A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
- Patients who were at least 18 years of age.
- Patients who were admitted to the ICU with a Polymerase Chain Reaction (PCR)-confirmed COVID-19 infection.
- Patients or their legal representatives gave informed consent for inclusion and PAXgene Blood RNA whole blood draw, as well as analysis and shipment of their sample to Inflammatix Inc., Sunnyvale, CA, USA.
2.3. Data Collection
2.4. Primary Outcome
2.5. PAXgene Collection and Amplification of Target Genes
2.6. The IMX-SEV-3b Classifier
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. World Health Organization. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 16 March 2023).
- Wang, H.; Paulson, K.R.; Pease, S.A.; Watson, S.; Comfort, H.; Zheng, P.; Aravkin, A.Y.; Bisignano, C.; Barber, R.M.; Alam, T.; et al. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Network C-IGobotR, the C-ICUI. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef]
- Torres Acosta, M.A.; Singer, B.D. Pathogenesis of COVID-19-induced ARDS: Implications for an ageing population. Eur. Respir. J. 2020, 56, 2002049. [Google Scholar] [CrossRef]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Grasselli, G.; Cattaneo, E.; Florio, G.; Ippolito, M.; Zanella, A.; Cortegiani, A.; Huang, J.; Pesenti, A.; Einav, S. Mechanical ventilation parameters in critically ill COVID-19 patients: A scoping review. Crit. Care 2021, 25, 115. [Google Scholar] [CrossRef]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.-C.; Sun, W.-Z. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes—A systematic review and meta-analysis. PLoS ONE 2021, 16, e0246318. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Karimi, A.; Shobeiri, P.; Kulasinghe, A.; Rezaei, N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021, 12, 741061. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S.; Lafon, T.; Jacquin, L.; Lefevre, B.; Kimmoun, A.; Guillaumot, A.; Losser, M.-R.; Douplat, M.; Argaud, L.; De Ciancio, G.; et al. Soluble TREM-1 plasma concentration predicts poor outcome in COVID-19 patients. Intensive Care Med. Exp. 2023, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Narvel, H.; Sayed, A.; Narvel, N.; Yakkali, S.; Katchi, T. Do Certain Biomarkers Predict Adverse Out-Comes in Coronavirus Disease 2019? J. Clin. Med. Res. 2021, 13, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid.-Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; James, A.; Doumlele, K.; White, S.; Twardzik, W.; Zahid, K.; Sattar, Z.; Ukponmwan, O.; Nakeshbandi, M.; Chow, L.; et al. Procalcitonin Levels in COVID-19 Patients Are Strongly Associated with Mortality and ICU Acceptance in an Underserved, Inner City Population. Medicina 2021, 57, 1070. [Google Scholar] [CrossRef]
- Zhang, W.; Sang, L.; Shi, J.; Zhong, M.; Jiang, L.; Song, B.; Kang, L.; Zhang, Y.; Zhang, D.; Yu, Y.; et al. Association of D-dimer elevation with inflammation and organ dysfunction in ICU patients with COVID-19 in Wuhan, China: A retrospective observational study. Aging 2021, 13, 4794–4810. [Google Scholar] [CrossRef]
- Gorham, J.; Moreau, A.; Corazza, F.; Peluso, L.; Ponthieux, F.; Talamonti, M.; Izzi, A.; Nagant, C.; Djangang, N.N.; Garufi, A.; et al. Interleukine-6 in critically ill COVID-19 patients: A retrospective analysis. PLoS ONE 2020, 15, e0244628. [Google Scholar] [CrossRef]
- Knight, S.R.; Ho, A.; Pius, R.; Buchan, I.; Carson, G.; Drake, T.M.; Dunning, J.; Fairfield, C.J.; Gamble, C.; Green, C.A.; et al. Risk stratification of patients admitted to hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Development and validation of the 4C Mortality Score. BMJ 2020, 370, m3339. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef]
- Doganay, F.; Ak, R. Performance of the CURB-65, ISARIC-4C and COVID-GRAM scores in terms of severity for COVID-19 patients. Int. J. Clin. Pract. 2021, 75, e14759. [Google Scholar] [CrossRef] [PubMed]
- Vandenbrande, J.; Verbrugge, L.; Bruckers, L.; Geebelen, L.; Geerts, E.; Callebaut, I.; Gruyters, I.; Heremans, L.; Dubois, J.; Stessel, B. Validation of the Acute Physiology and Chronic Health Evaluation (APACHE) II and IV Score in COVID-19 Patients. Crit. Care Res. Pract. 2021, 2021, 5443083. [Google Scholar] [CrossRef] [PubMed]
- Beigmohammadi, M.T.; Amoozadeh, L.; Motlagh, F.R.; Rahimi, M.; Maghsoudloo, M.; Jafarnejad, B.; Eslami, B.; Salehi, M.R.; Zendehdel, K. Mortality Predictive Value of APACHE II and SOFA Scores in COVID-19 Patients in the Intensive Care Unit. Can. Respir. J. 2022, 2022, 5129314. [Google Scholar] [CrossRef] [PubMed]
- Kukoč, A.; Mihelčić, A.; Miko, I.; Romić, A.; Pražetina, M.; Tipura, D.; Drmić, Ž.; Čučković, M.; Ćurčić, M.; Blagaj, V.; et al. Clinical and laboratory predictors at ICU admission affecting course of illness and mortality rates in a tertiary COVID-19 center. Heart Lung 2022, 53, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Scicluna, B.P.; van Vught, L.A.; Zwinderman, A.H.; Wiewel, M.A.; Davenport, E.E.; Burnham, K.L.; Nurnberg, P.; Schultz, M.J.; Horn, J.; Cremer, O.L.; et al. Classification of patients with sepsis according to blood genomic endotype: A prospective cohort study. Lancet Respir. Med. 2017, 5, 816–826. [Google Scholar] [CrossRef]
- Davenport, E.E.; Burnham, K.L.; Radhakrishnan, J.; Humburg, P.; Hutton, P.; Mills, T.C.; Rautanen, A.; Gordon, A.C.; Garrard, C.; Hill, A.V.S.; et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. Lancet Respir. Med. 2016, 4, 259–271. [Google Scholar] [CrossRef]
- Chen, I.C.; Chen, H.H.; Jiang, Y.H.; Hsiao, T.H.; Ko, T.M.; Chao, W.C. Whole transcriptome analysis to explore the impaired immunological features in critically ill elderly patients with sepsis. J. Transl. Med. 2023, 21, 141. [Google Scholar] [CrossRef]
- Mayhew, M.B.; Buturovic, L.; Luethy, R.; Midic, U.; Moore, A.R.; Roque, J.A.; Shaller, B.D.; Asuni, T.; Rawling, D.; Remmel, M.; et al. A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections. Nat. Commun. 2020, 11, 1177. [Google Scholar] [CrossRef]
- Galtung, N.; Diehl-Wiesenecker, E.; Lehmann, D.; Markmann, N.; Bergström, W.H.; Wacker, J.; Liesenfeld, O.; Mayhew, M.; Buturovic, L.; Luethy, R.; et al. Prospective validation of a transcriptomic severity classifier among patients with suspected acute infection and sepsis in the emergency department. Eur. J. Emerg. Med. 2022, 29, 357–365. [Google Scholar] [CrossRef]
- Brakenridge, S.C.; Chen, U.I.; Loftus, T.; Ungaro, R.; Dirain, M.; Kerr, A.; Zhong, L.; Bacher, R.; Starostik, P.; Ghita, G.; et al. Evaluation of a Multivalent Transcriptomic Metric for Diagnosing Surgical Sepsis and Estimating Mortality among Critically Ill Patients. JAMA Netw. Open 2022, 5, e2221520. [Google Scholar] [CrossRef]
- Meijs, D.A.; van Kuijk, S.M.; Wynants, L.; Stessel, B.; Mehagnoul-Schipper, J.; Hana, A.; Scheeren, C.I.; Bergmans, D.C.; Bickenbach, J.; Laenen, M.V.; et al. Predicting COVID-19 prognosis in the ICU remained challenging: External validation in a multinational regional cohort. J. Clin. Epidemiol. 2022, 152, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Leoni, M.L.G.; Lombardelli, L.; Colombi, D.; Bignami, E.G.; Pergolotti, B.; Repetti, F.; Villani, M.; Bellini, V.; Rossi, T.; Halasz, G.; et al. Prediction of 28-day mortality in critically ill patients with COVID-19: Development and internal validation of a clinical prediction model. PLoS ONE 2021, 16, e0254550. [Google Scholar] [CrossRef]
- Brakenridge, S.C.; Starostik, P.; Ghita, G.; Midic, U.; Darden, D.; Fenner, B.; Wacker, J.; Efron, P.A.; Liesenfeld, O.; Sweeney, T.E.; et al. A Transcriptomic Severity Metric That Predicts Clinical Outcomes in Critically Ill Surgical Sepsis Patients. Crit. Care Explor. 2021, 3, e0554. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | All Patients | Survivors | Non-Survivors | p-Value |
---|---|---|---|---|
n = 53 | n = 35 | n = 18 | ||
Age, median [IQR] | 66.0 (60.0–72.0) | 65.0 (58.0–71.0) | 69.0 (64.3–72.8) | 0.14 |
Sex, male | 44 (83.0%) | 29 (82.9%) | 15 (83.3%) | 1 |
BMI, median [IQR] | 27.4 (25.3–30.2) | 27.5 (25.5–30.1) | 26.3 (25.1–29.9) | 0.98 |
Missing | 1 | 1 | 0 | |
APACHE-IV (%) * | 18.20 (11.10–30.20) | 12.00 (9.00–19.10) | 32.0 (24.40–50.80) | <0.001 |
Comorbidities Cardiovascular disease | 6 (11.3%) | 3 (8.6%) | 3 (16.7%) | 0.67 |
Pulmonary disease | 6 (11.3%) | 4 (11.4%) | 2 (11.1%) | 1 |
Neurological disease | 2 (3.8%) | 1 (2.9%) | 1 (5.6%) | 1 |
Renal disease | 0 (100%) | 0 (100%) | 0 (100%) | 1 |
Diabetes mellitus | 11 (20.8%) | 5 (14.3%) | 6 (33.3%) | 0.21 |
Immunodeficiency | 4 (7.5%) | 3 (8.6%) | 1 (5.6%) | 1 |
Autoimmune disease | 4 (7.5%) | 3 (8.6%) | 1 (5.6%) | 1 |
Characteristics | All Patients | Survivors | Non-Survivors | p-Value |
---|---|---|---|---|
n = 53 | n = 35 | n = 18 | ||
CRP (mg/L) | 277 (178–345) | 304 (174–341) | 210 (178–347) | 0.74 |
D-dimer (mg/L) | 2.48 (1.38–5.22) | 2.42 (1.18–3.96) | 3.86 (1.81–8.47) | 0.17 |
Ferritin (mg/L) | 1580 (974–2680) | 1660 (1130–2730) | 1300 (989–2240) | 0.33 |
Leukocyte count (×109/L) | 8.74 (6.53–10.7) | 8.31 (6.47–9.53) | 10.30 (7.57–12.30) | 0.06 |
IL-6 (pg/mL) | 161 (88–307) | 143 (91.5–246) | 197 (87.3–395) | 0.36 |
LDH (U/L) | 322 (271–394) | 320 (264–360) | 341 (293–456) | 0.06 |
NLR | 7.45 (4.78–10.7) | 6.72 (4.69–9.92) | 8.85 (5.03–12.40) | 0.22 |
PCT (ng/mL) | 0.97 (0.470–2.70) | 0.77 (0.36–2.04) | 1.44 (0.90–3.20) | 0.28 |
SOFA score | 7.00 (6.00–10.00) | 7.00 (6.00–8.00) | 11.00 (9.00–11.00) | <0.001 |
IMX-SEV-3b score * | 0.582 ± 0.13 | 0.575 ± 0.11 | 0.660 ± 0.15 | 0.050 |
Test/Biomarker/Clinical Score | AUROC (95% CI) |
---|---|
CRP (mg/L) | 0.52 (0.34–0.70) |
D-dimer (mg/L) | 0.62 (0.45–0.79) |
Ferritin (mg/L) | 0.58 (0.42–0.75) |
Leukocyte count (×109/L) | 0.66 (0.48–0.83) |
IL-6 (pg/mL) | 0.58 (0.40–0.76) |
LDH (U/L) | 0.56 (0.37–0.74) |
NLR | 0.60 (0.43–0.78) |
PCT (ng/mL) | 0.59 (0.43–0.76) |
IMX-SEV-3b | 0.65 (0.48–0.82) |
SOFA score | 0.81 (0.69–0.93) |
Pooled biomarker model | 0.81 (0.69–0.93) |
IMX-SEV-3b Severity Score | Survival Status | IMX-SEV-3b Performance per Band | |||||
---|---|---|---|---|---|---|---|
Survivor | Non-Survivor | % Patients in Band | Sensitivity | Specificity | Likelihood Ratio | ||
IMX-SEV-3b category | Very High | 0 | 4 | 8% | 22% | 100% | Inf. |
High | 2 | 0 | 4% | 0% | 94% | 0.00 | |
Moderate | 9 | 6 | 28% | 33% | 74% | 1.30 | |
Low | 23 | 8 | 58% | 56% | 66% | 0.68 | |
Very Low | 1 | 0 | 2% | 100% | 3% | 0.00 |
Test/Biomarker/Clinical Score | AUROC (95% CI) Patients Admitted within 5 Days (n = 21) | AUROC (95% Cl) Patients Admitted after 5 Days (n = 32) |
---|---|---|
CRP (mg/L) | 0.59 (0.26–0.92) | 0.60 (0.39–0.81) |
D-dimer (mg/L) | 0.72 (0.39–1.00) | 0.56 (0.35–0.77) |
Ferritin (mg/L) | 0.60 (0.28–0.92) | 0.59 (0.38–0.80) |
Leukocyte count (×109/L) | 0.71 (0.44–0.97) | 0.62 (0.38–0.86) |
IL-6 (pg/mL) | 0.67 (0.33–1.00) | 0.55 (0.33–0.77) |
LDH (U/L) | 0.79 (0.56–1.00) | 0.58 (0.37–0.80) |
NLR | 0.38 (0.10–0.66) | 0.62 (0.40–0.84) |
PCT (ng/mL) | 0.56 (0.29–0.84) | 0.63 (0.41–0.84) |
IMX-SEV-3b | 0.72 (0.43–1.00) | 0.60 (0.37–0.83) |
SOFA score | 0.74 (0.49–1.00) | 0.86 (0.73–0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daenen, K.; Tong-Minh, K.; Liesenfeld, O.; Stoof, S.C.M.; Huijben, J.A.; Dalm, V.A.S.H.; Gommers, D.; van Gorp, E.C.M.; Endeman, H. A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study. J. Clin. Med. 2023, 12, 6197. https://doi.org/10.3390/jcm12196197
Daenen K, Tong-Minh K, Liesenfeld O, Stoof SCM, Huijben JA, Dalm VASH, Gommers D, van Gorp ECM, Endeman H. A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study. Journal of Clinical Medicine. 2023; 12(19):6197. https://doi.org/10.3390/jcm12196197
Chicago/Turabian StyleDaenen, Katrijn, Kirby Tong-Minh, Oliver Liesenfeld, Sara C. M. Stoof, Jilske A. Huijben, Virgil A. S. H. Dalm, Diederik Gommers, Eric C. M. van Gorp, and Henrik Endeman. 2023. "A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study" Journal of Clinical Medicine 12, no. 19: 6197. https://doi.org/10.3390/jcm12196197
APA StyleDaenen, K., Tong-Minh, K., Liesenfeld, O., Stoof, S. C. M., Huijben, J. A., Dalm, V. A. S. H., Gommers, D., van Gorp, E. C. M., & Endeman, H. (2023). A Transcriptomic Severity Classifier IMX-SEV-3b to Predict Mortality in Intensive Care Unit Patients with COVID-19: A Prospective Observational Pilot Study. Journal of Clinical Medicine, 12(19), 6197. https://doi.org/10.3390/jcm12196197