Association of Advanced Lipoprotein Subpopulation Profiles with Insulin Resistance and Inflammation in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Protocol
2.2. Quantification of Plasma Lipoprotein Subpopulations and Markers of Insulin Resistance (LPIR) and Inflammation (GlycA)
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Subjects with T2DM
3.2. Advanced NMR Quantification of Lipoprotein Subpopulations and Markers of Insulin Resistance and Inflammation in T2DM Patients
3.3. Correlation between Different Plasma Lipoprotein Subpopulations inT2DM Subjects
3.4. Correlation of Conventional Lipid Measurements and Lipoprotein Subpopulation Profiles with PLIR Score, GlycA, HbA1c and Hs-CRP
3.5. Association of Lipoprotein Subpopulation Profiles with Glucose Control Status and Inflammation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism 2014, 63, 1469–1479. [Google Scholar] [CrossRef]
- Verges, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Shalaurova, I.; Connelly, M.A.; Garvey, W.T.; Otvos, J.D. Lipoprotein insulin resistance index: A lipoprotein particle-derived measure of insulin resistance. Metab. Syndr. Relat. Disord. 2014, 12, 422–429. [Google Scholar] [CrossRef]
- Dugani, S.B.; Akinkuolie, A.O.; Paynter, N.; Glynn, R.J.; Ridker, P.M.; Mora, S. Association of Lipoproteins, Insulin Resistance, and Rosuvastatin With Incident Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2016, 1, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Adiels, M.; Olofsson, S.O.; Taskinen, M.R.; Boren, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef]
- Duran, E.K.; Aday, A.W.; Cook, N.R.; Buring, J.E.; Ridker, P.M.; Pradhan, A.D. Triglyceride-Rich Lipoprotein Cholesterol, Small Dense LDL Cholesterol, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 75, 2122–2135. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H. Triglyceride-rich lipoprotein cholesterol (TRL-C): The ugly stepsister of LDL-C. Eur. Heart J. 2018, 39, 620–622. [Google Scholar] [CrossRef] [Green Version]
- Tahir, A.; Martinez, P.J.; Ahmad, F.; Fisher-Hoch, S.P.; McCormick, J.; Gay, J.L.; Mirza, S.; Chaudhary, S.U. An evaluation of lipid profile and pro-inflammatory cytokines as determinants of cardiovascular disease in those with diabetes: A study on a Mexican American cohort. Sci. Rep. 2021, 11, 2435. [Google Scholar] [CrossRef]
- Lian, Y.; Xie, L.; Liu, Y.; Tang, F. Metabolic-related markers and inflammatory factors as predictors of dyslipidemia among urban Han Chinese adults. Lipids Health Dis. 2019, 18, 167. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.; Marcuzzi, A.; Piscianz, E.; Tommasini, A.; Fabris, B. The Complex Interplay between Lipids, Immune System and Interleukins in Cardio-Metabolic Diseases. Int. J. Mol. Sci. 2018, 19, 4058. [Google Scholar] [CrossRef]
- Esteve, E.; Ricart, W.; Fernandez-Real, J.M. Dyslipidemia and inflammation: An evolutionary conserved mechanism. Clin. Nutr. 2005, 24, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Radikova, Z.; Penesova, A.; Vlcek, M.; Havranova, A.; Sivakova, M.; Siarnik, P.; Zitnanova, I.; Imrich, R.; Turcani, P.; Kollar, B. Lipoprotein profiling in early multiple sclerosis patients: Effect of chronic inflammation? Lipids Health Dis. 2020, 19, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, S.; Xu, R.X.; Zhu, C.G.; Guo, Y.L.; Wu, N.Q.; Sun, J.; Li, J.J. Systemic Inflammatory Markers Are Closely Associated with Atherogenic Lipoprotein Subfractions in Patients Undergoing Coronary Angiography. Mediat. Inflamm. 2015, 2015, 235742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, G.; Kuang, M.; Yang, R.; Zhong, Y.; Zhang, S.; Zou, Y. Evaluation of the value of conventional and unconventional lipid parameters for predicting the risk of diabetes in a non-diabetic population. J. Transl. Med. 2022, 20, 266. [Google Scholar] [CrossRef]
- Clouet-Foraison, N.; Gaie-Levrel, F.; Gillery, P.; Delatour, V. Advanced lipoprotein testing for cardiovascular diseases risk assessment: A review of the novel approaches in lipoprotein profiling. Clin. Chem. Lab. Med. 2017, 55, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Superko, H.R. Advanced lipoprotein testing and subfractionation are clinically useful. Circulation 2009, 119, 2383–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ala-Korpela, M.; Zhao, S.; Jarvelin, M.R.; Makinen, V.P.; Ohukainen, P. Apt interpretation of comprehensive lipoprotein data in large-scale epidemiology: Disclosure of fundamental structural and metabolic relationships. Int. J. Epidemiol. 2022, 51, 996–1011. [Google Scholar] [CrossRef]
- Williams, P.T.; Vranizan, K.M.; Krauss, R.M. Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women. J. Lipid Res. 1992, 33, 765–774. [Google Scholar] [CrossRef]
- Ip, S.; Lichtenstein, A.H.; Chung, M.; Lau, J.; Balk, E.M. Systematic review: Association of low-density lipoprotein subfractions with cardiovascular outcomes. Ann. Intern. Med. 2009, 150, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Mora, S.; Otvos, J.D.; Rifai, N.; Rosenson, R.S.; Buring, J.E.; Ridker, P.M. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation 2009, 119, 931–939. [Google Scholar] [CrossRef]
- Stanciulescu, L.A.; Scafa, A.; Duduianu, C.; Stan, R.; Nicolescu, A.; Deleanu, C.; Dorobantu, M. Lipoprofiling Assessed by NMR Spectroscopy in Patients with Acute Coronary Syndromes: Is There a Need for Fasting Prior to Sampling? Diagnostics 2022, 12, 1675. [Google Scholar] [CrossRef] [PubMed]
- Julve, J.; Rossell, J.; Correig, E.; Rojo-Lopez, M.I.; Amigo, N.; Hernandez, M.; Traveset, A.; Carbonell, M.; Alonso, N.; Mauricio, D.; et al. Predictive Value of the Advanced Lipoprotein Profile and Glycated Proteins on Diabetic Retinopathy. Nutrients 2022, 14, 3932. [Google Scholar] [CrossRef] [PubMed]
- Harada, P.H.N.; Demler, O.V.; Dugani, S.B.; Akinkuolie, A.O.; Moorthy, M.V.; Ridker, P.M.; Cook, N.R.; Pradhan, A.D.; Mora, S. Lipoprotein insulin resistance score and risk of incident diabetes during extended follow-up of 20 years: The Women’s Health Study. J. Clin. Lipidol. 2017, 11, 1257–1267 e1252. [Google Scholar] [CrossRef] [Green Version]
- Mackey, R.H.; Mora, S.; Bertoni, A.G.; Wassel, C.L.; Carnethon, M.R.; Sibley, C.T.; Goff, D.C., Jr. Lipoprotein particles and incident type 2 diabetes in the multi-ethnic study of atherosclerosis. Diabetes Care 2015, 38, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Akinkuolie, A.O.; Pradhan, A.D.; Buring, J.E.; Ridker, P.M.; Mora, S. Novel protein glycan side-chain biomarker and risk of incident type 2 diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Ballout, R.A.; Remaley, A.T. GlycA: A New Biomarker for Systemic Inflammation and Cardiovascular Disease (CVD) Risk Assessment. J. Lab. Precis Med. 2020, 5, 17. [Google Scholar] [CrossRef]
- Amor, A.J.; Castelblanco, E.; Hernandez, M.; Gimenez, M.; Granado-Casas, M.; Blanco, J.; Soldevila, B.; Esmatjes, E.; Conget, I.; Alonso, N.; et al. Advanced lipoprotein profile disturbances in type 1 diabetes mellitus: A focus on LDL particles. Cardiovasc. Diabetol. 2020, 19, 126. [Google Scholar] [CrossRef]
- Riggs, K.A.; Joshi, P.H.; Khera, A.; Singh, K.; Akinmolayemi, O.; Ayers, C.R.; Rohatgi, A. Impaired HDL Metabolism Links GlycA, A Novel Inflammatory Marker, with Incident Cardiovascular Events. J. Clin. Med. 2019, 8, 2137. [Google Scholar] [CrossRef] [Green Version]
- Gruppen, E.G.; Connelly, M.A.; Vart, P.; Otvos, J.D.; Bakker, S.J.; Dullaart, R.P. GlycA, a novel proinflammatory glycoprotein biomarker, and high-sensitivity C-reactive protein are inversely associated with sodium intake after controlling for adiposity: The Prevention of Renal and Vascular End-Stage Disease study. Am. J. Clin. Nutr. 2016, 104, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A Composite Nuclear Magnetic Resonance Biomarker of Systemic Inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef]
- Otvos, J.D.; Guyton, J.R.; Connelly, M.A.; Akapame, S.; Bittner, V.; Kopecky, S.L.; Lacy, M.; Marcovina, S.M.; Muhlestein, J.B.; Boden, W.E. Relations of GlycA and lipoprotein particle subspecies with cardiovascular events and mortality: A post hoc analysis of the AIM-HIGH trial. J. Clin. Lipidol. 2018, 12, 348–355 e342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly, M.A.; Otvos, J.D.; Shalaurova, I.; Playford, M.P.; Mehta, N.N. GlycA, a novel biomarker of systemic inflammation and cardiovascular disease risk. J. Transl. Med. 2017, 15, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, D.; Schulze-Horn, C.; Bickel, H.; Gnahn, H.; Bartels, E.; Conrad, B. Combined effects of hemoglobin A1c and C-reactive protein on the progression of subclinical carotid atherosclerosis: The INVADE study. Stroke 2006, 37, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.C.; Chou, C.C.; Bintoro, B.S.; Chien, K.L.; Bai, C.H. High sensitivity C-reactive protein and glycated hemoglobin levels as dominant predictors of all-cause dementia: A nationwide population-based cohort study. Immun. Ageing 2022, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Elimam, H.; Abdulla, A.M.; Taha, I.M. Inflammatory markers and control of type 2 diabetes mellitus. Diabetes Metab. Syndr. 2019, 13, 800–804. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 150–159. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Florentin, M.; Georgoula, M.; Elisaf, M.S. Pharmacological management of diabetic dyslipidemia. Expert Rev. Clin. Pharmacol. 2017, 10, 187–200. [Google Scholar] [CrossRef]
- Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021, 33, 1519–1545. [Google Scholar] [CrossRef]
- Lim, P.; Bleich, D. Revisiting cardiovascular risk reduction in type 2 diabetes and dyslipidemia. Int. J. Cardiol. Cardiovasc. Risk Prev. 2022, 14, 200141. [Google Scholar] [CrossRef]
- Mallol, R.; Rodriguez, M.A.; Brezmes, J.; Masana, L.; Correig, X. Human serum/plasma lipoprotein analysis by NMR: Application to the study of diabetic dyslipidemia. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 70, 1–24. [Google Scholar] [CrossRef]
- Aguilar-Ramirez, D.; Alegre-Diaz, J.; Herrington, W.G.; Staplin, N.; Ramirez-Reyes, R.; Gnatiuc, L.; Hill, M.; Romer, F.; Torres, J.; Trichia, E.; et al. Association of Kidney Function With NMR-Quantified Lipids, Lipoproteins, and Metabolic Measures in Mexican Adults. J. Clin. Endocrinol. Metab. 2021, 106, 2828–2839. [Google Scholar] [CrossRef] [PubMed]
- Festa, A.; Williams, K.; Hanley, A.J.; Otvos, J.D.; Goff, D.C.; Wagenknecht, L.E.; Haffner, S.M. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study. Circulation 2005, 111, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Jenkins, A.J.; Zhang, Y.; Stoner, J.A.; Klein, R.L.; Lopes-Virella, M.F.; Garvey, W.T.; Lyons, T.J.; Group, D.E.R. Nuclear magnetic resonance-determined lipoprotein subclasses and carotid intima-media thickness in type 1 diabetes. Atherosclerosis 2016, 244, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; Colhoun, H.M.; Thomason, M.J.; Betteridge, D.J.; Durrington, P.N.; Hitman, G.A.; Fuller, J.H.; Julier, K.; Mackness, M.I.; Neil, H.A.; et al. The effect of atorvastatin on serum lipids, lipoproteins and NMR spectroscopy defined lipoprotein subclasses in type 2 diabetic patients with ischaemic heart disease. Atherosclerosis 2003, 167, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Krauss, R.M.; Burke, D.J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J. Lipid Res. 1982, 23, 97–104. [Google Scholar] [CrossRef]
- Otvos, J.D.; Jeyarajah, E.J.; Bennett, D.W.; Krauss, R.M. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin. Chem. 1992, 38, 1632–1638. [Google Scholar] [CrossRef]
- Campos, H.; Genest, J.J., Jr.; Blijlevens, E.; McNamara, J.R.; Jenner, J.L.; Ordovas, J.M.; Wilson, P.W.; Schaefer, E.J. Low density lipoprotein particle size and coronary artery disease. Arterioscler. Thromb. 1992, 12, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.A.; Nikolic, D.; Rizzo, M. Small, dense LDL: An update. Curr. Opin. Cardiol. 2017, 32, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, P.A.; Thalhammer, C.; Schmied, C.; Spring, S.; Amann-Vesti, B.; Spinas, G.A.; Berneis, K. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study. PLoS ONE 2013, 8, e72763. [Google Scholar] [CrossRef] [Green Version]
- Hirano, T.; Kodera, R.; Hirashima, T.; Suzuki, N.; Aoki, E.; Hosoya, M.; Oshima, T.; Hayashi, T.; Koba, S.; Ohta, M.; et al. Metabolic Properties of Lowdensity Lipoprotein (LDL) Triglycerides in Patients with Type 2 Diabetes, Comparison with Small Dense LDL-Cholesterol. J. Atheroscler. Thromb. 2022, 29, 762–774. [Google Scholar] [CrossRef]
- Gentile, M.; Panico, S.; Mattiello, A.; Ubaldi, S.; Iannuzzo, G.; De Michele, M.; Iannuzzi, A.; Rubba, P. Association between small dense LDL and early atherosclerosis in a sample of menopausal women. Clin. Chim. Acta 2013, 426, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vekic, J.; Zeljkovic, A.; Cicero, A.F.G.; Janez, A.; Stoian, A.P.; Sonmez, A.; Rizzo, M. Atherosclerosis Development and Progression: The Role of Atherogenic Small, Dense LDL. Medicina 2022, 58, 299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiang, P.; Coll, B.; Lopez, J.A.G.; Wong, N.D. Diabetes associated residual atherosclerotic cardiovascular risk in statin-treated patients with prior atherosclerotic cardiovascular disease. J. Diabetes Complicat. 2021, 35, 107767. [Google Scholar] [CrossRef] [PubMed]
- Nichols, G.A.; Philip, S.; Reynolds, K.; Granowitz, C.B.; Fazio, S. Increased residual cardiovascular risk in patients with diabetes and high versus normal triglycerides despite statin-controlled LDL cholesterol. Diabetes Obes. Metab. 2019, 21, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; Jenkins, A.J.; English, D.R.; O'Dea, K.; Giles, G.G. NMR-determined lipoprotein subclass profile predicts type 2 diabetes. Diabetes Res. Clin. Pract. 2009, 83, 132–139. [Google Scholar] [CrossRef]
- Bragg, F.; Kartsonaki, C.; Guo, Y.; Holmes, M.; Du, H.; Yu, C.; Pei, P.; Yang, L.; Jin, D.; Chen, Y.; et al. The role of NMR-based circulating metabolic biomarkers in development and risk prediction of new onset type 2 diabetes. Sci. Rep. 2022, 12, 15071. [Google Scholar] [CrossRef]
- Sokooti, S.; Flores-Guerrero, J.L.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Triglyceride-rich lipoprotein and LDL particle subfractions and their association with incident type 2 diabetes: The PREVEND study. Cardiovasc. Diabetol. 2021, 20, 156. [Google Scholar] [CrossRef]
- Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 2010, 59, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Varga, T.V.; Liu, J.; Goldberg, R.B.; Chen, G.; Dagogo-Jack, S.; Lorenzo, C.; Mather, K.J.; Pi-Sunyer, X.; Brunak, S.; Temprosa, M.; et al. Predictive utilities of lipid traits, lipoprotein subfractions and other risk factors for incident diabetes: A machine learning approach in the Diabetes Prevention Program. BMJ Open Diabetes Res. Care 2021, 9, e001953. [Google Scholar] [CrossRef]
- Garvey, W.T.; Kwon, S.; Zheng, D.; Shaughnessy, S.; Wallace, P.; Hutto, A.; Pugh, K.; Jenkins, A.J.; Klein, R.L.; Liao, Y. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003, 52, 453–462. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Connelly, M.A.; Shalaurova, I.; Gruppen, E.G.; Kieneker, L.M.; Dullaart, R.P.F.; Bakker, S.J.L. Lipoprotein insulin resistance index, a high-throughput measure of insulin resistance, is associated with incident type II diabetes mellitus in the Prevention of Renal and Vascular End-Stage Disease study. J. Clin. Lipidol. 2019, 13, 129–137 e121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakillah, A.; Zaiou, M. The "forgotten" modified lipoprotein subspecies. Front. Biosci. (Landmark Ed.) 2018, 23, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Chevli, P.A.; Islam, T.; Pokharel, Y.; Rodriguez, F.; Virani, S.S.; Blaha, M.J.; Bertoni, A.G.; Budoff, M.; Otvos, J.D.; Shapiro, M.D. Association between remnant lipoprotein cholesterol, high-sensitivity C-reactive protein, and risk of atherosclerotic cardiovascular disease events in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Lipidol. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 2015, 278, 483–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P. Inflammation in Atherosclerosis-No Longer a Theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.A.; Han, J.M.; Wolska, A.; Wilson, S.R.; Patel, T.P.; Remaley, A.T.; Periwal, V.; Yanovski, J.A.; Demidowich, A.P. Associations of GlycA and high-sensitivity C-reactive protein with measures of lipolysis in adults with obesity. J. Clin. Lipidol. 2020, 14, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Riggs, K.A.; Joshi, P.H.; Khera, A.; Otvos, J.D.; Greenland, P.; Ayers, C.R.; Rohatgi, A. GlycA, hsCRP differentially associated with MI, ischemic stroke: In the Dallas Heart Study and Multi-Ethnic Study of Atherosclerosis: GlycA, hsCRP Differentially Associated MI, Stroke. Am. J. Prev. Cardiol. 2022, 12, 100373. [Google Scholar] [CrossRef] [PubMed]
- Connelly, M.A.; Gruppen, E.G.; Wolak-Dinsmore, J.; Matyus, S.P.; Riphagen, I.J.; Shalaurova, I.; Bakker, S.J.; Otvos, J.D.; Dullaart, R.P. GlycA, a marker of acute phase glycoproteins, and the risk of incident type 2 diabetes mellitus: PREVEND study. Clin. Chim. Acta 2016, 452, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Boren, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martin, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
Characteristics | Study Cohort (N = 57) |
---|---|
Age (years) * | |
Mean (SD) | 61.14 (9.99) |
Height (cm) * | |
Mean (SD) | 160.58 (8.60) |
BMI (kg/m2) * | |
Mean (SD) | 35.15 (6.65) |
Systolic BP (mmHg) | |
Median (IQR) | 145.00 (123.50–153.00) |
Diastolic BP (mmHg) | |
Median (IQR) | 71.00 (61.50–81.00) |
HbA1c (%) * | |
Mean (SD) | 8.66 (1.60) |
Total Cholesterol (mg/dL) | |
Mean (SD) | 162.03(51.43) |
LDLc (mg/dL) | |
Mean (SD) | 99.38 (38.74) |
HDLc (mg/dL) | |
Mean (SD) | 45.24 (25.13) |
Triglycerides (mg/dL) | |
Mean (SD) | 162.97 (84.32) |
Platelet Count (×103/mL) | |
Median (IQR) | 260.00 (217.50–290.00) |
Creatinine (mg/dL) | |
Median (IQR) | 1.46 (1.09–1.63) |
Total proteins (g/L) | |
Median (IQR) | 70.00 (67.25–72.75) |
Fasting Glucose (mg/dL) | 144.14 (120.18–257.12) |
Hs-CRP (mg/L) | 7.60 (3.40–25.97) |
Dyslipidemia, n (%) | 45 (79) |
Hypertension, n (%) | 54 (95) |
CAD, n (%) | 8 (14) |
Family History of Diabetes (%) | 78.90 |
Family History of Hypertension (%) | 24.60 |
Family History of CAD (%) | 36.80 |
Family History of Cholesterol (%) | 52.60 |
Family History of Stroke (%) | 14.00 |
Insulin (%) | 47.37 |
HMG-CoA reductase inhibitors (%) | 19.30 |
Metformin (%) | 14.03 |
DPP4 inhibitors (%) | 14.03 |
Sulfonylurea (%) | 10.53 |
Calcium channel blockers (%) | 8.77 |
ACE inhibitors (%) | 7.02 |
NSAID (%) | 7.02 |
Diuretics (%) | 3.51 |
PPI (%) | 3.51 |
Variables | T2DM Patients (N = 57) | NMR Internal Quality Controls (Reference Range) * |
---|---|---|
Plasma Lipoprotein Concentration | ||
VLDLCP3 (nmol/L) | 35.80 [25.95–51.05] | 46.20 [28.65–56.45] |
VLCP3 (nmol/L) | 4.40 [2.65–6.05] | 2.50 [1.20–5.80] |
VMCP3 (nmol/L) | 8.80 [2.65–6.05] | 11.90 [7.45–27.65] |
VSCP3 (nmol/L) | 20.80 [12.15–29.75] | 20.00 [13.60–28.60] |
LDLCP3 (nmol/L) | 906.00 [725.00–1146.50] | 1123.00 [873.50–1177.00] |
IDLCP3 (nmol/L) | 87.0 [39.50–157.50] | 234.00 [131.00–283.00] |
LLCP3 (nmol/L) | 129.00 [15.50–316.00] | 301.00 [155.00–490.00] |
LSCP3 (nmol/L) | 657.00 [533.00–816.00] | 440.00 [321.50–654.00] |
HDLCP3 (nmol/L) | 29.50 [27.10–31.85] | 35.10 [30.00–37.55] |
HLCP3 (nmol/L) | 5.70 [4.40–7.05] | 8.80 [7.30–10.80] |
HMCP3 (nmol/L) | 5.40 [2.65–10.10] | 8.10 [4.65–12.65] |
HSCP3 (nmol/L) | 18.50 [12.75–20.95] | 16.90 [9.65–21.65] |
Plasma Lipoprotein Size | ||
VZ3 (nm) | 55.70 [50.80–59.10] | 48.00 [45.50–56.75] |
LZ3 (nm) | 20.20 [19.70–20.75] | 21.30 [20.50–21.70] |
HZ3 (nm) | 9.30 [9.10–9.50] | 9.60 [9.50–10.00] |
Plasma-Extended Lipid Panel | ||
ELP-Total cholesterol (mg/dL) | 144.00 [127.00–176.50] | 195.00 [165.00–213.00] |
ELP-VLDLc (mg/dL) | 22.00 [19.00–31.50] | 17.00 [14.50–29.50] |
ELP-HDLc (mg/dL) | 42.00 [33.50–46.00] | 54.00 [50.50–61.50] |
ELP-LDLc (mg/dL) | 77.00 [63.50–102.50] | 116.00 [97.00–127.00] |
ELP-TG (mg/dL) | 120.00 [102.50–172.00] | 90.00 [77.50–167.00] |
ELP-nonHDLc (mg/dL) | 106.00 [89.50–134.50] | 138.00 [113.50–165.50] |
NMR-Derived Markers for Insulin Resistance and Inflammation | ||
LPIR Score # | 57.00 [45.50–67.50] | 33.00 [16.00–45.50] |
GlycA (µmol/L) | 463.00 [409.50–525.50] | 393.00 [341.00–470.50] |
Variables | VLDL | VLCP3 | VMP3 | VSP3 | LDL | IDLP3 | LLP3 | LSP3 | HLD | HLP3 | HMP3 | HSP3 | VZ3 | LZ3 | HZ3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CP3 | CP3 | CP3 | ||||||||||||||
VLDLCP3 | R | . | 0.577 ** | 0.558 ** | 0.804 ** | 0.063 | −0.1 | −0.292 * | 0.282 * | −0.062 | −0.410 ** | 0.017 | 0.139 | −0.107 | −0.437 ** | −0.371 ** |
P | . | 0.0001 | 0.0001 | 0.0001 | 0.641 | 0.46 | 0.028 | 0.033 | 0.645 | 0.002 | 0.897 | 0.301 | 0.428 | 0.001 | 0.004 | |
VLCP3 | R | 0.577 ** | . | 0.644 ** | 0.158 | 0.085 | −0.213 | −0.387 ** | 0.432 ** | 0.074 | −0.431 ** | 0.092 | 0.117 | 0.657 ** | −0.484 ** | −0.440 ** |
P | 0.0001 | . | 0.0001 | 0.24 | 0.528 | 0.111 | 0.003 | 0.001 | 0.584 | 0.001 | 0.497 | 0.387 | 0.0001 | 0.0001 | 0.001 | |
VMP3 | R | 0.558 ** | 0.644 ** | . | 0.054 | 0.078 | −0.075 | -0.23 | 0.241 | 0.03 | −0.351 ** | 0.144 | 0.075 | 0.453 ** | −0.348 ** | −0.371 ** |
P | 0.0001 | 0.0001 | . | 0.688 | 0.565 | 0.577 | 0.086 | 0.071 | 0.589 | 0.007 | 0.285 | 0.579 | 0.0001 | 0.008 | 0.005 | |
VSP3 | R | 0.804 ** | 0.158 | 0.054 | . | 0.0001 | −0.01 | −0.121 | 0.086 | −0.047 | −0.262 * | −0.075 | 0.173 | −0.526 ** | −0.229 | −0.205 |
P | 0.0001 | 0.24 | 0.688 | . | 0.999 | 0.939 | 0.371 | 0.527 | 0.727 | 0.049 | 0.577 | 0.198 | 0.0001 | 0.086 | 0.125 | |
LDL- | R | 0.063 | 0.085 | 0.078 | 0.0001 | . | 0.405 ** | 0.575 ** | 0.650 ** | 0.251 | 0.193 | 0.042 | 0.014 | −0.044 | 0.384 ** | −0.013 |
CP3 | P | 0.641 | 0.528 | 0.565 | 0.999 | . | 0.002 | 0.0001 | 0.0001 | 0.059 | 0.15 | 0.755 | 0.92 | 0.743 | 0.003 | 0.922 |
IDLP3 | R | −0.1 | −0.213 | −0.075 | −0.01 | 0.405 ** | . | 0.278 * | −0.113 | 0.038 | 0.146 | 0.26 | −0.219 | −0.118 | 0.364 ** | 0.264 * |
P | 0.46 | 0.111 | 0.577 | 0.939 | 0.002 | . | 0.037 | 0.403 | 0.779 | 0.28 | 0.051 | 0.101 | 0.383 | 0.005 | 0.047 | |
LLP3 | R | −0.292 * | −0.387 ** | −0.23 | −0.121 | 0.575 ** | 0.278 * | . | −0.06 | 0.148 | 0.552 ** | 0.037 | −0.087 | −0.311 * | 0.889 ** | 0.354 ** |
P | 0.028 | 0.003 | 0.086 | 0.371 | 0.0001 | 0.037 | . | 0.66 | 0.271 | 0.0001 | 0.783 | 0.521 | 0.018 | 0.0001 | 0.007 | |
LSP3 | R | 0.282 * | 0.432 ** | 0.241 | 0.086 | 0.650 ** | −0.113 | −0.06 | . | 0.099 | −0.263 * | −0.124 | 0.143 | 0.184 | −0.322 * | −0.435 ** |
P | 0.033 | 0.001 | 0.071 | 0.527 | 0.0001 | 0.403 | 0.66 | . | 0.464 | 0.048 | 0.358 | 0.29 | 0.171 | 0.015 | 0.001 | |
HLD- | R | −0.062 | 0.074 | 0.073 | −0.047 | 0.251 | 0.038 | 0.148 | 0.099 | . | 0.187 | 0.128 | 0.517 ** | 0.165 | 0.174 | −0.126 |
CP3 | P | 0.645 | 0.584 | 0.589 | 0.727 | 0.059 | 0.779 | 0.271 | 0.464 | . | 0.163 | 0.341 | 0.0001 | 0.22 | 0.196 | 0.351 |
HLP3 | R | −0.410 ** | −0.431 ** | −0.351 ** | −0.262 * | 0.193 | 0.146 | 0.552 ** | −0.263 * | 0.187 | . | 0.169 | -0.223 | −0.175 | 0.685 ** | 0.835 ** |
P | 0.002 | 0.001 | 0.007 | 0.049 | 0.15 | 0.28 | 0.0001 | 0.048 | 0.163 | . | 0.21 | 0.095 | 0.194 | 0.0001 | 0.0001 | |
HMP3 | R | 0.017 | 0.092 | 0.144 | −0.075 | 0.042 | 0.26 | 0.037 | −0.124 | 0.128 | 0.169 | . | −0.683 ** | 0.226 | 0.141 | 0.281 * |
P | 0.897 | 0.497 | 0.285 | 0.577 | 0.755 | 0.051 | 0.783 | 0.358 | 0.341 | 0.21 | . | 0.0001 | 0.092 | 0.296 | 0.035 | |
HSP3 | R | 0.139 | 0.117 | 0.075 | 0.173 | 0.014 | −0.219 | −0.087 | 0.143 | 0.517 ** | −0.223 | −0.683 ** | . | −0.04 | −0.186 | −0.511 ** |
P | 0.301 | 0.387 | 0.579 | 0.198 | 0.92 | 0.101 | 0.521 | 0.29 | 0.0001 | 0.095 | 0.0001 | . | 0.767 | 0.166 | 0.0001 | |
VZ3 | R | −0.107 | 0.657 ** | 0.453 ** | −0.526 ** | −0.044 | −0.118 | −0.311 * | 0.184 | 0.165 | −0.175 | 0.226 | −0.04 | . | −0.270 * | −0.192 |
P | 0.428 | 0.0001 | 0.0001 | 0.0001 | 0.743 | 0.383 | 0.018 | 0.171 | 0.22 | 0.194 | 0.092 | 0.767 | . | 0.042 | 0.153 | |
LZ3 | R | −0.437 ** | −0.484 ** | −0.348 ** | −0.229 | 0.384 ** | 0.364 ** | 0.889 ** | −0.322 * | 0.174 | 0.685 ** | 0.141 | −0.186 | −0.270 * | . | 0.592 ** |
P | 0.001 | 0.0001 | 0.008 | 0.086 | 0.003 | 0.005 | 0.0001 | 0.015 | 0.196 | 0.0001 | 0.296 | 0.166 | 0.042 | . | 0.0001 | |
HZ3 | R | −0.371 ** | −0.440 ** | −0.371 ** | −0.205 | −0.013 | 0.264 * | 0.354 ** | −0.435 ** | −0.126 | 0.835 ** | 0.281 * | −0.511 ** | −0.192 | 0.592 ** | . |
P | 0.004 | 0.001 | 0.005 | 0.125 | 0.922 | 0.047 | 0.007 | 0.001 | 0.351 | 0.0001 | 0.035 | 0.0001 | 0.153 | 0.0001 | . |
Variables | LPIR | GlycA | HbA1c | Hs-CRP | F-Gluc |
---|---|---|---|---|---|
Plasma Lipoprotein Concentration | |||||
VLDLCP3 | 0.221 (0.101) | 0.079 (0.562) | 0.214 (0.119) | 0.074 (0.630) | 0.263 (0.068) |
VLCP3 | 0.797 *** (0.0001) | −0.116 (0.394) | 0.190 (0.168) | 0.037 (0.809) | 0.219 (0.131) |
VMCP3 | 0.500 *** (0.0001) | 0.019 (0.888) | −0.002 (0.987) | 0.046 (0.764) | 0.158 0.277 |
VSCP3 | −0.146 (0.283) | 0.115 (0.400) | 0.244 (0.076) | 0.036 (0.814) | 0.197 (0.175) |
LDLCP3 | −0.007 (0.958) | 0.104 (0.447) | 0.320 * (0.018) | −0.045 (0.767) | 0.248 (0.086) |
IDLCP3 | −0.232 (0.086) | 0.099 (0.469) | 0.121 (0.382) | 0.080 (0.603) | −0.005 (0.970) |
LLCP3 | −0.449 ** (0.001) | 0.103 (0.451) | 0.305 * (0.025) | 0.136 (0.375) | 0.022 (0.881) |
LSCP3 | 0.400 ** (0.002) | 0.136 (0.319) | 0.167 (0.226) | −0.057 (0.708) | 0.285 * (0.047) |
HDLCP3 | 0.093 (0.495) | -0.055 (0.690) | −0.105 (0.451) | −0.236 (0.118) | −0.047 (0.748) |
HLCP3 | −0.627 *** (0.0001) | 0.135 (0.321) | 0.032 (0.819) | 0.050 (0.742) | −0.009 (0.952) |
HMCP3 | 0.034 (0.805) | 0.135 (0.322) | 0.147 (0.288) | 0.144 (0.344) | −0.139 0.341 |
HSCP3 | 0.176 (0.196) | -0.203 (0.133) | −0.251 (0.068) | −0.285 (0.058) | 0.001 (0.993) |
Plasma Lipoprotein Size | |||||
VZ3 | 0.781 *** (0.0001) | −0.144 (0.288) | −0.053 (0.704) | −0.005 (0.972) | −0.011 (0.942) |
LZ3 | −0.550 *** (0.0001) | 0.093 (0.498) | 0.225 (0.101) | 0.112 (0.462) | −0.060 (0.680) |
HZ3 | −0.642 *** (0.0001) | 0.145 (0.286) | 0.116 (0.405) | 0.069 (0.652) | 0.005 (0.972) |
Extended Plasma Lipid Panel | |||||
ELP-Total cholesterol | −0.168 (0.216) | 0.211 (0.119) | 0.315 * (0.020) | 0.060 (0.698) | 0.239 (0.098) |
ELP-VLDLc | 0.611 *** (0.0001) | 0.046 (0.734) | 0.193 (0.162) | 0.112 (0.466) | 0.295 * (0.040) |
ELP-HDLc | −0.610 *** (0.0001) | 0.136 (0.319) | 0.063 (0.651) | −0.022 (0.886) | 0.005 (0.975) |
ELP-LDLc | 0.268 * (0.045) | 0.261 (0.052) | 0.375 ** (0.005) | 0.132 (0.387) | 0.255 (0.076) |
ELP-TG | 0.600 *** (0.0001) | 0.053 (0.696) | 0.173 (0.210) | 0.119 (0.438) | 0.298 * (0.037) |
ELP-nonHDLc | −0.036 (0.792) | 0.201 (0.137) | 0.354 ** (0.009) | 0.050 (0.746) | 0.287 * (0.045) |
Conventional Plasma Lipid Panel | |||||
Total cholesterol | −0.189 (0.213) | 0.364 * (0.014) | 0.026 (0.864) | 0.093 (0.585) | −0.003 (0.984) |
LDLc | −0.259 (0.086) | 0.327 * (0.028) | 0.091 (0.551) | 0.082 (0.628) | −0.038 (0.813) |
HDLc | −0.026 (0.865) | −0.092 (0.551) | 0.261 (0.087) | 0.181 (0.292) | 0.111 90.494) |
Triglycerides | 0.363 * (0.016) | 0.226 (0.141) | 0.071 (0.648) | 0.159 (0.354) | 0.113 (0.489) |
ApoB | 0.008 (0.951) | 0.224 (0.098) | 0.373 ** (0.005) | 0.027 (0.859) | 0.279 (0.052) |
Model. A (R2 = 0.960) LPIR * | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
β Coefficient | Standard Error | β Coefficient | |||
(Constant) | 73.947 | 15.818 | 4.675 | 0.0001 | |
VZ3 | 1.416 | 0.136 | 0.684 | 10.434 | 0.0001 |
HZ3 | −9.849 | 1.509 | −0.279 | −6.528 | 0.0001 |
VLCP3 | 0.806 | 0.297 | 0.147 | 2.714 | 0.0001 |
HLCP3 | −1.654 | 0.333 | −0.210 | −4.971 | 0.0001 |
VSCP3 | 0.118 | 0.048 | 0.119 | 2.446 | 0.0180 |
Model. B. (R2 = 0.190) GlycA * | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
β Coefficient | Standard Error | β Coefficient | |||
(Constant) | 480.695 | 34.819 | 13.806 | 0.0001 | |
VSCP3 | 2.062 | 0.742 | 0.344 | 2.780 | 0.008 |
HSCP3 | −3.316 | 1.646 | −0.249 | −2.015 | 0.049 |
Model. C (R2 = 0.092) HbA1c * | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
β Coefficient | Standard Error | β Coefficient | |||
(Constant) | 7.340 | 0.607 | 12.089 | 0.0001 | |
LDLCP3 | 0.001 | 0.001 | 0.304 | 2.299 | 0.026 |
Model. D (R2 = 0.112) Hs-CRP * | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | |
β Coefficient | Standard Error | β Coefficient | |||
(Constant) | −12.256 | 15.689 | −0.781 | 0.439 | |
HLCP3 | 6.010 | 2.586 | 0.334 | 2.324 | 0.025 |
Independent Variables | LPIR * | GlycA * | HbA1c * | Hs-CRP * | ||||
---|---|---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | β | p-Value | |
Advanced Lipoprotein Particle Concentration | ||||||||
VLCP3 | 0.900 (R2 = 0.755) | 0.0001 | −0.046 (R2 = 0.719) | 0.781 | 0.148 (R2 = 0.526) | 0.489 | 0.142 (R2 = 0.615) | 0.691 |
VMCP3 | 0.340 (R2 = 0.372) | 0.215 | 0.303 (R2 = 0.759) | 0.081 | 0.145 (R2 = 0.523) | 0.538 | 0.247 (R2 = 0.634) | 0.355 |
VSCP3 | −0.778 (R2 = 0.512) | 0.011 | 0.302 (R2 = 0.746) | 0.148 | 0.138 (R2 = 0.520) | 0.623 | −0.051 (R2 = 0.611) | 0.892 |
HLCP3 | −0.444 (R2 = 0.432) | 0.061 | 0.048 (R2 = 0.719) | 0.765 | −0.004 (R2 = 0.514) | 0.984 | 0.225 (R2 = 0.618) | 0.602 |
HMCP3 | −0.035 (R2 = 0.321) | 0.877 | 0.130 (R2 = 0.729) | 0.365 | −0.018 (R2 = 0.514) | 0.925 | 0.324 (R2 = 0.677) | 0.111 |
HSCP3 | 0.046 (R2 = 0.322) | 0.872 | −0.049 (R2 = 0.719) | 0.788 | −0.190 (R2 = 0.529) | 0.426 | 0.208 (R2 = 0.633) | 0.367 |
IDLCP3 | −0.308 (R2 = 0.359) | 0.287 | −0.213 (R2 = 0.736) | 0.251 | 0.171 (R2 = 0.526) | 0.489 | 0.269 (R2 = 0.636) | 0.340 |
LLCP3 | −0.261 (R2 = 0.346) | 0.389 | 0.228 (R2 = 0.737) | 0.238 | 0.176 (R2 = 0.525) | 0.494 | 0.116 (R2 = 0.614) | 0.708 |
LSCP3 | 0.442 (R2 = 0.420) | 0.079 | 0.336 (R2 = 0.775) | 0.035 | 0.039 (R2 = 0.515) | 0.860 | 0.084 (R2 = 0.613) | 0.763 |
Advanced Lipoprotein Particle Size | ||||||||
VZ3 | 0.890 (R2 = 0.847) | 0.0001 | −0.149 (R2 = 0.733) | 0.305 | −0.036 (R2 = 0.515) | 0.644 | 0.149 (R2 = 0.620) | 0.554 |
HZ3 | −0.455 (R2 = 0.453) | 0.040 | −0.060 (R2 = 0.720) | 0.688 | 0.135 (R2 = 0.526) | 0.492 | −0.185 (R2 = 0.620) | 0.556 |
LZ3 | −0.484 (R2 = 0.457) | 0.037 | −0.008 (R2 = 0.718) | 0.961 | 0.133 (R2 = 0.524) | 0.519 | 0.123 (R2 = 0.616) | 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakillah, A.; Obeid, K.K.; Al Subaiee, M.; Soliman, A.F.; Al Arab, M.; Bashir, S.F.; Al Hussaini, A.; Al Otaibi, A.; Mubarak, S.A.S.; Iqbal, J.; et al. Association of Advanced Lipoprotein Subpopulation Profiles with Insulin Resistance and Inflammation in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2023, 12, 487. https://doi.org/10.3390/jcm12020487
Bakillah A, Obeid KK, Al Subaiee M, Soliman AF, Al Arab M, Bashir SF, Al Hussaini A, Al Otaibi A, Mubarak SAS, Iqbal J, et al. Association of Advanced Lipoprotein Subpopulation Profiles with Insulin Resistance and Inflammation in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2023; 12(2):487. https://doi.org/10.3390/jcm12020487
Chicago/Turabian StyleBakillah, Ahmed, Khamis Khamees Obeid, Maram Al Subaiee, Ayman Farouk Soliman, Mohammad Al Arab, Shahinaz Faisal Bashir, Arwa Al Hussaini, Abeer Al Otaibi, Sindiyan Al Shaikh Mubarak, Jahangir Iqbal, and et al. 2023. "Association of Advanced Lipoprotein Subpopulation Profiles with Insulin Resistance and Inflammation in Patients with Type 2 Diabetes Mellitus" Journal of Clinical Medicine 12, no. 2: 487. https://doi.org/10.3390/jcm12020487
APA StyleBakillah, A., Obeid, K. K., Al Subaiee, M., Soliman, A. F., Al Arab, M., Bashir, S. F., Al Hussaini, A., Al Otaibi, A., Mubarak, S. A. S., Iqbal, J., & Al Qarni, A. A. (2023). Association of Advanced Lipoprotein Subpopulation Profiles with Insulin Resistance and Inflammation in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 12(2), 487. https://doi.org/10.3390/jcm12020487