Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Chest X-ray
3.2. Computed Tomography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouhemad, B.; Brisson, H.; Le-Guen, M.; Arbelot, C.; Lu, Q.; Rouby, J.J. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am. J. Respir. Crit. Care Med. 2011, 183, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Bouhemad, B.; Zhang, M.; Lu, Q.; Rouby, J.J. Clinical review: Bedside lung ultrasound in critical care practice. Crit. Care 2007, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Altersberger, M.; Schneider, M.; Schiller, M.; Binder-Rodriguez, C.; Genger, M.; Khafaga, M.; Binder, T.; Prosch, H. Point of care echocardiography and lung ultrasound in critically ill patients with COVID-19. Wien. Klin. Wochenschr. 2021, 133, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Via, G.; Melniker, L.; Goffi, A.; Tavazzi, G.; Neri, L.; Villen, T.; Hoppmann, R.; Mojoli, F.; Noble, V.; et al. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): International expert consensus. Crit. Care 2020, 24, 702. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Mongodi, S.; Algieri, I.; Vergani, G.L.; Orlando, A.; Via, G.; Crimella, F.; Cressoni, M.; Mojoli, F. Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients. Crit. Care Med. 2018, 46, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Constantin, J.M.; Jabaudon, M.; Lefrant, J.Y.; Jaber, S.; Quenot, J.P.; Langeron, O.; Ferrandière, M.; Grelon, F.; Seguin, P.; Ichai, C.; et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): A multicentre, single-blind, randomised controlled trial. Lancet Respir. Med. 2019, 7, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Zieleskiewicz, L.; Markarian, T.; Lopez, A.; Taguet, C.; Mohammedi, N.; Boucekine, M.; Baumstarck, K.; Besch, G.; Mathon, G.; Duclos, G.; et al. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med. 2020, 46, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.S.; Pranikoff, T.; Younger, J.G.; Swaniker, F.; Hemmila, M.R.; Remenapp, R.A.; Copenhaver, W.; Landis, D.; Hirschl, R.B.; Bartlett, R.H. A review of 100 patients transported on extracorporeal life support. Asaio J. 2002, 48, 612–619. [Google Scholar] [CrossRef]
- Beckmann, U.; Gillies, D.M.; Berenholtz, S.M.; Wu, A.W.; Pronovost, P. Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Australian Incident Monitoring Study in Intensive Care. Intensive Care Med. 2004, 30, 1579–1585. [Google Scholar] [CrossRef]
- Choukalas, C.G.; Vu, T.G. The Problem of Daily Imaging in the Intensive Care Unit: When You Care So Much It Hurts. JAMA Intern. Med. 2020, 180, 1369–1370. [Google Scholar] [CrossRef]
- Balik, M.; Plasil, P.; Waldauf, P.; Pazout, J.; Fric, M.; Otahal, M.; Pachl, J. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006, 32, 318. [Google Scholar] [CrossRef] [PubMed]
- Balik, M.; Mokotedi, M.C.; Maly, M.; Otahal, M.; Stach, Z.; Svobodova, E.; Flaksa, M.; Rulisek, J.; Brozek, T.; Porizka, M. Pulmonary consolidation alters the ultrasound estimate of pleural fluid volume when considering chest drainage in patients on ECMO. Crit. Care 2022, 26, 144. [Google Scholar] [CrossRef] [PubMed]
- Haddam, M.; Zieleskiewicz, L.; Perbet, S.; Baldovini, A.; Guervilly, C.; Arbelot, C.; Noel, A.; Vigne, C.; Hammad, E.; Antonini, F.; et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016, 42, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Maly, M.; Mokotedi, M.C.; Svobodova, E.; Flaksa, M.; Otahal, M.; Stach, Z.; Rulisek, J.; Brozek, T.; Porizka, M.; Balik, M. Interpleural location of chest drain on ultrasound excludes pneumothorax and associates with a low degree of chest drain foreshortening on the antero-posterior chest X-ray. Ultrasound J. 2022, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Mokotedi, M.C.; Lambert, L.; Simakova, L.; Lips, M.; Zakharchenko, M.; Rulisek, J.; Balik, M. X-ray indices of chest drain malposition after insertion for drainage of pneumothorax in mechanically ventilated critically ill patients. J. Thorac. Dis. 2018, 10, 5695–5701. [Google Scholar] [CrossRef] [PubMed]
- Celik, H.; Agrawal, B.; Barker, A.; D’Errico, L.; Vuylsteke, A.; Suresh, S.; Weir-McCall, J.R. Routine whole-body CT identifies clinically significant findings in patients supported with veno-venous extracorporeal membrane oxygenation. Clin. Radiol. 2023, 78, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kredel, M.; Bierbaum, D.; Lotz, C.; Küstermann, J.; Roewer, N.; Muellenbach, R.M. Therapy of acute respiratory distress syndrome: Survey of German ARDS centers and scientific evidence. Anaesthesist 2015, 64, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Richmond, K.M.; Warburton, K.G.; Finney, S.J.; Shah, S.; Reddi, B.A.J. Routine CT scanning of patients retrieved to a tertiary centre on veno-venous extracorporeal membrane oxygenation: A retrospective risk benefit analysis. Perfusion 2018, 33, 438–444. [Google Scholar] [CrossRef]
- Osofsky, R.; Owen, B.; Elks, W.; Das Gupta, J.; Clark, R.; Kraai, E.; Rana, M.A.; Marinaro, J.; Guliani, S. Protocolized Whole-Body Computed Tomography Imaging After Extracorporeal Membrane Oxygenation (ECMO) Cannulation for Cardiac Arrest. Asaio J. 2021, 67, 1196–1203. [Google Scholar] [CrossRef]
- Yang, K.J.; Wang, C.H.; Huang, Y.C.; Tseng, L.J.; Chen, Y.S.; Yu, H.Y. Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest. Scand. J. Trauma. Resusc. Emerg. Med. 2020, 28, 54. [Google Scholar] [CrossRef]
- Zotzmann, V.; Rilinger, J.; Lang, C.N.; Duerschmied, D.; Benk, C.; Bode, C.; Wengenmayer, T.; Staudacher, D.L. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR). Resuscitation 2020, 146, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Branney, S.W.; Wolfe, R.E.; Moore, E.E.; Albert, N.P.; Heinig, M.; Mestek, M.; Eule, J. Quantitative sensitivity of ultrasound in detecting free intraperitoneal fluid. J. Trauma. 1995, 39, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.; Bauwens, K.; Rademacher, G.; Mutze, S.; Ekkernkamp, A. Association between compliance with methodological standards of diagnostic research and reported test accuracy: Meta-analysis of focused assessment of US for trauma. Radiology 2005, 236, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Lunz, D.; Calabrò, L.; Belliato, M.; Contri, E.; Broman, L.M.; Scandroglio, A.M.; Patricio, D.; Malfertheiner, M.; Creteur, J.; Philipp, A.; et al. Extracorporeal membrane oxygenation for refractory cardiac arrest: A retrospective multicenter study. Intensive Care Med. 2020, 46, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Jan Hrdlicka, J.S.; Bianka, B.; Lukas, L.; Jan, B.; Andrea, B. Both decreased and increased grey-to-white matter attenuation ratio in the putamen and caudate on early head computed tomography differentiate patients with favorable and unfavorable outcomes after prolonged cardiac arrest—Secondary analysis of the Prague OHCA study. Quant. Imaging Med. Surg. 2023, 13, 9. [Google Scholar]
- Lambert, L.; Grus, T.; Balik, M.; Fichtl, J.; Kavan, J.; Belohlavek, J. Hemodynamic changes in patients with extracorporeal membrane oxygenation (ECMO) demonstrated by contrast-enhanced CT examinations—Implications for image acquisition technique. Perfusion 2017, 32, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Lannon, M.; Duda, T.; Greer, A.; Hewitt, M.; Sharma, A.; Martyniuk, A.; Owen, J.; Amin, F.; Sharma, S. Intracranial hemorrhage in patients treated for SARS-CoV-2 with extracorporeal membrane oxygenation: A systematic review and meta-analysis. J. Crit. Care 2023, 77, 154319. [Google Scholar] [CrossRef] [PubMed]
- Balik, M.; Svobodova, E.; Porizka, M.; Maly, M.; Brestovansky, P.; Volny, L.; Brozek, T.; Bartosova, T.; Jurisinova, I.; Mevaldova, Z.; et al. The impact of obesity on the outcome of severe SARS-CoV-2 ARDS in a high volume ECMO centre: ECMO and corticosteroids support the obesity paradox. J. Crit. Care 2022, 72, 154162. [Google Scholar] [CrossRef]
- Ferguson, N.D.; Fan, E.; Camporota, L.; Antonelli, M.; Anzueto, A.; Beale, R.; Brochard, L.; Brower, R.; Esteban, A.; Gattinoni, L.; et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012, 38, 1573–1582. [Google Scholar] [CrossRef]
- Constantin, J.M.; Monsel, A.; Blanchard, F.; Godet, T. Personalised mechanical ventilation in acute respiratory distress syndrome: The right idea with the wrong tools?—Authors’ reply. Lancet Respir. Med. 2019, 7, e39. [Google Scholar] [CrossRef]
- Revel, M.P.; Parkar, A.P.; Prosch, H.; Silva, M.; Sverzellati, N.; Gleeson, F.; Brady, A. COVID-19 patients and the radiology department—Advice from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI). Eur. Radiol. 2020, 30, 4903–4909. [Google Scholar] [CrossRef]
BMI > 30 (n = 171) | BMI ≤ 30 (n = 121) | p-Value | |
---|---|---|---|
Age (years) | 56 (48–65) | 61 (51–68) | 0.013 |
Weight (kg) | 110 (100–120) | 82 (75–90) | <0.001 |
Height (m) | 1.74 (1.68–1.8) | 1.77 (1.7–1.8) | 0.024 |
BMI | 35.1 (32.1–40.1) | 26.3 (24.8–27.8) | <0.001 |
Gender (males) | 63.7% (109) | 70.2% (85) | 0.246 |
APACHE IV | 87 (77–100) | 90 (77–100) | 0.371 |
SOFA | 10 (8–12) | 11 (8–12) | 0.480 |
PaO2/FiO2 (at admission) | 75 (62–101) | 75.5 (60–105) | 0.883 |
Orotracheal intubation on admission | 95.9% (164) | 94.2% (114) | 0.505 |
NIV/HFNO (days) | 2 (1–4) | 2 (0–5) | 0.702 |
Tracheostomy | 75.4% (129) | 69.4% (84) | 0.254 |
MV parameters (at admission) | |||
PEEP | 12 (10–14) | 11 (8–14) | 0.048 |
driving pressure | 18 (15–20) | 16 (12–18) | <0.001 |
plateau pressure | 30 (26–34) | 28 (24–30) | 0.002 |
Prone position | 62% (106) | 59.5% (72) | 0.623 |
VV ECMO | 45% (77) | 34.7% (42) | 0.087 |
Pneumothorax | 18.1% (31) | 19.8% (24) | 0.749 |
Pneumothorax in ECMO patients | 26% (20) | 33.3% (14) | 0.404 |
Pneumomediastinum | 8.8% (15) | 9.9% (12) | 0.763 |
Pneumomediastinum in ECMO patients | 18.2% (14) | 19% (8) | 1.00 |
ICU LOS (days) | 13 (7–22) | 13 (6–20) | 0.432 |
Hospital LOS (days) | 27 (14–51) | 27 (13–66) | 0.639 |
ICU mortality | 36.8% (63) | 33.9% (41) | 0.578 |
Hospital mortality | 49.7% (85) | 48.8% (59) | 0.873 |
90-day mortality | 48.5% (83) | 45.5% (55) | 0.603 |
Parameter | Surviving (Median, IQR) | Dead (Median, IQR) | p-Value |
---|---|---|---|
ICU outcome | 7 (4; 14), n = 187 | 8 (5; 15.5), n = 104 | 0.23 |
ICU outcome BMI > 30 | 8 (5; 14.8), n = 107 | 8 (5; 13), n = 62 | 0.69 |
ICU outcome BMI ≤ 30 | 7 (3.5; 12), n = 80 | 8.5 (5; 17), n = 42 | 0.21 |
Variable | Odds Ratio | 95% CI | p Value |
---|---|---|---|
Age > 50 | 2.59 | 1.22–5.09 | 0.006 |
Gender male | 1.25 | 0.7–2.22 | 0.44 |
BMI > 30 | 1.16 | 0.64–2.08 | 0.63 |
ECMO yes | 2.11 | 1.13–3.94 | 0.02 |
DM yes | 1.39 | 0.73–2.62 | 0.32 |
HT yes | 0.96 | 0.54–1.69 | 0.88 |
IHD yes | 1.18 | 0.53–2.64 | 0.68 |
Chronic immunosuppressive therapy yes | 1.71 | 0.69–4.21 | 0.25 |
Imunosupression > 8 mg Dexamethasone or 40 mg Methylprednisolone yes | 1.31 | 0.67–2.56 | 0.43 |
Pneumothorax | 1.26 | 0.63–2.51 | 0.51 |
Barotrauma yes | 0.42 | 0.16–1.12 | 0.08 |
Major bleeding event yes | 2.1 | 1.01–4.37 | 0.046 |
Number of X-rays per day in the ICU | 1.35 | 0.61–2.98 | 0.45 |
Parameter | % CT among Surviving (No. of Probands) | % CT among Dead (No. of Probands) | p-Value |
---|---|---|---|
ICU outcome | 29% (49) | 25.8% (25) | 0.67 |
ICU outcome ECMO | 42.9% (24) | 30.6% (15) | 0.23 |
ICU outcome without ECMO | 22.3% (25) | 20.8% (10) | 1.0 |
ICU LOS (days) | 12 (6–19) | 12 (8–20) | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balik, M.; Maly, M.; Huptych, M.; Mokotedi, M.C.; Lambert, L. Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation. J. Clin. Med. 2023, 12, 6367. https://doi.org/10.3390/jcm12196367
Balik M, Maly M, Huptych M, Mokotedi MC, Lambert L. Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine. 2023; 12(19):6367. https://doi.org/10.3390/jcm12196367
Chicago/Turabian StyleBalik, Martin, Michal Maly, Michal Huptych, Masego Candy Mokotedi, and Lukas Lambert. 2023. "Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation" Journal of Clinical Medicine 12, no. 19: 6367. https://doi.org/10.3390/jcm12196367
APA StyleBalik, M., Maly, M., Huptych, M., Mokotedi, M. C., & Lambert, L. (2023). Prognostic Impact of Serial Imaging in Severe Acute Respiratory Distress Syndrome on the Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine, 12(19), 6367. https://doi.org/10.3390/jcm12196367