Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care—A Brief Overview and Meta-Analysis of Proportions
Abstract
:1. Background
2. Materials and Methods
3. Data Sources and Search Strategy
4. Study Selection
5. Inclusion and Exclusion Criteria
6. Data Extraction and Synthesis
7. Statistical Methods
8. Results
9. Discussion
- CAR T-cell therapy–associated TOXicity (CARTOX)
- ICU—Intensive care unit
- Modified Early Warning Score (MEWS)/National Early Warning Score (NEWS)
- CRS—Cytokine release syndrome
- ICANS—immune effector cell-associated neurotoxicity syndrome
- SOFA—Sequential Organ Failure Assessment score
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Wu, Z.; Liu, Y.; Han, W. New development in CAR-T cell therapy. J. Hematol. Oncol. 2017, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, L.; Zhang, H.; Chen, S.; Xiao, Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front. Immunol. 2022, 13, 927153. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 2022, 22, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.K.; Turtle, C.J. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapy. Bone Marrow Transplant. 2019, 54, 780–784. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Chavez, J.C.; Jain, M.D.; Kharfan-Dabaja, M.A. Cytokine release syndrome and neurologic toxicities associated with chimeric antigen receptor T-Cell therapy: A comprehensive review of emerging grading models. Hematol. Oncol. Stem Cell Ther. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Brown, A.R.T.; Jindani, I.; Melancon, J.; Erfe, R.; Westin, J.; Feng, L.; Gutierrez, C. ICU Resource Use in Critically Ill Patients Following Chimeric Antigen Receptor T-Cell Therapy. Am. J. Respir. Crit. Care Med. 2020, 202, 1184–1187. [Google Scholar] [CrossRef]
- Azoulay, É.; Castro, P.; Maamar, A.; Metaxa, V.; de Moraes, A.G.; Voigt, L.; Wallet, F.; Klouche, K.; Picard, M.; Moreau, A.-S.; et al. Outcomes in patients treated with chimeric antigen receptor T-cell therapy who were admitted to intensive care (CARTTAS): An international, multicentre, observational cohort study. Lancet Haematol. 2021, 8, e355–e364. [Google Scholar] [CrossRef]
- Melody, M.; Rahman, Z.A.; Saunders, H.; Diaz, P.L.; Gannon, N.; Rosenthal, A.; Ayala, E.; Tun, H.W.; Murthy, H.; Roy, V.; et al. C-reactive protein and ferritin levels and length of intensive care unit stay in patients with B-cell lymphomas treated with axicabtagene ciloleucel. Hematol. Oncol. Stem Cell Ther. 2021, 14, 141–146. [Google Scholar] [CrossRef]
- Gutierrez, C.; Brown, A.R.T.; May, H.P.; Beitinjaneh, A.; Stephens, R.S.; Rajendram, P.; Nates, J.L.; Pastores, S.M.; Dharshan, A.; de Moraes, A.G.; et al. Critically Ill Patients Treated for Chimeric Antigen Receptor-Related Toxicity: A Multicenter Study. Crit. Care Med. 2022, 50, 81–92. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook (accessed on 4 September 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Valade, S.; Darmon, M.; Zafrani, L.; Mariotte, E.; Lemiale, V.; Bredin, S.; Dumas, G.; Boissel, N.; Rabian, F.; Baruchel, A.; et al. The use of ICU resources in CAR-T cell recipients: A hospital-wide study. Ann. Intensive Care 2022, 12, 75. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2020, 26, 26–33. [Google Scholar] [CrossRef]
- Burns, E.A.; Gentille, C.; Trachtenberg, B.; Pingali, S.R.; Anand, K. Cardiotoxicity Associated with Anti-CD19 Chimeric Antigen Receptor T-Cell (CAR-T) Therapy: Recognition, Risk Factors, and Management. Diseases 2021, 9, 20. [Google Scholar] [CrossRef]
- Van Vliet, M.; Verburg, I.W.M.; van den Boogaard, M.; de Keizer, N.F.; Peek, N.; Blijlevens, N.M.A.; Pickkers, P. Trends in admission prevalence, illness severity and survival of haematological patients treated in Dutch intensive care units. Intensive Care Med. 2014, 40, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Hampshire, P.A.; Welch, C.A.; McCrossan, L.A.; Francis, K.; Harrison, D.A. Admission factors associated with hospital mortality in patients with haematological malignancy admitted to UK adult, general critical care units: A secondary analysis of the ICNARC Case Mix Programme Database. Crit. Care 2009, 13, R137. [Google Scholar] [CrossRef] [PubMed]
- Mokart, D.; Lambert, J.; Schnell, D.; Fouché, L.; Rabbat, A.; Kouatchet, A.; Lemiale, V.; Vincent, F.; Lengliné, E.; Bruneel, F.; et al. Delayed intensive care unit admission is associated with increased mortality in patients with cancer with acute respiratory failure. Leuk. Lymphoma 2013, 54, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- De Vries, V.A.; Müller, M.C.A.; Arbous, M.S.; Biemond, B.J.; Blijlevens, N.M.A.; Kusadasi, N.; Span, L.R.F.; Vlaar, A.P.J.; van Westerloo, D.J.; Kluin-Nelemans, H.C.; et al. Long-Term Outcome of Patients with a Hematologic Malignancy and Multiple Organ Failure Admitted at the Intensive Care. Crit. Care Med. 2019, 47, e120–e128. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, T.; Hasegawa, I.; Uzura, M.; Okuno, K.; Otani, K.; Ohtaki, Y.; Sekine, A.; Takeda, S. Comparison of the National Early Warning Score (NEWS) and the Modified Early Warning Score (MEWS) for predicting admission and in-hospital mortality in elderly patients in the pre-hospital setting and in the emergency department. PeerJ 2019, 7, e6947. [Google Scholar] [CrossRef]
- Constantinescu, C.; Bodolea, C.; Pasca, S.; Teodorescu, P.; Dima, D.; Rus, I.; Tat, T.; Achimas-Cadariu, P.; Tanase, A.; Tomuleasa, C.; et al. Clinical Approach to the Patient in Critical State Following Immunotherapy and/or Stem Cell Transplantation: Guideline for the On-Call Physician. J. Clin. Med. 2019, 8, 884. [Google Scholar] [CrossRef]
- Constantinescu, C.; Pasca, S.; Iluta, S.; Gafencu, G.; Santa, M.; Jitaru, C.; Teodorescu, P.; Dima, D.; Zdrenghea, M.; Tomuleasa, C. The Predictive Role of Modified Early Warning Score in 174 Hematological Patients at the Point of Transfer to the Intensive Care Unit. J. Clin. Med. 2021, 10, 4766. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious complications of CD19-targeted chimeric antigen receptor–modified t-cell immunotherapy. Blood 2018, 131, 121–130. [Google Scholar] [CrossRef]
- Wittmann Dayagi, T.; Sherman, G.; Bielorai, B.; Adam, E.; Besser, M.J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E.; Avigdor, A. Characteristics and risk factors of infections following CD28-based CD19 CAR-T cells. Leuk. Lymphoma 2021, 62, 1692–1701. [Google Scholar] [CrossRef]
- Diorio, C.; Shaw, P.A.; Pequignot, E.; Orlenko, A.; Chen, F.; Aplenc, R.; Barrett, D.M.; Bassiri, H.; Behrens, E.; DiNofia, A.M.; et al. Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Adv. 2020, 4, 5174–5183. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, C.; Pasca, S.; Tat, T.; Teodorescu, P.; Vlad, C.; Iluta, S.; Dima, D.; Tomescu, D.; Scarlatescu, E.; Tanase, A.; et al. Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies? J. Immunother. Cancer 2020, 8, e000742. [Google Scholar] [CrossRef] [PubMed]
- Bottari, G.; Lorenzetti, G.; Severini, F.; Cappoli, A.; Cecchetti, C.; Guzzo, I. Role of Hemoperfusion With CytoSorb Associated with Continuous Kidney Replacement Therapy on Renal Outcome in Critically Ill Children with Septic Shock. Front. Pediatr. 2021, 9, 718049. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Turanzas, M.; Ensor, J.; Wakefield, C.; Zhang, K.; Wallace, S.K.; Price, K.J.; Nates, J.L. Cross-validation of a sequential organ failure assessment score-based model to predict mortality in patients with cancer admitted to the intensive care unit. J. Crit. Care 2012, 27, 673–680. [Google Scholar] [CrossRef]
- Vincent, J.L.; de Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a Multicenter, Prospective Study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- Oeyen, S.G.; Benoit, D.D.; Annemans, L.; Depuydt, P.O.; Van Belle, S.J.; Troisi, R.I.; Noens, L.A.; Pattyn, P.; Decruyenaere, J.M. Long-term outcomes and quality of life in critically ill patients with hematological or solid malignancies: A single center study. Intensive Care Med. 2013, 39, 889–898. [Google Scholar] [CrossRef]
- Lichtenstein, D.A. BLUE-protocol and FALLS-protocol: Two applications of lung ultrasound in the critically ill. Chest 2015, 147, 1659–1670. [Google Scholar] [CrossRef]
- Martin, G.S.; Bassett, P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. J. Crit. Care 2019, 50, 144–154. [Google Scholar] [CrossRef]
- Sermer, D.; Brentjens, R. CAR T-Cell Therapy: Full speed ahead. Hematol. Oncol. 2019, 37 (Suppl. S1), 95–100. [Google Scholar] [CrossRef]
- Benoit, D.D.; Depuydt, P.O.; Vandewoude, K.H.; Offner, F.C.; Boterberg, T.; De Cock, C.A.; Noens, L.A.; Janssens, A.M.; Decruyenaere, J.M. Outcome in severely ill patients with hematological malignancies who received intravenous chemotherapy in the intensive care unit. Intensive Care Med. 2006, 32, 93–99. [Google Scholar] [CrossRef]
First Author (Year) | Characteristic | Description | Conclusion | |
---|---|---|---|---|
1 | Azoulay et al. 2021 [9] | Duration Country Study design Outcome Type of CAR-T | 1 February 2018–1 February 2020 International Multicenter, observational, retrospective, and prospective The primary endpoint was 90-day mortality Not mentioned 241 patients admitted to the ICU | A significant association between the admission diagnosis and 90-day mortality, which was 22.4% (95% CI 17.1–27.7), with increased mortality in patients who had presented with sepsis, frail patients, and when they required life-saving therapy within 24 h after admission to the ICU. |
2 | Gutierrez et al. 2021 [11] | Duration Country Study design Type of CAR-T | November 2017 and May 2019 U.S. Multicenter, retrospective, cohort Axicabtagene ciloleucel 105 patients were admitted to the ICU | The high cost of CAR-T and a higher rate of ICU admissions for this patient population and additional research to identify predictors of ICU and hospital mortality are needed to inform accurate prognostication in the CAR-T cell population. |
3 | Brown et al. 2020 [8] | Duration Country Study design Outcome Type of CAR-T | November 2017 and August 2018 The U.S. Single-center, retrospective Mortality up to 60 days Axicabtagene ciloleucel 20 patients admitted to the ICU | The high cost and higher rate of ICU admission for this patient population suggest this should not be a decision-guiding factor in limiting access to treatment due to the frequent reversible nature of complications and a higher rate of hospital discharge and survival. |
4 | Melody et al. 2020 [10] | Duration Country Study design Outcome Type of CAR-T | June 2018 and June 2020 U.S Retrospective Serum ferritin and CRP levels with length of ICU stay Axicabtagene ciloleucel 13 patients admitted to the ICU | C-reactive protein (CRP) and ferritin are serum inflammatory markers associated with the onset and persistence of CAR-T cell-related toxicity. |
Baseline Characteristics | Outcomes |
---|---|
Authors Year Design of study Total patients Number of patients treated with CAR-T Age Sex Underlying malignancy Time since diagnosis of the malignancy, years Any comorbid condition Previous stem-cell transplantation (autologous/allogenic) Number of chemotherapy lines before CAR T-cell therapy Clinical diagnosis upon evaluation in the wards Frailty Type of CAR-T therapy Median time from infusion to peak Median follow-up of patients Neutropenia at ICU admission Median time from CAR T-cell infusion to death | Length of hospital stay, days Length of ICU stay, days Hospital to ICU admission, days Longer follow-up 90-day mortality across all participants 60-day mortality 30-day mortality Hospital mortality Intensive care unit mortality Number of ICU-admitted patients Readmission to the ICU within 30 days Death due to sepsis Disease-related death Treatment-related death Admission to intensive care after CAR-T infusion |
SCORES | CAR-T toxicities—CRS and ICANS |
CARTOX SCORE Frailty scores MEWS/NEWS on the ward | CRS grade CRS symptoms CRS during ICU stay Incidence of isolated CRS ICANS grade ICANS symptoms ICANS grade in the ICU ICANS during their ICU stay Incidence of isolated ICANS Incidence of CRS and ICANS |
Intensive care unit | SEPSIS |
SOFA Reasons for ICU admission (hypotension, sepsis, acute kidney injury, acute respiratory failure, coma, arrhythmias, etc.) Need for life-saving therapy at ICU admission—mechanical ventilation, vasoactive drugs, renal replacement therapy Treatment used in ICU Strategies to improve timely admission to the ICU Prognosis factors Duration of life-supporting interventions | Antibiotics used/sepsis screening microbiologically documented infection clinically suspected infection C-reactive protein concentration, mg/L Ferritin concentration, μg/L Other markers (procalcitonin, presepsin, etc.) Infections before and during ICU Citokine measurement (IL-1, IL-6, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantinescu, C.; Moisoiu, V.; Tigu, B.; Kegyes, D.; Tomuleasa, C. Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care—A Brief Overview and Meta-Analysis of Proportions. J. Clin. Med. 2023, 12, 6098. https://doi.org/10.3390/jcm12186098
Constantinescu C, Moisoiu V, Tigu B, Kegyes D, Tomuleasa C. Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care—A Brief Overview and Meta-Analysis of Proportions. Journal of Clinical Medicine. 2023; 12(18):6098. https://doi.org/10.3390/jcm12186098
Chicago/Turabian StyleConstantinescu, Catalin, Vlad Moisoiu, Bogdan Tigu, David Kegyes, and Ciprian Tomuleasa. 2023. "Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care—A Brief Overview and Meta-Analysis of Proportions" Journal of Clinical Medicine 12, no. 18: 6098. https://doi.org/10.3390/jcm12186098
APA StyleConstantinescu, C., Moisoiu, V., Tigu, B., Kegyes, D., & Tomuleasa, C. (2023). Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care—A Brief Overview and Meta-Analysis of Proportions. Journal of Clinical Medicine, 12(18), 6098. https://doi.org/10.3390/jcm12186098