9, 29820–29841. [Google Scholar] [CrossRef]
- Min, L.; Chen, D.; Qu, L.; Shou, C. Tumor Necrosis Factor-A Polymorphisms and Colorectal Cancer Risk: A Meta-Analysis. PLoS ONE 2014, 9, e85187. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012, 119, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Kong, Z.; Zhao, H. Relationship Between Tumor Necrosis Factor-α rs361525 Polymorphism and Gastric Cancer Risk: A Meta-Analysis. Front. Physiol. 2018, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Blajchman, M.A.; Bordin, J.O. Mechanisms of transfusion-associated immunosuppression. Curr. Opin. Hematol. 1994, 1, 457–476. [Google Scholar]
- Baumgartner, J.M.; Nydam, T.L.; Clarke, J.H.; Banerjee, A.; Silliman, C.C.; McCarter, M.D.; Dekker, A.M.; Wiggers, J.K.; Coelen, R.J.; van Golen, R.F.; et al. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response from Peripheral Blood Mononuclear Cells. J. Interf. Cytokine Res. 2009, 29, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.J.; Reimert, C.M.; Pedersen, A.N.; Brünner, N.; Edvardsen, L.; Dybkjaer, E.; Kehlet, H.; Skov, P.S. Time-dependent, spontaneous release of white cell-and platelet-derived bioactive substances from stored human blood. Transfusion 1996, 36, 960–965. [Google Scholar] [CrossRef]
- Baumgartner, J.M.; Silliman, C.C.; Moore, E.E.; Banerjee, A.; McCarter, M.D. Stored Red Blood Cell Transfusion Induces Regulatory T Cells. J. Am. Coll. Surg. 2009, 208, 110–119. [Google Scholar] [CrossRef]
- Fragkou, P.C.; Torrance, H.D.; Pearse, R.M.; Ackland, G.L.; Prowle, J.R.; Owen, H.C.; Hinds, C.J.; O’Dwyer, M.J. Perioperative blood transfusion is associated with a gene transcription profile characteristic of immunosuppression: A prospective cohort study. Crit Care 2014, 18, 541. [Google Scholar] [CrossRef]
- Gong, L.; Qin, Q.; Zhou, L.; Ouyang, W.; Li, Y.; Wu, Y.; Li, Y. Effects of fentanyl anesthesia and sufentanil anesthesia on regulatory T cells frequencies. Int. J. Clin. Exp. Pathol. 2014, 7, 7708–7716. [Google Scholar]
- Saurer, T.B.; Ijames, S.G.; Carrigan, K.A.; Lysle, D.T. Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation. Brain Behav. Immun. 2008, 22, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Kumar, S.; Khanna, S.; Mehta, Y. Are we causing the recurrence-impact of perioperative period on long-term cancer prognosis: Review of current evidence and practice. J. Anaesthesiol. Clin. Pharmacol. 2014, 30, 153–159. [Google Scholar] [CrossRef]
- Gao, M.; Sun, J.; Jin, W.; Qian, Y. Morphine, but not ketamine, decreases the ratio of Th1/Th2 in CD4-positive cells through T-bet and GATA3. Inflammation 2012, 35, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Bianchi, M.; Gaspani, L.; Manfredi, B.; Maucione, A.; Terno, G.; Ammatuna, M.; Panerai, A.E. The Effects of Tramadol and Morphine on Immune Responses and Pain After Surgery in Cancer Patients. Obstet. Anesthesia Dig. 2000, 90, 1411–1414. [Google Scholar] [CrossRef]
- Kraus, J. Regulation of mu-opioid receptors by cytokines. Front. Biosci. 2009, 1, 164. [Google Scholar] [CrossRef]
- Börner, C.; Lanciotti, S.; Koch, T.; Höllt, V.; Kraus, J. Mu opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J. Neuroimmunol. 2013, 263, 35–42. [Google Scholar] [CrossRef]
- Lennon, F.E.; Mirzapoiazova, T.; Mambetsariev, B.; Salgia, R.; Moss, J.; Singleton, P.A. Overexpression of the μ-opioid receptor in human non-small cell lung cancer promotes Akt and mTOR activation, tumor growth, and metastasis. J. Am. Soc. Anesthesiol. 2012, 116, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Benish, M.; Bartal, I.; Goldfarb, Y.; Levi, B.; Avraham, R.; Raz, A.; Ben-Eliyahu, S. Perioperative Use of β-blockers and COX-2 Inhibitors May Improve Immune Competence and Reduce the Risk of Tumor Metastasis. Ann. Surg. Oncol. 2008, 15, 2042–2052. [Google Scholar] [CrossRef]
- Jin, K.; Qian, C.; Lin, J.; Liu, B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 2023, 13, 1099811. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Zuo, J.; Gao, Z. Cyclooxygenase-2 expression correlates with development, progression, metastasis, and prognosis of osteosarcoma: A meta-analysis and trial sequential analysis. FEBS Open Bio. 2019, 9, 226–240. [Google Scholar] [CrossRef]
First Author, Year, Country | Number of Participants (Male/Total) | Cancer Subtype | TNM Classification Group 1 | TNM Classification Group 2 | Type of Surgery | ASA | Age of Participants |
---|---|---|---|---|---|---|---|
Chen, Y. [19], 2015, China | 30 Propofol group: 7/14 Sevoflurane group: 9/14 | Colorectal cancer | Sevoflurane T1-3 N0-2 M0 | Propofol T1-3 N0-2 M0 | Laparoscopic radical surgery for colorectal cancer | Sevoflurare group ASA I: 1 ASA II: 13 Propofol group ASA I:0 ASA II: 14 | Sevoflurane group: 56 ± 12 Propofol group: 61 ± 12 |
Zhou, M. [24], 2021, China | 80 General anaesthesia group: 24/40 General plus EA: 28/40 | Gastric cancer | N/A | N/A | Laparoscopic radical gastrectomy | N/A | General anaesthesia group: 66.3 ± 6.9 General plus EA: 65.4 ± 7.2 |
Oh, C.S. [21], 2022, Korea | 153 Propofol group: 39/76 Sevoflurane group: 40/77 | Colorectal cancer | N/A | N/A | Propofol group: hemicolectomy, 16; transverse colectomy, 4; low anterior resection, 35; anterior resection, 12; abdominoperineal, 9 Sevoflurane group: hemicolectomy, 14; transverse colectomy 1; low anterior resection, 41; anterior resection, 14; abdominoperineal, 7; | Sevoflurane group ASA I: 29 ASA II: 37 ASA III: 11 Propofol group ASA I: 33 ASA II: 35 ASA III: 8 | Sevoflurane group 64.4 ± 11.3 Propofol group: 62.2 ± 9.8 |
Siekmann, W. [22], 2017, Sweden | 96 General anaesthesia group: 24/43 General plus EA: 30/37 | Colorectal cancer | General anaesthesia group TNM 1:1, TNM 2:4 TNM 3:33 TNM 4: 3 | General anaesthesia plus EA: TNM 1:2 TNM 2:5 TNM 3:23 TNM 4:5 | right hemicolectomy, resection of the transverse colon, left hemicolectomy or sigmoid resection were employed, as appropriate. For rectal cancer, either anterior resection, abdomino-perineal resection or Hartmanns resection | I-III | General anaesthesia group: 68 ± 9.6 General anaesthesia plus EA: 69 ± 7.1 |
Zhao, J. [23], 2015, China | 64 General anaesthesia group: 14/31 General plus EA: 15/33 | Gastric cancer | N/A | N/A | Radical resection of antral cancer | N/A | General anaesthesia group: 52.8 ± 3.4 General anaesthesia plus EA: 53.4 ± 2.9 |
Kim, N.Y. [20], 2021 Korea | 136 Propofol: 68 Sevoflurane: 68 | Gastric cancer | Sevoflurane group TNM 1: 41 TNM 2: 14 TNM 3: 7 TNM 4: 3 | Propofol group TNM 1: 47 TNM 2: 12 TNM 3: 4 TNM 4: 5 | Propofol: subtotal gastrectomy, 58; total gastrectomy, 7; proximal subtotal gastrectomy, 2; Sevoflurane: subtotal gastrectomy, 51; total gastrectomy, 12; proximal subtotal gastrectomy, 2 | Propofol: ASA I: 8 ASA II: 45 ASA III: 14 Sevoflurane ASA I: 9 ASA II: 39 ASA III: 17 | Propofol group: 61.5 ± 9 Sevoflurane group: 64.6 ± 10.4 |
First Author, Year, Country | GA Maintenance | Epidural Catheter Characteristics | Duration of the Epidural Catheter | Epidural Medications Intraoperatively | Intraoperative Opioids | Postoperative Analgesia |
---|---|---|---|---|---|---|
Chen, Y. [19], 2015, China | Propofol Sevoflurane | N/A | N/A | N/A | Sulfentanil 0.3–0.5 μg/(kg·min) | NSAID PCA |
Zhou, M. [24], 2021, China | Propofol | The epidural catheter was placed between T8 and T9, with a depth of 4 cm | N/A | N/A | Fentanyl 2 μg/kg | N/A |
Oh, C.S. [21], 2022, Korea | Propofol Sevoflurane | N/A | N/A | N/A | Remifentanil at 5 ng mL−1 | Fentanyl PCA |
Siekmann, W. [22], 2017, Sweden | Propofol | The epidural catheter was placed at the T10-12, preoperatively | Ca 72 H | Bupivacaine 2 mg/mL, adrenaline 5 μg/mL and fentanyl 1 μg/mL or bupivacaine 5 mg/mL | In propofol group, fentanyl was given as needed. | General anaesthesia plus EA: epidural anaesthesia with fentanyl/sulfentanyl. After epidural, postoperative analgesia was stopped and patients received NSAIDs General anaesthesia: i.v morphine All patients in both groups received paracetamol. |
Zhao, J. [23], 2015, China | Isoflurane | The epidural catheter was placed at thoracic vertebrae (T7-8) | N/A | Lidocaine at 20 g/L | Fentanyl 0.02 μg/(kg·min) | N/A |
Kim, N.Y. [20], 2021 Korea | Propofol Sevoflurane | N/A | N/A | N/A | Remifentanil Sevoflurane group: 940 ± 330 mg Propofol group: 1294 ± 464 mg | Fentanyl PCA |
First Author, Year, Country | Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall Bias |
---|---|---|---|---|---|---|
Chen, Y. [19], 2015, China | Some concerns | Some concerns | Low | Low | Some concerns | Some concerns |
Zhou, M. [24], 2021, China | Some concerns | Some concerns | Low | Low | Some concerns | Some concerns |
Oh, C.S. [21], 2022, Korea | Low | Low | Low | Low | Low | Low |
Siekmann, W. [22], 2017, Sweden | High | Some concerns | Low | Low | Some concerns | High |
Zhao, J. [23], 2015, China | Some concerns | Some concerns | Low | Low | Some concerns | Some concerns |
Kim, N.Y. [20], 2021, Korea | Some concerns | Low | Low | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantis, G.; Tsaousi, G.; Kitsikidou, E.; Zacharoulis, D.; Pourzitaki, C. The Immunomodulatory Effect of Various Anaesthetic Practices in Patients Undergoing Gastric or Colon Cancer Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Med. 2023, 12, 6027. https://doi.org/10.3390/jcm12186027
Konstantis G, Tsaousi G, Kitsikidou E, Zacharoulis D, Pourzitaki C. The Immunomodulatory Effect of Various Anaesthetic Practices in Patients Undergoing Gastric or Colon Cancer Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Clinical Medicine. 2023; 12(18):6027. https://doi.org/10.3390/jcm12186027
Chicago/Turabian StyleKonstantis, Georgios, Georgia Tsaousi, Elisavet Kitsikidou, Dimitrios Zacharoulis, and Chryssa Pourzitaki. 2023. "The Immunomodulatory Effect of Various Anaesthetic Practices in Patients Undergoing Gastric or Colon Cancer Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials" Journal of Clinical Medicine 12, no. 18: 6027. https://doi.org/10.3390/jcm12186027
APA StyleKonstantis, G., Tsaousi, G., Kitsikidou, E., Zacharoulis, D., & Pourzitaki, C. (2023). The Immunomodulatory Effect of Various Anaesthetic Practices in Patients Undergoing Gastric or Colon Cancer Surgery: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Clinical Medicine, 12(18), 6027. https://doi.org/10.3390/jcm12186027