Serum YKL-40 Levels, Leukocyte Profiles, and Acute Exacerbations of Advanced COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Measurements
2.3. Statistical Analysis
3. Results
3.1. Serum Parameters by COPD Stage (Severity)
3.2. Variables Associated with High YKL-40 Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olortegui-Rodriguez, J.J.; Soriano-Moreno, D.R.; Benites-Bullón, A.; Pelayo-Luis, P.P.; Huaringa-Marcelo, J. Prevalence and incidence of chronic obstructive pulmonary disease in Latin America and the Caribbean: A systematic review and meta-analysis. BMC Pulm. Med. 2022, 22, 273. [Google Scholar] [CrossRef]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.; Heris, J.A.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.A.; et al. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef]
- Cannavo, M.F.; Coppolino, I.; Monaco, F.; Caramori, G. Overview of Current Management of COPD. In Encyclopedia of Respiratory Medicine, 2nd ed.; Janes, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 2, pp. 631–641. [Google Scholar] [CrossRef]
- Crisafulli, E.; Barbeta, E.; Ielpo, A.; Torres, A. Management of severe acute exacerbations of COPD: An updated narrative review. Multidiscip. Respir. Med. 2018, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Bove, D.G.; Lomborg, K.; Jensen, A.K.; Overgaard, D.; Lindhardt, B.Ø.; Midtgaard, J. Efficacy of a minimal home-based psychoeducative intervention in patients with advanced COPD: A randomised controlled trial. Respir. Med. 2016, 121, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Halpin, D.M.G. Clinical Features and Diagnosis of COPD. In Encyclopedia of Respiratory Medicine, 2nd ed.; Janes, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 2, pp. 621–630. [Google Scholar] [CrossRef]
- Lai, T.; Wu, D.; Chen, M.; Cao, C.; Jing, Z.; Huang, L.; Lv, Y.; Zhao, X.; Lv, Q.; Eang, Y.; et al. YKL-40 expression in chronic obstructive pulmonary disease: Relation to acute exacerbations and airway remodeling. Respir. Res. 2016, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Wang, D.; Liu, S.; Ma, Y.; Li, Z.; Tian, P.; Fan, H. The YKL-40 protein is a potential biomarker for COPD: A meta-analysis and systematic review. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 409. [Google Scholar] [CrossRef]
- Laisure, M.; Covill, N.; Ostroff, M.L.; Ostroff, J.L. Summarizing the 2021 updated GOLD guidelines for COPD. US Pharm. 2021, 46, 30–35. [Google Scholar]
- Ramakrishnan, S.; Bafadhel, M. Biomarkers in COPD. In Encyclopedia of Respiratory Medicine, 2nd ed.; Janes, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 2, pp. 559–572. [Google Scholar] [CrossRef]
- Gon, Y.; Maruoka, S.; Ito, R.; Mizumura, K.; Kozu, Y.; Hiranuma, H.; Hattori, T.; Takahashi, M.; Hikichi, M.; Hashimoto, S. Utility of serum YKL-40 levels for identification of patients with asthma and COPD. Allergol. Int. 2017, 66, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Hirai, K.; Gon, Y.; Maruoka, S.; Mizumura, K.; Hikichi, M.; Hashimoto, S. Combined assessment of serum periostin and YKL-40 may identify asthma-COPD overlap. J. Allergy Clin. Immunol. Pract. 2019, 7, 134–145. [Google Scholar] [CrossRef]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Moldovan, S.D.; Pilat, L.; Nica, D.V.; Pușchiță, M. Serum YKL-40 Levels in Patients with Asthma or COPD: A Pilot Study. Medicina 2023, 59, 383. [Google Scholar] [CrossRef]
- James, A.J.; Reinius, L.E.; Verhoek, M.; Gomes, A.; Kupczyk, M.; Hammar, U.; Ono, J.; Ohta, S.; Izuhara, K.; Bel, E.; et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2016, 193, 131–142. [Google Scholar] [CrossRef]
- Peng, J.; Yu, Q.; Fan, S.; Chen, X.; Tang, R.; Wang, D.; Qi, D. High blood eosinophil and YKL-40 levels, as well as low CXCL9 levels, are associated with increased readmission in patients with acute exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Holmgaard, D.B.; Mygind, L.H.; Titlestad, I.L.; Madsen, H.; Pedersen, S.S.; Johansen, J.S.; Pedersen, C. Plasma YKL-40 and all-cause mortality in patients with chronic obstructive pulmonary disease. BMC Pulm. Med. 2013, 13, 77. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.K.; Kang, H.K.; Song, P.; Park, H.K.; Lee, S.S.; Jung, H. Systemic white blood cell count as a biomarker associated with severity of chronic obstructive lung disease. Tuberc. Respir. Dis. 2017, 80, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Xu, M.; Zhao, Y.; Wu, X.; Pudasaini, B.; Liu, J.M. Can we predict the prognosis of COPD with a routine blood test? Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 615–625. [Google Scholar] [CrossRef]
- Aksoy, E.; Karakurt, Z.; Gungor, S.; Ocakli, B.; Ozmen, İ.; Yildirim, E.; Tuncay, E.; Agca, M.C.; Goksenoglu, N.C.; Adigüzel, N. Neutrophil to lymphocyte ratio is a better indicator of COPD exacerbation severity in neutrophilic endotypes than eosinophilic endotypes. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2721–2730. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A.A. The Emerging Clinical Significance of the Red Cell Distribution Width as a Biomarker in Chronic Obstructive Pulmonary Disease: A Systematic Review. J. Clin. Med. 2022, 11, 5642. [Google Scholar] [CrossRef]
- Cui, X.J.; Xie, B.; Zhu, K.W.; Liao, Q.Q.; Zhou, J.C.; Du, S.; Liu, X.X.; Chen, Z.J.; Yang, Y.; Yi, X. Evaluation of the prognostic value of the platelet, neutrophil, monocyte, basophil, and eosinophil to lymphocyte ratios. Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Arad County Clincial Hospital. Available online: https://en.wikipedia.org/wiki/Arad_County_Clinical_Hospital (accessed on 9 September 2023).
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2023. Available online: https://goldcopd.org/wp-content/uploads/2023/03/GOLD-2023-ver-1.3-17Feb2023_WMV.pdf (accessed on 11 September 2023).
- CHI3L1 Research Reagents. Available online: www.cusabio.com/target/CHI3L1.html (accessed on 10 August 2023).
- Gicquel, S.; Marion-Gallois, R. Randomization with a posteriori constraints: Description and properties. Stat. Med. 2007, 26, 5033–5045. [Google Scholar] [CrossRef]
- Sim, J.; Lewis, M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J. Clin. Epidemiol. 2012, 65, 301–308. [Google Scholar] [CrossRef]
- Laniado-Laborín, R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century. Int. J. Environ. Res. Public Health 2000, 6, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Kurashima, K.; Takaku, Y.; Ohta, C.; Takayanagi, N.; Yanagisawa, T.; Kanauchi, T.; Takahashi, O. Smoking history and emphysema in asthma—COPD overlap. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 3523. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.A.; Tamminga, A.; Lobb, B.; Huff, R.D.; Nguyen, J.P.; Kim, Y.; Dvorkin-Gheva, A.; Doxey, A.C.; Hirota, J.A. The impact of cigarette smoke exposure, COPD, or asthma status on ABC transporter gene expression in human airway epithelial cells. Sci. Rep. 2019, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Bello, C. Smoking in Europe: Which Countries are the Most and Least Addicted to Tobacco and Vaping? May 2023. Available online: www.euronews.com/next/2023/04/11/smoking-in-europe-which-countries-are-the-most-and-least-addicted-to-tobacco-and-vaping (accessed on 6 August 2023).
- Halpin, D.M.G.; Vogelmeier, C.F.; Agusti, A. Lung health for all: Chronic obstructive lung disease and World Lung Day 2022. Am. J. Respir. Crit. 2022, 206, 669–671. [Google Scholar] [CrossRef]
- Gan, W.Q.; Man, S.F.P.; Senthilselvan, A.; Sin, D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef]
- Fattouh, M.; Alkady, O. Inflammatory biomarkers in chronic obstructive pulmonary disease. Egypt J. Chest. Dis. Tuberc. 2014, 63, 799–804. [Google Scholar] [CrossRef]
- Moon, S.W.; Leem, A.Y.; Kim, Y.S.; Lee, J.H.; Kim, T.H.; Oh, Y.M.; Shin, H.; Chang, J.; Jung, J.Y.; KoLD Study Group. Low serum lymphocyte level is associated with poor exercise capacity and quality of life in chronic obstructive pulmonary disease. Sci. Rep. 2021, 10, 11700. [Google Scholar] [CrossRef]
- Hu, Y.; Long, H.; Cao, Y.; Guo, Y. Prognostic value of lymphocyte count for in-hospital mortality in patients with severe AECOPD. BMC Pulm. Med. 2022, 22, 376. [Google Scholar] [CrossRef]
- Driscoll, K.E.; Carter, J.M.; Hassenbein, D.G.; Howard, B. Cytokines and particle-induced inflammatory cell recruitment. Environ. Health Perspect. 1997, 105, 1159–1164. [Google Scholar] [CrossRef]
- Selders, G.S.; Fetz, A.E.; Radic, M.Z.; Bowlin, G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater. 2017, 4, 55–68. [Google Scholar] [CrossRef]
- Clarke, S.; Barnes, P. Inflammatory and Immune Mechanisms in COPD. In Encyclopedia of Respiratory Medicine, 2nd ed.; Janes, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 2, pp. 549–558. [Google Scholar] [CrossRef]
- Ju, J. An increased proportion of apoptosis in CD4+ T lymphocytes isolated from the peripheral blood in patients with stable chronic obstructive pulmonary disease. Tuberc. Respir. Dis. 2018, 81, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Ai, X.; Liao, Z.; You, C.; Cheng, Y. The prognostic values of neutrophil to lymphocyte ratio for outcomes in chronic obstructive pulmonary disease. Medicine 2019, 98, e16371. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Rad, M.H.; Asgari, B.; Hosseinzadeh, N.; Eishi, A. Eosinopenia as a marker of outcome in acute exacerbations of chronic obstructive pulmonary disease. Maedica 2015, 10, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Ruiying, W.; Jianying, X. Clinical features and three-year prognosis of AECOPD patients with different levels of blood eosinophils. Heart Lung 2022, 56, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, X.; Liu, Y.; Zhang, L.; Zheng, J.; Wang, J.; Hansbro, P.M.; Wang, L.; Wang, G.; Hsu, A.C.Y. Chitinase-like protein YKL-40 correlates with inflammatory phenotypes, anti-asthma responsiveness and future exacerbations. Respir. Res. 2019, 20, 95. [Google Scholar] [CrossRef]
- Libreros, S.; Iragavarapu-Charyulu, V. YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J. Leukoc. Biol. 2015, 98, 931–936. [Google Scholar] [CrossRef]
- Jogdand, P.; Siddhuraj, P.; Mori, M.; Sanden, C.; Jönsson, J.; Walls, A.F.; Kearley, J.; Humbles, A.A.; Kolbeck, R.; Bjemer, L.; et al. Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue. Eur. Respir. J. 2020, 55, 1900110. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Santos, A.F.; Alpan, O.; Hoffmann, H.J. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy 2021, 76, 2420–2432. [Google Scholar] [CrossRef]
- Oishi, K.; Matsunaga, K.; Shirai, T.; Hirai, K.; Gon, Y. Role of type2 inflammatory biomarkers in chronic obstructive pulmonary disease. J. Clin. Med. 2020, 9, 2670. [Google Scholar] [CrossRef]
- Hirano, T.; Matsunaga, K. Measurement of blood eosinophils in asthma and chronic obstructive pulmonary disease. Intern. Med. 2023, 62, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Sivapalan, P.; Bikov, A.; Jensen, J.U. Using Blood Eosinophil Count as a Biomarker to Guide Corticosteroid Treatment for Chronic Obstructive Pulmonary Disease. Diagnostic 2021, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A. Basic Statistics and Epidemiology: A Practical Guide, 4th ed.; CRC Press: London, UK, 2016; pp. 80–156. [Google Scholar] [CrossRef]
- Baker, J.R.; Donnelly, L.E. Leukocyte function in COPD: Clinical relevance and potential for drug therapy. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2227–2242. [Google Scholar] [CrossRef]
- Hansel, N.N.; Washko, G.R.; Foreman, M.G.; Han, M.K.; Hoffman, E.A.; DeMeo, D.L.; Graham, B.R.; Van Beek, E.J.R.; Kazerooni, E.A.; Wise, R.A. Racial differences in CT phenotypes in COPD. COPD J. Chronic. Obstr. Pulm. Dis. 2013, 10, 20–27. [Google Scholar] [CrossRef] [PubMed]
COPD Stage | Age | Sex | Smoking Status | ||
---|---|---|---|---|---|
Male | Female | Ever Smoker | Never Smoker | ||
Severe COPD | 66 (61; 72) | 15 (65.21%) | 8 (34.79%) | 21 (91.30%) | 2 (8.70%) |
Very severe COPD | 66.5 (57; 70) | 17 (70.84%) | 7 (29.16%) | 22 (91.67%) | 2 (8.33%) |
Characteristic | Severe COPD (n = 23) | Very Severe COPD (n = 24) | Reference Range |
---|---|---|---|
YKL–40 | 3960.5 (3027.5; 4947.25) | 3925.5 (2924.25; 4904.5) | |
ALLC (103 cells/μL) | 11.36 (9.34; 14.31) | 9.35 (7.38; 11.77) | 1–4 |
ANC (103 cells/μL) | 8.49 (6.71; 10.49) | 7.13 (4.93; 8.41) | 2–8 |
Neutrophil percentage (%) | 71 (62.7; 81) | 70.1 (65.4; 79.5) | 45–80 |
ALC (103 cells/μL) | 1.75 (1.05; 2.91) | 1.54 (0.94; 2.04) | 4–10 |
Lymphocyte percentage (%) | 17 (10.6; 20.9) | 17.3 (11.05; 23.55) | 20–55 |
NLR | 3.99 (2.56; 7.94) | 3.90 (2.90; 7.35) | |
AEC (103 cells/μL) | 0.12 (0.02; 0.27) | 0.10 (0.03; 0.19) | 0.05–0.7 |
Eosinophil percentage (%) | 1.4 (0.2; 2.1) | 1.0 (0.35; 1.65) | 0–7 |
AMC (103 cells/μL) | 1.05 (0.71; 1.30) | 0.85 (0.58; 0.97) | 0.3–1 |
Monocyte percentage (%) | 7.70 (6.50; 10.70) | 8.25 (6.55; 10.35) | 0–15 |
ABC (103 cells/μL) | 0.04 (0.01; 0.08) | 0.04 (0.02; 0.06) | 0–0.2 |
Basophil percentage (%) | 0.4 (0.1; 0.7) | 0.4 (0.2; 0.6) | 0–2 |
Hemoglobin (g/dL) | 13.5 (12; 14.2) | 14.10 (12.4; 15.55) | 12.6–17.4 |
Hematocrit (%) | 41.6 (38.5; 43.6) | 43.95 (37.8; 49) | 37–51 |
Characteristic | Low YKL-40 Patients (n = 24) | High YKL-40 Patients (n = 23) |
---|---|---|
ALLC (103 cells/μL) | 10.81 (8.05; 13.04) | 10.57 (8.16; 13.71) |
ANC (103 cells/μL) | 7.25 (5.25; 8.70) | 7.91 (5.79; 10.81) |
AMC (103 cells/μL) | 0.87 (0.70; 1.08) | 0.80 (0.63; 1.04) |
Monocyte percentage (%) | 8.10 (6.70; 9.65) | 7.70 (6.10; 12.70) |
Hemoglobin (g/dL) | 14.05 (12.75; 15.25) | 13.50 (12.10; 14.20) |
Hematocrit (%) | 43.40 (38.00; 42.75) | 42.20 (38.30; 44.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Rus, L.A.; Vîlcea, A.; Nica, D.V.; Pușchiță, M. Serum YKL-40 Levels, Leukocyte Profiles, and Acute Exacerbations of Advanced COPD. J. Clin. Med. 2023, 12, 6106. https://doi.org/10.3390/jcm12186106
Popețiu RO, Donath-Miklos I, Borta SM, Rus LA, Vîlcea A, Nica DV, Pușchiță M. Serum YKL-40 Levels, Leukocyte Profiles, and Acute Exacerbations of Advanced COPD. Journal of Clinical Medicine. 2023; 12(18):6106. https://doi.org/10.3390/jcm12186106
Chicago/Turabian StylePopețiu, Romana Olivia, Imola Donath-Miklos, Simona Maria Borta, Larisa Alexandra Rus, Anamaria Vîlcea, Dragoș Vasile Nica, and Maria Pușchiță. 2023. "Serum YKL-40 Levels, Leukocyte Profiles, and Acute Exacerbations of Advanced COPD" Journal of Clinical Medicine 12, no. 18: 6106. https://doi.org/10.3390/jcm12186106
APA StylePopețiu, R. O., Donath-Miklos, I., Borta, S. M., Rus, L. A., Vîlcea, A., Nica, D. V., & Pușchiță, M. (2023). Serum YKL-40 Levels, Leukocyte Profiles, and Acute Exacerbations of Advanced COPD. Journal of Clinical Medicine, 12(18), 6106. https://doi.org/10.3390/jcm12186106