Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Study Cohorts
2.3. Data from Neonatal Hospital Wards
2.4. Microbiological Swabs and Blood
Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Microbiology
3.3. Odds Ratio
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROP | Retinopathy of prematurity |
VLBW | Very Low Birth Weight |
EG | Examined Group |
CG | Control Group |
CoNS | Coagulase-negative Staphylococci |
KP | Klebsiella pneumoniae |
MS | Maltophilia stenotrophomonas |
SA | Staphylococcus aureus |
EC | Enterobacter cloacae |
APC | All positive culture |
WBC | White blood cells |
CRP | C-reactive protein |
LYM | Lymphocytes |
PLT | Thrombocytes |
VEGF | Vascular Endothelial Growth Factor |
IGF-1 | Insulin-like growth factor |
BDNF | Brain-derived neurotrophic factor |
MMP | metalloproteinases |
HIF | hypoxia-inducible factor |
EPO | Erythropoietin |
PlGF | Placenta Growth Factor |
bFGF/FGF-2 | basic fibroblast growth factor/Fibroblast growth factor 2 |
Ang | Angiotensin |
TSH | thyroid-stimulating hormone |
IL | interleukin |
TNF-α | tumour necrosis factor α |
RANTES | Regulated on Activation, Normal T-cell Expressed and Secreted (another name: CCL5, C-C motif chemokine ligand 5) |
MCP-1 | Monocyte chemoattractant protein 1 (another name: CCL2, C-C motif chemokine ligand 2) |
I-TAC | interferon-inducible T cell alpha chemoattractant |
RSV | Respiratory Syncytial Virus |
TORCH | an acronym for (T)oxoplasmosis, (O)ther Agents, (R)ubella, (C)ytomegalovirus, and (H)erpes Simplex |
PPROM | prelabour rapture of membranes |
BW | birth weight |
GA | gestational age |
OR | odds ratio |
e | number of eyes |
CC | Caesarean section |
SD | Standard deviation |
IQR | Interquartile range |
ULN | upper limit of normal |
LLN | lower limit of normal |
BPD | Bronchopulmonary Dysplasia |
IVH | intraventricular haemorrhage |
NEC | necrotizing enterocolitis |
PDA | Patent ductus arteriosus |
RDS | respiratory distress syndrome |
LOS | late-onset sepsis |
References
- Rivera, J.C.; Holm, M.; Austeng, D.; Morken, T.S.; Zhou, T.E.; Beaudry-Richard, A.; Sierra, E.M.; Dammann, O.; Chemtob, S. Retinopathy of Prematurity: Inflammation, Choroidal Degeneration, and Novel Promising Therapeutic Strategies. J. Neuroinflammation 2017, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Cailes, B.; Kortsalioudaki, C.; Buttery, J.; Pattnayak, S.; Greenough, A.; Matthes, J.; Bedford Russell, A.; Kennea, N.; Heath, P.T. Epidemiology of UK Neonatal Infections: The NeonIN Infection Surveillance Network. Arch. Dis. Child Fetal Neonatal Ed. 2018, 103, F547–F553. [Google Scholar] [CrossRef]
- Tzialla, C.; Civardi, E.; Borghesi, A.; Sarasini, A.; Baldanti, F.; Stronati, M. Emerging Viral Infections in Neonatal Intensive Care Unit. J. Matern. Fetal Neonatal Med. 2011, 24, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Embleton, N.D.; Bythell, M.; Ward Platt, M.P.; Berrington, J.E. The Changing Profile of Infant Mortality from Bacterial, Viral and Fungal Infection over Two Decades. Acta Paediatr. 2013, 102, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Walani, S.R. Global Burden of Preterm Birth. Int. J. Gynecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Borroni, C.; Carlevaro, C.; Morzenti, S.; De Ponti, E.; Bozzetti, V.; Console, V.; Capobianco, S.; Tagliabue, P.E. Survey on Retinopathy of Prematurity (ROP) in Italy. Ital. J. Pediatr. 2013, 39, 43. [Google Scholar] [CrossRef]
- Lad, E.M.; Nguyen, T.C.; Morton, J.M. Retinopathy of prematurity in the United States. Br. J. Ophthalmol. 2010, 94, 1268. [Google Scholar] [CrossRef]
- Peng, C.C.; Chang, J.H.; Lin, H.Y.; Cheng, P.J.; Su, B.H. Intrauterine Inflammation, Infection, or Both (Triple I): A New Concept for Chorioamnionitis. Pediatr. Neonatol. 2018, 59, 231–237. [Google Scholar] [CrossRef]
- Mate, A.; Reyes-Goya, C.; Santana-Garrido, Á.; Sobrevia, L.; Vázquez, C.M. Impact of Maternal Nutrition in Viral Infections during Pregnancy. Biochim. Biophys. Acta (BBA)–Mol. Basis Dis. 2021, 1867, 166231. [Google Scholar] [CrossRef]
- Skondra, D.; Rodriguez, S.H.; Sharma, A.; Gilbert, J.; Andrews, B.; Claud, E.C. The early gut microbiome could protect against severe retinopathy of prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2020, 24, 236–238. [Google Scholar] [CrossRef]
- Wu, P.-Y.; Fu, Y.-K.; Lien, R.-I.; Chiang, M.-C.; Lee, C.-C.; Chen, H.-C.; Hsueh, Y.-J.; Chen, K.-J.; Wang, N.-K.; Liu, L.; et al. Systemic Cytokines in Retinopathy of Prematurity. J. Pers. Med. 2023, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Lima-Fontes, M.; Meira, L.; Barata, P.; Falcão, M.; Carneiro, Â. Gut microbiota and age-related macular degeneration: A growing partnership. Surv. Ophthalmol. 2022, 67, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Greenwald, M.J.; Rodriguez, S.H. Gut Microbiome and Retinopathy of Prematurity. Am. J. Pathol. 2023, 23, 46–49. [Google Scholar] [CrossRef]
- Hellström, A.; Hård, A.L.; Engström, E.; Niklasson, A.; Andersson, E.; Smith, L.; Löfqvist, C. Early Weight Gain Predicts Retinopathy in Preterm Infants: New, Simple, Efficient Approach to Screening. Pediatrics 2009, 123, e638–e645. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A., Jr.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 28, e51–e68. [Google Scholar] [CrossRef] [PubMed]
- Roudil, P.; Vasselon, C.; Trombert-Paviot, B.; Berger, C.; Patural, H. Blood parameters of preterm neonates: Postnatal evolution according to gestational age. Int. Jnl. Lab. Hem. 2017, 39, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Dammann, O. Perinatal Infection, Inflammation, and Retinopathy of Prematurity. Semin. Fetal Neonatal Med. 2012, 17, 26–29. [Google Scholar] [CrossRef]
- Ribatti, D.; Crivellato, E. Immune Cells and Angiogenesis. J. Cell Mol. Med. 2009, 13, 2822–2833. [Google Scholar] [CrossRef]
- Szade, A.; Grochot-Przeczek, A.; Florczyk, U.; Jozkowicz, A.; Dulak, J. Cellular and Molecular Mechanisms of Inflammation-Induced Angiogenesis. IUBMB Life 2015, 67, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D. Neurodevelopmental and Growth Impairment Among Extremely Low-Birth-Weight Infants with Neonatal Infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Port, A.D.; Swan, R.; Campbell, J.P.; Chan, R.V.P.; Chiang, M.F. Retinopathy of Prematurity: A Review of Risk Factors and Their Clinical Significance. Surv. Ophthalmol. 2018, 63, 618–637. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, L.; Tong, Y.; Qu, Y.; Xia, B.; Mu, D. Retinopathy of Prematurity Among Very Low-Birth-Weight Infants in China: Incidence and Perinatal Risk Factors. Investig. Ophthalmol. Vis. Sci. 2018, 59, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Arons, R.R.; Flynn, J.T.; Starren, J.B. Incidence of Retinopathy of Prematurity from 1996 to 2000: Analysis of a Comprehensive New York State Patient Database. Ophthalmology 2004, 111, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, P.; Lundberg, L.; Hellgren, G.; Holmström, G.; Hård, A.L.; Smith, L.E.; Wallin, A.; Hallberg, B.; Hellström, A. Aggressive Posterior Retinopathy of Prematurity Is Associated with Multiple Infectious Episodes and Thrombocytopenia. Neonatology 2016, 111, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, Z.; Carmi, N.; Elouti, H.; Rumelt, S. The Association between Stage 3 or Higher Retinopathy of Prematurity and Other Disorders of Prematurity. Can. J. Ophthalmol. 2011, 46, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Anderson, K.R.; Kalagiri, R.R.; Mallett, L.H. Morbidity and Mortality of Coagulase-Negative Staphylococcal Sepsis in Very-Low-Birth-Weight Infants. World J. Pediatr. 2018, 14, 269–273. [Google Scholar] [CrossRef]
- Ohlin, A.; Björkman, L.; Serenius, F.; Schollin, J.; Källén, K. Sepsis as a Risk Factor for Neonatal Morbidity in Extremely Preterm Infants. Acta Paediatr. 2015, 104, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Embleton, N.D.; Marrs, E.C.L.; Smith, D.P.; Fofanova, T.; Nelson, A.; Skeath, T.; Perry, J.D.; Petrosino, J.F.; Berrington, J.E.; et al. Longitudinal Development of the Gut Microbiome and Metabolome in Preterm Neonates with Late Onset Sepsis and Healthy Controls. Microbiome 2017, 5, 75. [Google Scholar] [CrossRef]
- Stark, A.; Dammann, C.; Nielsen, H.C.; Volpe, M.A.V. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front. Pediatr. 2018, 6, 326583. [Google Scholar] [CrossRef]
- Podraza, W.; Michalczuk, B.; Jezierska, K.; Domek, H.; Kordek, A.; Loniewska, B.; Modrzejewska, M.; Kot, J. Correlation of Retinopathy of Prematurity with Bronchopulmonary Dysplasia. Open Med. 2018, 13, 67–73. [Google Scholar] [CrossRef]
- Singh, J.K.; Wymore, E.M.; Wagner, B.D.; Thevarajah, T.S.; Jung, J.L.; Kinsella, J.P.; Palestine, A.G.; Lynch, A.M. Relationship between Severe Bronchopulmonary Dysplasia and Severe Retinopathy of Prematurity in Premature Newborns. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2019, 23, 209.e1–209.e4. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.P.; Shin, S.H.; Yoon, Y.M.; Kim, E.K.; Kim, H.S. Association of Severe Retinopathy of Prematurity and Bronchopulmonary Dysplasia with Adverse Neurodevelopmental Outcomes in Preterm Infants without Severe Brain Injury. Brain Sci. 2021, 11, 699. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Coviello, C.; Panin, F.; Frosini, S.; Costa, S.; Purcaro, V.; Lepore, D.; Vento, G. Incidence and Risk Factors of Retinopathy of Prematurity in an Italian Cohort of Preterm Infants. Ital. J. Pediatr. 2021, 47, 64. [Google Scholar] [CrossRef]
- Chang, J.W. Risk Factor Analysis for the Development and Progression of Retinopathy of Prematurity. PLoS ONE 2019, 14, e0219934. [Google Scholar] [CrossRef] [PubMed]
- Hand, I.; Shrier, E. Lack of Association of Intraventricular Hemorrhage with Retinopathy of Prematurity. J. Pediatr. Neurol. 2019, 17, 219–222. [Google Scholar] [CrossRef]
- Soraisham, A.S.; Amin, H.J.; Al-Hindi, M.Y.; Singhal, N.; Sauve, R.S. Does Necrotising Enterocolitis Impact the Neurodevelopmental and Growth Outcomes in Preterm Infants with Birthweight ≤1250g? J. Paediatr. Child Health 2006, 42, 499–504. [Google Scholar] [CrossRef]
- Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; et al. Human Milk Oligosaccharide DSLNT and Gut Microbiome in Preterm Infants Predicts Necrotising Enterocolitis. Gut 2021, 70, 2273–2282. [Google Scholar] [CrossRef]
- Menke, M.N.; Framme, C.; Nelle, M.; Berger, M.R.; Sturm, V.; Wolf, S. Intravitreal Ranibizumab Monotherapy to Treat Retinopathy of Prematurity Zone II, Stage 3 with plus Disease. BMC Ophthalmol. 2015, 15, 20. [Google Scholar] [CrossRef]
- Strunk, T.; Currie, A.; Richmond, P.; Simmer, K.; Burgner, D. Innate Immunity in Human Newborn Infants: Prematurity Means More than Immaturity. J. Matern. Fetal Neonatal Med. 2010, 24, 25–31. [Google Scholar] [CrossRef]
- Mittal, M.; Dhanireddy, R.; Higgins, R.D. Candida Sepsis and Association with Retinopathy of Prematurity. Pediatrics 1998, 101, 654–657. [Google Scholar] [CrossRef]
- Kremer, I.; Naor, N.; Davidson, S.; Arbizo, M.; Nissenkorn, I. Systemic Candidiasis in Babies with Retinopathy of Prematurity. Graefe’s Arch. Clin. Exp. Ophthalmol. 1992, 230, 592–594. [Google Scholar] [CrossRef]
- Karlowicz, M.; Giannone, P.; Pestian, J.; Morrow, A.L.; Shults, J. Does Candidemia Predict Threshold Retinopathy of Prematurity in Extremely Low Birth Weight (≤1000 g) Neonates? Pediatrics 2000, 105, 1036–1040. [Google Scholar] [CrossRef]
- Ikeda, H.; Kuriyama, S. Risk factors for retinopathy of prematurity requiring photocoagulation. Jpn. J. Ophthalmol. 2004, 48, 68–71. [Google Scholar] [CrossRef]
- Kurul, Ş.; Simons, S.H.P.; Ramakers, C.R.B.; De Rijke, Y.B.; Kornelisse, R.F.; Reiss, I.K.M.; Taal, H.R. Association of Inflammatory Biomarkers with Subsequent Clinical Course in Suspected Late Onset Sepsis in Preterm Neonates. Crit. Care 2021, 25, 12. [Google Scholar] [CrossRef]
- Andreola, B.; Bressan, S.; Callegaro, S.; Liverani, A.; Plebani, M.; Da Dalt, L. Procalcitonin and C-reactive protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency department. Pediatr. Infect. Dis. J. 2007, 26, 672–677. [Google Scholar] [CrossRef]
- Singh, A.; Kamal, M.; Mahmoud, E.; Mohamed, F.; Gendy, E.; Abdul, K.; Ali, M.; Abdel, D.; Midan, R.; Fayez, M.; et al. Evaluation of Serum Insulin Like Growth Factor (I) in Retinopathy of Prematurity. Blood Transfus. 2015, 58, 2. [Google Scholar]
- Qu, J.; Lü, X.; Liu, Y.; Liu, Y.; Wang, X. Evaluation of Procalcitonin, C-Reactive Protein, Interleukin-6 & Serum Amyloid A as Diagnostic Biomarkers of Bacterial Infection in Febrile Patients. Indian J. Med. Res. 2015, 141, 315. [Google Scholar]
- Qin, B.; Ma, N.; Tang, Q.; Wei, T.; Yang, M.; Fu, H.; Hu, Z.; Liang, Y.; Yang, Z.; Zhong, R. Neutrophil to Lymphocyte Ratio (NLR) and Platelet to Lymphocyte Ratio (PLR) Were Useful Markers in Assessment of Inflammatory Response and Disease Activity in SLE. Mod. Rheumatol. 2016, 26, 372–376. [Google Scholar] [CrossRef]
- Stojkovic Lalosevic, M.; Pavlovic Markovic, A.; Stankovic, S.; Stojkovic, M.; Dimitrijevic, I.; Radoman Vujacic, I.; Lalic, D.; Milovanovic, T.; Dumic, I.; Krivokapic, Z. Combined diagnostic efficacy of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and mean platelet volume (MPV) as biomarkers of systemic inflammation in the diagnosis of colorectal cancer. Dis. Markers 2019, 2019, 6036979. [Google Scholar] [CrossRef]
- Mayda, H.; Ahsen, A.; Bağcioğlu, E.; Öztürk, A.; Bahçeci, B.; Soyucok, E.; Başpinar, E.; Ulu, M.S. Effect of Increased Neutrophil-to-Lymphocyte Ratio (NLR) and Decreased Mean Platelet Volume (MPV) Values on Inflammation in Acute Mania. Nöro Psikiyatr. Arşivi 2016, 53, 317. [Google Scholar] [CrossRef]
- Buyukkaya, E.; Karakaş, M.F.; Karakaş, E.; Akçay, A.B.; Tanboga, I.H.; Kurt, M.; Sen, N. Correlation of Neutrophil to Lymphocyte Ratio with the Presence and Severity of Metabolic Syndrome. Clin. Appl. Thromb. Hemost. 2014, 20, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Kurtul, B.; Kabatas, E.; Zenciroglu, A.; Ozer, P.A.; Ertugrul, G.T.; Beken, S.; Okumus, N. Serum Neutrophil-to-Lymphocyte Ratio in Retinopathy of Prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2015, 19, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, T.; Durmaz Engin, C.; Kaya, M.; Yaman, A. Complete Blood Count Parameters to Predict Retinopathy of Prematurity: When to Evaluate and What Do They Tell Us? Int. Ophthalmol. 2021, 41, 2009–2018. [Google Scholar] [CrossRef] [PubMed]
- Benedict, A.; Bukelo, M. A Study on Role of Thrombocytopenia in Retinopathy of Prematurity. Int. J. Contemp. Pediatr. 2020, 7, 346–350. [Google Scholar] [CrossRef]
- Okur, N.; Buyuktiryaki, M.; Uras, N.; Oncel, Y.; Ertekin, O.; Canpolat, F.E.; Oguz, S.S. Platelet Mass Index in Very Preterm Infants: Can It Be Used as a Parameter for Neonatal Morbidities? J. Matern. Fetal Neonatal Med. 2016, 29, 3218–3222. [Google Scholar] [CrossRef] [PubMed]
Part I | CG n = 63 a | EG n = 51 b | p Value | ||||
---|---|---|---|---|---|---|---|
BW, g | |||||||
Mean ± SD | 1313.9 ± 284.5 | 852.7 ± 255.7 | <0.001 | ||||
Median (IQR) | 1390.0 (650.0–1710.0) | 850.0 (400.0–1500.0) | |||||
GA, weeks | |||||||
Mean ± SD | 28.8 ± 1.6 | 26.3 ± 2.0 | <0.001 | ||||
Median (IQR) | 30.0 (26.0–32.0) | 27.0 (22.0–29.0) | |||||
Sex | |||||||
Male | n = 31 (49%) | n = 23 (45%) | |||||
Female | n = 32 (51%) | n = 28 (55%) | |||||
Average Apgar Score c | 6.3 ± 1.7 | 5.1 ± 1.8 | <0.001 | ||||
Pregnancy | |||||||
Single | n = 48 (76%) | n = 40 (78%) | |||||
Multiple | n = 15 (24%) | n = 11 (22%) | |||||
Birth | |||||||
Caesarean section | n = 59 (94%) | n = 39 (78%) | |||||
Vaginal birth | n = 4 (6%) | n = 12 (24%) | |||||
Ventilation d | n = 33 (52%) | n = 48 (94%) | <0.001 | ||||
Mechanical, (mean SD), days e | 6.5 ± 11.8 | 22.6 ± 17.2 | <0.001 | ||||
Supported, (mean SD), days f | 6.7 ± 12.2 | 21.6 ± 17.1 | <0.001 | ||||
Part II | Subgroups based on birth weight | ||||||
CG | EG | p value | |||||
Subgroups | Group A >1501 g n = 18|m = 90 | Group B 1500–1000 g n = 32|m = 160 | Group C 980–650 g n = 13|m = 65 | Group D 1500–1000 g n = 16|m = 80 | Group E 970–650 g n = 23|m = 115 | Group F <650 g n = 12|m = 60 | |
BW, g | |||||||
Mean ± SD | 1619.4 ± 50.8 | 1325.2 ± 130.1 | 863.1 ± 101.3 | 1153.4 ± 178.0 | 798.5 ± 88.1 | 555.8 ± 67.1 | <0.001 g 0.05 h |
Median (IQR) | 1615 (1550–1710) | 1345 (1000–1500) | 900 (650–980) | 1082.5 (1000–1500) | 800 (650–970) | 575 (400–630) | |
GA, weeks | |||||||
Mean ± SD | 31.1 ± 0.8 | 30 ± 1 | 27.6 ± 1.3 | 28 ± 1.1 | 25.9 ± 1.5 | 24.9 ± 2.2 | <0.001 g 0.002 h |
Median (IQR) | 31 (30–32) | 30 (28–32) | 27 (26–30) | 28 (26–29.5) | 25.5 (23.5–29) | 24 (22–28.5) | |
Average Apgar Score c | 7.4 ± 1.6 | 6.7 ± 1.3 | 5.9 ± 2.2 | 5.5 ± 1.8 | 5.3 ± 1.7 | 4.7 ± 1.6 | 0.01 g 0.33 h |
Sex | |||||||
Male | n = 9 (50%) | n = 14 (44%) | n = 7 (54%) | n = 7 (44%) | n = 12 (52%) | n = 4 (33%) | |
Female | n = 9 (50%) | n = 18 (56%) | n = 6 (49%) | n = (56%) | n = 11 (48%) | n = 8 (67%) |
Bacterial Cultures from 4 Cavities and from Blood n = 114 | Detailed Bacterial Cultures 2 | General Bacterial Cultures 3 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Throat | Anus | Bronchi | Ear | Blood | 1 p value | CG m = 315 a | EG m = 255 b | 2 p value | CG n = 63 c | EG n = 51 d | 3 p value | |||
Coagulase-negative Staphylococci e | n = 16 (14%) | n = 12 (11%) | n = 3 (3%) | n = 1 (1%) | n = 23 (20%) | <0.001 | m = 20 (6%) | m = 35 (14%) | 0.003 | n = 12 (19%) | n = 26 (51%) | <0.001 | ||
Staphylococcus epidermidis | n = 3 (3%) | n = 4 (4%) | n = 2 (2) | n = 0 (0%) | n = 14 (12%) | <0.001 | m = 8 (1%) | m = 15 (3%) | 0.04 | n = 7 (11%) | n = 13 (26%) | 0.08 | ||
Staphylococcus haemolyticus | n = 5 (4%) | n = 1 (1%) | n = 1 (1%) | n = 0 (0%) | n = 7 (6%) | 0.005 | m = 6 (1%) | m = 8 (1%) | 0.35 | n = 4 (6%) | n = 8 (16%) | 0.19 | ||
Klebsiella pneumoniae | n = 10 (9%) | n = 17 (15%) | n = 1 (1%) | n = 0 (0%) | n = 0 (0%) | <0.001 | m = 6 (2%) | m = 22 (9%) | <0.001 | n = 4 (6%) | n = 14 (28%) | 0.002 | ||
Enterobacter cloacae | n = 6 (5%) | n = 22 (19%) | n = 2 (2%) | n = 0 (0%) | n = 1 (1%) | <0.001 | m = 11 (4%) | m = 20 (8%) | 0.02 | n = 10 (16%) | n = 15 (29%) | 0.08 | ||
Eschericha coli | n = 6 (5%) | n = 11 (10%) | n = 2 (2%) | n = 5 (4%) | n = 5 (4%) | >0.99 | m = 18 (6%) | m = 11 (4%) | 0.45 | n = 8 (13%) | n = 8 (16%) | 0.85 | ||
Maltophilia stenotrophomonas | n = 7 (6%) | n = 5 (4%) | n = 2 (2%) | n = 0 (0%) | n = 0 (0%) | 0.001 | m = 3 (1%) | m = 11 (4%) | 0.005 | n = 3 (5%) | n = 7 (14%) | 0.09 | ||
Staphylococcus aureus | n = 3 (3%) | n = 3 (3%) | n = 3 (3%) | n = 0 (0%) | n = 0 (0%) | 0.05 | m = 1 (0.3%) | m = 8 (3%) | 0.005 | n = 1 (2%) | n = 5 (10%) | 0.05 | ||
Klebsiella oxytoca | n = 6 (5%) | n = 7 (6%) | n = 1 (1%) | n = 0 (0%) | n = 0 (0%) | <0.001 | m = 9 (3%) | m = 5 (2%) | 0.49 | n = 6 (10%) | n = 2 (4%) | 0.23 | ||
Klebsiella aerogens | n = 2 (2%) | n = 8 (7%) | n = 0 (0%) | n = 0 (0%) | n = 1 (1%) | 0.001 | m = 3 (1%) | m = 8 (3%) | 0.06 | n = 3 (5%) | n = 6 (12%) | 0.17 |
CG n = 63 | EG n = 51 | Pathogen Significant in Disease a | OR b | 95%Cl | |||
---|---|---|---|---|---|---|---|
Part I premature diseases/comorbidities c | BPD | n = 13 of 20 (65%) | n = 40 of 43 (93%) | APC | 7.2 | 1.6, 31.9 | |
n = 2 of 20 (10%) | n = 14 of 43 (33%) | EC | 4.3 | 0.9, 21.4 | |||
n = 1 of 20 (5%) | n = 5 of 43 (12%) | SA | 2.5 | 0.3, 22.9 | |||
n = 8 of 20 (32%) | n = 22 of 43 (51%) | CoNS | 1.6 | 0.5, 4.6 | |||
n = 3 of 20 (15%) | n = 9 of 43 (21%) | KP | 1.5 | 0.4, 6.3 | |||
Intrauterine infections | n = 7 of 9 (78%) | n = 19 of 20 (95%) | APC | 5.4 | 0.4, 69.7 | ||
n = 1 of 9 (11%) | n = 6 of 20 (30%) | KP | 3.4 | 0.4, 33.8 | |||
Asphyxia | n = 2 of 5 (40%) | n = 13 of 14 (93%) | APC | 19.5 | 1.3, 292.8 | ||
n = 1 of 5 (20%) | n = 6 of 14 (43%) | CoNS | 3.0 | 0.3, 34.2 | |||
IVH III/IV grade | n = 2 of 4 (50%) | n = 10 of 11 (91%) | APC | 10.0 | 0.58, 171.2 | ||
n = 1 of 4 (25%) | n = 4 of 11 (36%) | CoNS | 1.7 | 0.1, 22.5 | |||
PDA | n = 4 of 10 (40%) | n = 18 of 20 (90%) | APC | 13.5 | 2.0, 93.3 | ||
n = 1 of 10 (10%) | n = 6 of 20 (30%) | EC | 3.9 | 0.4, 37.9 | |||
n = 4 of 10 (40%) | n = 12 of 20 (60%) | CoNS | 2.3 | 0.5, 10.6 | |||
n = 1 of 10 (10%) | n = 4 of 20 (20%) | SA | 2.3 | 0.2, 23.3 | |||
Seizures | n = 1 of 2 (50%) | n = 7 of 8 (88%) | APC | 7.0 | 0.2, 226 | ||
n = 1 of 2 (50%) | n = 6 of 8 (75%) | CoNS | 3.0 | 0.1, 73.6 | |||
NEC | n = 1 of 2 (50%) | n = 9 of 10 (90%) | APC | 9.0 | 0.3, 285.5 | ||
Hernia f | n = 2 of 3 (67%) | n = 10 of 11 (91%) | APC | 5.0 | 0.21, 117.9 | ||
Part II Laboratory parameters d | First 24 h of neonate’s life | WBC | n = 5 of 7 (71%) | n = 25 of 27 (93%) | APC | 5.0 | 0.6, 44.3 |
n = 2 of 7 (29%) | n = 13 of 27 (48%) | CoNS | 2.3 | 0.4, 14.1 | |||
n = 2 of 7 (29%) | n = 10 of 27 (37%) | KP | 1.5 | 0.2, 9.0 | |||
Thrombocytopenia | n = 6 of 9 (48%) | n = 19 of 20 (95%) | APC | 9.5 | 0.8, 109.2 | ||
Second week of neonate’s life e | Lymphocytosis | n = 17 of 28 (61%) | n = 45 of 48 (94%) | APC | 9.7 | 2.4, 39.1 | |
n = 3 of 28 (11%) | n = 13 of 48 (27%) | KP | 3.1 | 0.8, 12.0 | |||
n = 1 of 28 (4%) | n = 4 of 48 (8%) | SA | 2.5 | 0.3, 23.1 | |||
n = 9 of 28 (32%) | n = 24 of 48 (50%) | CoNS | 2.1 | 0.8, 5.6 | |||
CRP > 5 [mg/L] | n = 13 of 27 (48%) | n = 36 of 38 (95%) | APC | 19.4 | 3.9, 97.1 | ||
n = 1 of 27 (4%) | n = 7 of 38 (18%) | MS | 5.9 | 0.7, 50.9 | |||
n = 3 of 27 (11%) | n = 12 of 38 (32%) | EC | 3.7 | 0.9, 14.7 | |||
n = 3 of 27 (11%) | n = 11 of 38 (29%) | KP | 3.3 | 0.8, 13.1 | |||
n = 1 of 27 (4%) | n = 4 of 38 (11%) | SA | 3.1 | 0.3, 29.0 | |||
n = 8 of 27 (30%) | n = 20 of 38 (53%) | CoNS | 2.6 | 0.9, 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modrzejewska, M.; Bosy-Gąsior, W.; Grzesiak, W. Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations. J. Clin. Med. 2023, 12, 6374. https://doi.org/10.3390/jcm12196374
Modrzejewska M, Bosy-Gąsior W, Grzesiak W. Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations. Journal of Clinical Medicine. 2023; 12(19):6374. https://doi.org/10.3390/jcm12196374
Chicago/Turabian StyleModrzejewska, Monika, Wiktoria Bosy-Gąsior, and Wilhelm Grzesiak. 2023. "Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations" Journal of Clinical Medicine 12, no. 19: 6374. https://doi.org/10.3390/jcm12196374
APA StyleModrzejewska, M., Bosy-Gąsior, W., & Grzesiak, W. (2023). Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations. Journal of Clinical Medicine, 12(19), 6374. https://doi.org/10.3390/jcm12196374