Effect of High-Intensity Rosuvastatin vs. Combination of Low-Intensity Rosuvastatin and Ezetimibe on HbA1c Levels in Patients without Diabetes: A Randomized IDEAL Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Concerns
2.2. Patients
2.3. Randomization and Data Collection
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Absolute Changes in Glucose Metabolism and Lipid Profiles
3.2. Percent Changes in Glucose Metabolism and Lipid Profiles
3.3. Analyses in Pre-Defined Subgroups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.K.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; et al. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Preiss, D.; Seshasai, S.R.; Welsh, P.; Murphy, S.A.; Ho, J.E.; Waters, D.D.; DeMicco, D.A.; Barter, P.; Cannon, C.P.; Sabatine, M.S.; et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA 2011, 305, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Pradhan, A.; MacFadyen, J.G.; Libby, P.; Glynn, R.J. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: An analysis from the JUPITER trial. Lancet 2012, 380, 565–571. [Google Scholar] [CrossRef]
- Swerdlow, D.I.; Preiss, D.; Kuchenbaecker, K.B.; Holmes, M.V.; Engmann, J.E.; Shah, T.; Sofat, R.; Stender, S.; Johnson, P.C.D.; Scott, R.A.; et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: Evidence from genetic analysis and randomised trials. Lancet 2015, 385, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.J.; Jo, A.J.; Kim, Y.J.; Kang, S.H.; Cho, S.; Jo, S.H.; Park, C.Y.; Yun, S.C.; Lee, W.J.; Park, D.W. Time-and dose-dependent association of statin use with risk of clinically relevant new-onset diabetes mellitus in primary prevention: A nationwide observational cohort study. J. Am. Heart Assoc. 2019, 8, e011320. [Google Scholar] [CrossRef]
- Waters, D.D.; Ho, J.E.; Boekholdt, S.M.; DeMicco, D.A.; Kastelein, J.J.; Messig, M.; Breazna, A.; Pederson, T.R. Cardiovascular event reduction versus new-onset diabetes during atorvastatin therapy: Effect of baseline risk factors for diabetes. J. Am. Coll. Cardiol. 2013, 61, 148–152. [Google Scholar] [CrossRef]
- Bays, H.E.; Neff, D.; Tomassini, J.E.; Tershakovec, A.M. Ezetimibe: Cholesterol lowering and beyond. Expert Rev. Cardiovasc. Ther. 2008, 6, 447–470. [Google Scholar] [CrossRef]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgozoglu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy-European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Toth, P.P.; Patti, A.M.; Giglio, R.V.; Nikolic, D.; Castellino, G.; Rizzo, M.; Banach, M. Management of statin intolerance in 2018: Still more questions than answers. Am. J. Cardiovasc. Drugs 2018, 18, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Liang, C.; Kong, Q.; Wang, Y.; Li, M. Efficacy of combination therapy with ezetimibe and statins versus a double dose of statin monotherapy in participants with hypercholesterolemia: A meta-analysis of literature. Lipids Health Dis. 2020, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Hong, S.J.; Lee, Y.J.; Hong, S.J.; Yun, K.H.; Hong, B.K.; Heo, J.H.; Rha, S.W.; Cho, Y.H.; Lee, S.J.; et al. Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): A randomised, open-label, non-inferiority trial. Lancet 2022, 400, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.K.; Quon, M.J.; Han, S.H.; Chung, W.J.; Ahn, J.Y.; Seo, Y.H.; Choi, I.S.; Shin, E.K. Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment of combined hyperlipidemia. J. Am. Coll. Cardiol. 2005, 45, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.T.; Wijeysundera, H.C.; Jackevicius, C.A.; Yousef, A.; Wang, J.; Tu, J.V. Diabetes mellitus and cardiovascular events in older patients with myocardial infarction prescribed intensive-dose and moderate-dose statins. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 315–322. [Google Scholar] [CrossRef]
- Nakamura, S.; Takamura, T.; Matsuzawa-Nagata, N.; Takayama, H.; Misu, H.; Noda, H.; Nabemoto, S.; Kurita, S.; Ota, T.; Ando, H.; et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 2009, 29, 14809–14818. [Google Scholar] [CrossRef]
- Takeshita, Y.; Takamura, T.; Honda, M.; Kita, Y.; Zen, Y.; Kato, K.; Misu, H.; Ota, T.; Nakamura, M.; Yamada, K.; et al. The effects of ezetimibe on non-alcoholic fatty liver disease and glucose metabolism: A randomised controlled trial. Diabetologia 2014, 57, 878–890. [Google Scholar] [CrossRef]
- Lotta, L.A.; Sharp, S.J.; Burgess, S.; Perry, J.R.B.; Stewart, I.D.; Willems, S.M.; Luan, J.; Ardanaz, E.; Arriola, L.; Balkau, B.; et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: A meta-analysis. JAMA 2016, 316, 1383–1391. [Google Scholar] [CrossRef]
- Shin, K.H.; Choi, H.D. Comparison of efficacy and safety of statin-ezetimibe combination therapy with statin monotherapy in patients with diabetes: A meta-analysis of randomized controlled studies. Am. J. Cardiovasc. Drugs 2022, 22, 395–406. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Cannon, C.P.; Blazing, M.A.; Nicolau, J.C.; Corbalán, R.; Špinar, J.; Park, J.G.; White, J.A.; Bohula, E.A.; Braunwald, E.; et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: Results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2018, 137, 1571–1582. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Zhai, G.; Guo, L.; Tian, Z.; Zhang, S. Effect of high-dose statin versus low-dose statin plus ezetimibe on endothelial function: A meta-analysis of randomized trials. J. Cardiovasc. Pharmacol. Ther. 2012, 17, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Westerink, J.; Deanfield, J.E.; Imholz, B.P.; Spiering, W.; Basart, D.C.; Coll, B.; Kastelein, J.J.P.; Visseren, F.L.J. High-dose statin monotherapy versus low-dose statin/ezetimibe combination on fasting and postprandial lipids and endothelial function in obese patients with the metabolic syndrome: The PANACEA study. Atherosclerosis 2013, 227, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Piorkowski, M.; Fischer, S.; Stellbaum, C.; Jaster, M.; Martus, P.; Morguet, A.J.; Schultheiss, H.P.; Rauch, U. Treatment with ezetimibe plus low-dose atorvastatin compared with higher-dose atorvastatin alone: Is sufficient cholesterol-lowering enough to inhibit platelets? J. Am. Coll. Cardiol. 2007, 49, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Barter, P.J.; Brandrup-Wognsen, G.; Palmer, M.K.; Nicholls, S.J. Effect of statins on HDL-C: A complex process unrelated to changes in LDL-C: Analysis of the VOYAGER Database. J. Lipid Res. 2010, 51, 1546–1553. [Google Scholar] [CrossRef]
- Sattar, N.; Taskinen, M.R. Statins are diabetogenic—Myth or reality? Atheroscler. Suppl. 2012, 13, 1–10. [Google Scholar] [CrossRef]
- Baker, W.L.; Talati, R.; White, C.M.; Coleman, C.I. Differing effect of statins on insulin sensitivity in non-diabetics: A systematic review and meta-analysis. Diabetes. Res. Clin. Pract. 2010, 87, 98–107. [Google Scholar] [CrossRef]
- Yang, G.; Schooling, C.M. Statins, type 2 diabetes, and body mass index: A univariable and multivariable Mendelian randomization study. J. Clin. Endocrinol. Metab. 2023, 108, 385–396. [Google Scholar] [CrossRef]
- Goodarzi, M.O.; Li, X.; Krauss, R.M.; Rotter, J.I.; Chen, Y.D. Relationship of sex to diabetes risk in statin trials. Diabetes Care 2013, 36, e100–e101. [Google Scholar] [CrossRef]
- Chen, C.W.; Chen, T.C.; Huang, K.Y.; Chou, P.; Chen, P.F.; Lee, C.C. Differential impact of statin on new-onset diabetes in different age groups: A population-based case-control study in women from an Asian country. PLoS ONE 2013, 8, e71817. [Google Scholar] [CrossRef]
- Agarwala, A.; Kulkarni, S.; Maddox, T. The association of statin therapy with incident diabetes: Evidence, mechanisms, and recommendations. Curr. Cardiol. Rep. 2018, 20, 50. [Google Scholar] [CrossRef]
Treatment Received | ||||
---|---|---|---|---|
Variable | Overall, N = 68 | Rosu20, n = 35 | Rosu5 + Ezet10, n = 33 | p-Value * |
Age, years | 62 ± 12 | 63 ± 12 | 61 ± 12 | 0.33 |
Sex, male | 52 (76) | 25 (71) | 27 (82) | 0.40 |
Body mass index, kg/m2 | 25.6 ± 3.1 | 26.1 ± 3.5 | 25 ± 2.5 | 0.11 |
Hypertension | 33 (49) | 19 (54) | 14 (42) | 0.33 |
Current smokers | 18 (26) | 8 (23) | 10 (30) | 0.49 |
Indications for statin therapy | 0.87 | |||
High coronary calcium score | 25 (37) | 13 (37) | 12 (36) | |
Atherosclerosis | 20 (29.5) | 10 (28.9) | 10 (30) | |
Concurrent hs-CRP elevation | 15 (22) | 9 (26) | 6 (18) | |
Persistent LDL-C elevation | 8 (11.5) | 3 (8.6) | 5 (15) | |
Initial laboratory findings | ||||
White blood cells, 109/L | 7.65 ± 2.84 | 7.48 ± 2.78 | 7.83 ± 2.93 | 0.62 |
Hemoglobin, g/dL | 13.8 ± 1.4 | 13.6 ± 1.3 | 13.9 ± 1.4 | 0.34 |
Platelet, 103/µL | 224 ± 52 | 225 ± 57 | 222 ± 47 | 0.84 |
Alanine transaminase, IU/L | 27 ± 18 | 27 ± 17 | 26 ± 18 | 0.74 |
Creatinine, mg/dL | 1.03 ± 1.15 | 1.17 ± 1.59 | 0.87 ± 0.15 | 0.86 |
Medication | ||||
Aspirin | 28 (30) | 14 (40) | 14 (42) | 0.99 |
ACE inhibitor | 19 (28) | 12 (34) | 7 (21) | 0.23 |
ARB | 24 (36) | 14 (40) | 10 (31) | 0.46 |
Spironolactone | 9 (13) | 6 (17) | 3 (9.4) | 0.48 |
Baseline glucose metabolisms | ||||
HbA1c, % | 5.78 ± 0.30 | 5.8 ± 0.31 | 5.83 ± 0.07 | 0.664 |
Glucose, mg/dL | 124 ± 32 | 122 ± 24 | 137 ± 4 | 0.228 |
Insulin, µU/mL | 9.3 ± 5.3 | 9.9 ± 6.3 | 9.9 ± 1.6 | 0.891 |
QUICKI | 1.39 ± 0.29 | 1.41 ± 0.23 | 1.40 ± 0.05 | 0.985 |
Baseline lipid profiles | ||||
LDL cholesterol, mg/dL | 115.4 ± 37.7 | 114.6 ± 36.1 | 116.3 ± 39.9 | 0.515 |
HDL cholesterol, mg/dL | 47.3 ± 11.4 | 45 ± 11.9 | 49.9 ± 10.6 | 0.059 |
Triglyceride, mg/dL | 139.8 ± 70.4 | 153 ± 77.7 | 126 ± 59.6 | 0.088 |
hs-CRP, ng/dL | 0.588 ± 2.81 | 0.247 ± 0.398 | 0.949 ± 4.013 | 0.111 |
Outcomes | Rosu20, n = 35 | Rosu5 + Ezet10, n = 33 | p | |||
---|---|---|---|---|---|---|
LS Mean ± SE * | Mean ± SD | LS Mean ± SE * | Mean ± SD | LS Mean Difference (95% CI) | ||
6 weeks | ||||||
HbA1c, % | 5.97 ± 0.07 | 5.85 ± 0.4 | 5.85 ± 0.07 | 5.74 ± 0.33 | 0.114 (−0.051–0.278) | 0.174 |
Glucose, mg/dL | 106 ± 4 | 104 ± 8 | 108 ± 4 | 105 ± 11.6 | −1.967 (−11.56–7.63) | 0.683 |
Insulin, µU/mL | 13.3 ± 1.6 | 12.4 ± 5.7 | 14.2 ± 1.6 | 11.7 ± 9.7 | −0.871 (−4.64–2.90) | 0.646 |
QUICKI | 1.56 ± 0.05 | 1.54 ± 0.2 | 1.54 ± 0.05 | 1.47 ± 0.27 | 0.026 (−0.085–0.136) | 0.645 |
12 weeks | ||||||
HbA1c, % | 5.96 ± 0.07 | 5.9 ± 0.4 | 5.96 ± 0.07 | 5.86 ± 0.31 | 0.018 (−0.164–0.165) | 0.999 |
Glucose, mg/dL | 105 ± 4 | 103 ± 8.8 | 106 ± 4 | 105 ± 13 | −0.284 (−9.94–9.37) | 0.953 |
Insulin, µU/mL | 13.4 ± 1.6 | 14.0 ± 10.2 | 10.9 ± 1.6 | 11.8 ± 9.1 | 2.510 (−1.23–6.25) | 0.185 |
QUICKI | 1.55 ± 0.05 | 1.57 ± 0.24 | 1.48 ± 0.05 | 1.49 ± 0.25 | 0.049 (−0.036–0.184) | 0.184 |
Outcomes | Rosu20, n = 35 | Rosu5Ezet10, n = 33 | p | |||
---|---|---|---|---|---|---|
LS Mean ± SE * | Mean ± SD | LS Mean ± SE * | Mean ± SD | LS Mean Difference, 95% CI | ||
6 weeks | ||||||
LDL cholesterol, mg/dL | 61.4 ± 5.93 | 59.1 ± 14.9 | 63.6 ± 6.2 | 60.6 ± 30 | −2.13 (−16.4–12.14) | 0.766 |
HDL cholesterol, mg/dL | 49.1 ± 2.2 | 47.3 ± 10.2 | 51.5 ± 2.3 | 50.2 ± 11 | −2.46 (−7.79–2.863) | 0.359 |
Triglyceride, mg/dL | 125 ± 13.6 | 109 ± 41.1 | 128 ± 14.3 | 112 ± 68.1 | −2.95 (−35.70–29.8) | 0.858 |
12 weeks | ||||||
LDL cholesterol, mg/dL | 64.5 ± 5.9 | 61.5 ± 16.4 | 70.7 ± 6.2 | 66.3 ± 29.8 | −6.16 (−20.4–8.12) | 0.392 |
HDL cholesterol, mg/dL | 50.2 ± 2.2 | 49.2 ± 10 | 52.7 ± 2.3 | 52.3 ± 10.4 | −2.42 (−7.74–2.905) | 0.367 |
Triglyceride, mg/dL | 126 ± 13.6 | 122 ± 43.6 | 128 ± 14.3 | 119 ± 99.5 | −2.29 (−35.04–30.5) | 0.890 |
hs-CRP, ng/dL | 0.106 ± 0.419 | 0.167 ± 0.253 | 0.177 ± 0.439 | 0.24 ± 0.722 | −0.071 (−1.08–0.937) | 0.890 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choe, J.; Lee, S.-H.; Ahn, J.; Lee, H.; Oh, J.-H.; Choi, J.; Lee, H.; Cha, K.; Park, J. Effect of High-Intensity Rosuvastatin vs. Combination of Low-Intensity Rosuvastatin and Ezetimibe on HbA1c Levels in Patients without Diabetes: A Randomized IDEAL Trial. J. Clin. Med. 2023, 12, 6099. https://doi.org/10.3390/jcm12186099
Choe J, Lee S-H, Ahn J, Lee H, Oh J-H, Choi J, Lee H, Cha K, Park J. Effect of High-Intensity Rosuvastatin vs. Combination of Low-Intensity Rosuvastatin and Ezetimibe on HbA1c Levels in Patients without Diabetes: A Randomized IDEAL Trial. Journal of Clinical Medicine. 2023; 12(18):6099. https://doi.org/10.3390/jcm12186099
Chicago/Turabian StyleChoe, Jeongcheon, Sun-Hack Lee, Jinhee Ahn, Hyewon Lee, Jun-Hyok Oh, Junghyun Choi, Hancheol Lee, Kwangsoo Cha, and Jinsup Park. 2023. "Effect of High-Intensity Rosuvastatin vs. Combination of Low-Intensity Rosuvastatin and Ezetimibe on HbA1c Levels in Patients without Diabetes: A Randomized IDEAL Trial" Journal of Clinical Medicine 12, no. 18: 6099. https://doi.org/10.3390/jcm12186099
APA StyleChoe, J., Lee, S.-H., Ahn, J., Lee, H., Oh, J.-H., Choi, J., Lee, H., Cha, K., & Park, J. (2023). Effect of High-Intensity Rosuvastatin vs. Combination of Low-Intensity Rosuvastatin and Ezetimibe on HbA1c Levels in Patients without Diabetes: A Randomized IDEAL Trial. Journal of Clinical Medicine, 12(18), 6099. https://doi.org/10.3390/jcm12186099