Insights into Prevention of Health Complications in Small for Gestational Age (SGA) Births in Relation to Maternal Characteristics: A Narrative Review
Abstract
:1. Introduction
2. Methods
2.1. Biological and Socio-Demographic Characteristics of Parents
2.2. Preventive Strategies
2.3. Identification of Pregnancies at Higher Risk of Delivering SGA Newborns
3. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee; WHO: Lyon, France, 1995.
- Abali, S.; Beken, S.; Albayrak, E.; Inamlik, A.; Bulum, B.; Bulbul, E.; Eksi, G.Z.; Ay, Z.A.; Karabay, M.; Kaya, D.; et al. Neonatal Problems and Infancy Growth of Term SGA Infants: Does “SGA” Definition Need to Be Re-evaluated? Front. Pediatr. 2021, 9, 660111. [Google Scholar] [CrossRef] [PubMed]
- Osuchukwu, O.O.; Reed, D.J. Small for Gestational Age. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Thayamballi, N.; Habiba, S.; Laribi, O.; Ebisu, K. Impact of Maternal Demographic and Socioeconomic Factors on the Association Between Particulate Matter and Adverse Birth Outcomes: A Systematic Review and Meta-analysis. J. Racial Ethn. Health Disparities 2021, 8, 743–755. [Google Scholar] [CrossRef] [PubMed]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.C.; Kozuki, N.; Cousens, S.; Stevens, G.A.; Blencowe, H.; Silveira, M.F.; Sania, A.; Rosen, H.E.; Schmiegelow, C.; Adair, L.S.; et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: Analysis of CHERG datasets. BMJ 2017, 358, j3677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.C.; Katz, J.; Blencowe, H.; Cousens, S.; Kozuki, N.; Vogel, J.P.; Adair, L.; Baqui, A.H.; Bhutta, Z.A.; Caulfield, L.E.; et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 2013, 1, e26–e36. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Song, W.O. Influence of the Adequacy of the Prenatal Care Utilization Index on Small-for-Gestational-Age Infants and Preterm Births in the United States. J. Clin. Med. 2019, 8, 838. [Google Scholar] [CrossRef] [Green Version]
- Martín-Calvo, N.; Goni, L.; Tur, J.A.; Martínez, J.A. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: Systematic review and meta-analysis. Obes. Rev. 2022, 23, e13380. [Google Scholar] [CrossRef] [PubMed]
- Genowska, A.; Szafraniec, K.; Polak, M.; Szpak, A.; Walecka, I.; Owoc, J. Study on changing patterns of reproductive behaviours due to maternal features and place of residence in Poland during 1995–2014. Ann. Agric. Environ. Med. 2018, 25, 137–144. [Google Scholar] [CrossRef]
- Falcão, I.R.; Ribeiro-Silva, R.C.; de Almeida, M.F.; Fiaccone, R.L.; Silva, N.J.; Paixao, E.S.; Ichihara, M.Y.; Rodrigues, L.C.; Barreto, M.L. Factors associated with small- and large-for-gestational-age in socioeconomically vulnerable individuals in the 100 Million Brazilian Cohort. Am. J. Clin. Nutr. 2021, 114, 109–116. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.F.; Wang, Y.; Wang, H.W.; Liu, Y. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: A report from Mainland China. Medicine 2014, 93, e210. [Google Scholar] [CrossRef]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iñiguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-term metabolic risk among children born premature or small for gestational age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, J.; Wang, X.; Shi, H.; Huo, Y.; Liu, M.; Sun, F.; Lan, H.; Guo, C.; Liu, H.; et al. Rapid BMI Increases and Persistent Obesity in Small-for-Gestational-Age Infants. Front. Pediatr. 2021, 9, 625853. [Google Scholar] [CrossRef] [PubMed]
- Genowska, A.; Zalewska, M.; Jamiołkowski, J.; Stepaniak, U.; Szpak, A.; Maciorkowska, E.; Pinkas, J. Inequalities in mortality of infants under one year of age according to foetal causes and maternal age in rural and urban areas in Poland, 2004–2013. Ann. Agric. Environ. Med. 2016, 23, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Park, A.L.; Fell, D.B. Mortality in Infants Affected by Preterm Birth and Severe Small-for-Gestational Age Birth Weight. Pediatrics 2017, 140, e20171881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzouk, A.; Filipovic-Pierucci, A.; Baud, O.; Tsatsaris, V.; Ego, A.; Charles, M.A.; Goffinet, F.; Evain-Brion, D.; Durand-Zaleski, I. Prenatal and post-natal cost of small for gestational age infants: A national study. BMC Health Serv. Res. 2017, 17, 221. [Google Scholar] [CrossRef] [Green Version]
- Westrupp, E.M.; Lucas, N.; Mensah, F.K.; Gold, L.; Wake, M.; Nicholson, J.M. Community-based healthcare costs for children born low birthweight, preterm and/or small for gestational age: Data from the Longitudinal Study of Australian Children. Child Care Health Dev. 2014, 40, 259–266. [Google Scholar] [CrossRef]
- Xaverius, P.K.; Salas, J.; Woolfolk, C.L.; Leung, F.; Yuan, J.; Chang, J.J. Predictors of size for gestational age in St. Louis City and County. BioMed Res. Int. 2014, 2014, 515827. [Google Scholar] [CrossRef] [Green Version]
- Nagano, N.; Kaneko, C.; Ohashi, S.; Seya, M.; Takigawa, I.; Masunaga, K.; Morioka, I. Non-Obese Type 2 Diabetes with a History of Being an Extremely Preterm Small-for-Gestational-Age Infant without Early Adiposity Rebound. Int. J. Environ. Res. Public Health 2022, 19, 8560. [Google Scholar] [CrossRef]
- Hong, Y.H.; Chung, S. Small for gestational age and obesity related comorbidities. Ann. Pediatr. Endocrinol. Metab. 2018, 23, 4–8. [Google Scholar] [CrossRef]
- Carpinello, O.J.; DeCherney, A.H.; Hill, M.J. Developmental Origins of Health and Disease: The History of the Barker Hypothesis and Assisted Reproductive Technology. Semin. Reprod. Med. 2018, 36, 177–182. [Google Scholar] [CrossRef]
- Daniels, S.R. The Barker hypothesis revisited. J. Pediatr. 2016, 173, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gete, D.G.; Waller, M.; Mishra, G.D. Effects of maternal diets on preterm birth and low birth weight: A systematic review. Br. J. Nutr. 2020, 123, 446–461. [Google Scholar] [CrossRef]
- Bulloch, R.E.; Wall, C.R.; Thompson, J.M.D.; Taylor, R.S.; Poston, L.; Roberts, C.T.; Dekker, G.A.; Kenny, L.C.; Simpson, N.A.B.; Myers, J.E.; et al. Folic acid supplementation is associated with size at birth in the Screening for Pregnancy Endpoints (SCOPE) international prospective cohort study. Early Hum. Dev. 2020, 147, 105058. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhou, L.; Wang, S.; Yin, H.; Yang, X.; Hao, L. Effect of maternal vitamin D status on risk of adverse birth outcomes: A systematic review and dose-response meta-analysis of observational studies. Eur. J. Nutr. 2022, 61, 2881–2907. [Google Scholar] [CrossRef]
- Wilson, R.L.; Grieger, J.A.; Bianco-Miotto, T.; Roberts, C.T. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review. Nutrients 2016, 8, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Cano-Ibañez, N.; Salcedo-Bellido, I.; Bueno-Cavanillas, A.; Delgado-Rodriguez, M. Maternal iron intake during pregnancy and the risk of small for gestational age. Matern. Child. Nutr. 2019, 15, e12814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Kang, J.; Liu, J.; Duan, J.; Wang, F.; Shi, Y.; Li, Y.; Wang, C.; Xu, D.; Qu, X.; et al. Association of low birthweight and small for gestational age with maternal ferritin levels: A retrospective cohort study in China. Front. Nutr. 2022, 9, 1002702. [Google Scholar] [CrossRef]
- Higgins, S.T.; Nighbor, T.D.; Kurti, A.N.; Heil, S.H.; Slade, E.P.; Shepard, D.S.; Solomon, L.J.; Lynch, M.E.; Johnson, H.K.; Markesich, C.; et al. Randomized Controlled Trial Examining the Efficacy of Adding Financial Incentives to Best practices for Smoking Cessation Among pregnant and Newly postpartum Women. Prev. Med. 2022, 165, 107012. [Google Scholar] [CrossRef]
- Baía, I.; Domingues, R.M.S.M. The Effects of Cannabis Use during Pregnancy on Low Birth Weight and Preterm Birth: A Systematic Review and Meta-analysis. Am. J. Perinatol. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Pereira, P.P.D.S.; Mata, F.A.F.D.; Figueiredo, A.C.M.G.; Silva, R.B.; Pereira, M.G. Maternal Exposure to Alcohol and Low Birthweight: A Systematic Review and Meta-Analysis. Rev. Bras. Ginecol. Obstet. 2019, 41, 333–347. [Google Scholar] [CrossRef]
- McRae, D.N.; Janssen, P.A.; Vedam, S.; Mayhew, M.; Mpofu, D.; Teucher, U.; Muhajarine, N. Reduced prevalence of small-for-gestational-age and preterm birth for women of low socioeconomic position: A population-based cohort study comparing antenatal midwifery and physician models of care. BMJ Open 2018, 8, e022220. [Google Scholar] [CrossRef] [Green Version]
- Lipkind, H.S.; Vazquez-Benitez, G.; DeSilva, M.; Vesco, K.K.; Ackerman-Banks, C.; Zhu, J.; Boyce, T.G.; Daley, M.F.; Fuller, C.C.; Getahun, D.; et al. Receipt of COVID-19 Vaccine During Pregnancy and Preterm or Small-for-Gestational-Age at Birth—Eight Integrated Health Care Organizations, United States, December 15, 2020–July 22, 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 26–30. [Google Scholar] [CrossRef]
- Genowska, A.; Motkowski, R.; Strukcinskaite, V.; Abramowicz, P.; Konstantynowicz, J. Inequalities in Birth Weight in Relation to Maternal Factors: A Population-Based Study of 3,813,757 Live Births. Int. J. Environ. Res. Public Health 2022, 19, 1384. [Google Scholar] [CrossRef]
- Palatnik, A.; De Cicco, S.; Zhang, L.; Simpson, P.; Hibbard, J.; Egede, L.E. The Association between Advanced Maternal Age and Diagnosis of Small for Gestational Age. Am. J. Perinatol. 2020, 37, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.I.; Figueroa, M.I.; Martínez-Carrión, J.M.; Alfaro-Gomez, E.L.; Dipierri, J.E. Birth Size and Maternal, Social, and Environmental Factors in the Province of Jujuy, Argentina. Int. J. Environ. Res. Public Health 2022, 19, 621. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S. Parity and low birth weight and preterm birth: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 862–875. [Google Scholar] [CrossRef]
- Lin, L.; Lu, C.; Chen, W.; Li, C.; Guo, V.Y. Parity and the risks of adverse birth outcomes: A retrospective study among Chinese. BMC Pregnancy Childbirth 2021, 21, 257. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald-Wallis, C.; Tilling, K.; Fraser, A.; Nelson, S.M.; Lawlor, D.A. Associations of blood pressure change in pregnancy with fetal growth and gestational age at delivery: Findings from a prospective cohort. Hypertension 2014, 64, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, N.; An, H.; Li, Z.; Zhang, L.; Li, H.; Zhang, Y.; Ye, R. Impact of gestational hypertension and preeclampsia on low birthweight and small-for-gestational-age infants in China: A large prospective cohort study. J. Clin. Hypertens. 2021, 23, 835–842. [Google Scholar] [CrossRef]
- Feleke, B.E.; Feleke, T.E. A longitudinal study on the effects of previous stillbirth or abortion on subsequent pregnancies and infants. Eur. J. Public Health 2021, 31, 1237–1241. [Google Scholar] [CrossRef]
- Voigt, M.; Olbertz, D.; Fusch, C.; Krafczyk, D.; Briese, V.; Schneider, K.T. The influence of previous pregnancy terminations, miscarriages and still-births on the incidence of babies with low birth weight and premature births as well as a somatic classification of newborns. Z. Geburtshilfe Neonatol. 2008, 212, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Malacova, E.; Regan, A.; Nassar, N.; Raynes-Greenow, C.; Leonard, H.; Srinivasjois, R.; Shand, A.W.; Lavin, T.; Pereira, G. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: Systematic review and meta-analysis. BJOG 2018, 125, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Abortion; WHO: Geneva, Switzerland, 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/abortion (accessed on 8 October 2022).
- United Nations International Children’s Emergency Fund. A Neglected Tragedy. In The Global Burden of Stillbirths; UNICEF: New York, NY, USA, 2020. [Google Scholar]
- Silvestrin, S.; Silva, C.H.; Hirakata, V.N.; Goldani, A.A.; Silveira, P.P.; Goldani, M.Z. Maternal education level and low birth weight: A meta-analysis. J. Pediatr. 2013, 89, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bushnik, T.; Yang, S.; Kaufman, J.S.; Kramer, M.S.; Wilkins, R. Socioeconomic disparities in small-for-gestational-age birth and preterm birth. Health Rep. 2017, 28, 3–10. [Google Scholar]
- Genowska, A.; Fryc, J.; Szpak, A.; Tyszko, P. Is socio-economic status associated with adverse birth outcomes in Poland? Ann. Agric. Environ. Med. 2019, 26, 369–374. [Google Scholar] [CrossRef]
- Stieb, D.M.; Chen, L.; Hystad, P.; Beckerman, B.S.; Jerrett, M.; Tjepkema, M.; Crouse, D.L.; Omariba, D.W.; Peters, P.A.; van Donkelaar, A.; et al. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environ. Res. 2016, 148, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, H.; Hu, H.; Wu, Z.; Chen, K.; Mao, Z. Effect of ambient air pollution on premature SGA in Changzhou city, 2013–2016: A retrospective study. BMC Public Health 2019, 19, 705. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijsen, M. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environ. Health 2016, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Kent, S.; McClure, L.; Zaitchik, B.; Gohlke, J. Area-level risk factors for adverse birth outcomes: Trends in urban and rural settings. BMC Pregnancy Childbirth 2013, 13, 129. [Google Scholar] [CrossRef] [Green Version]
- Papastefanou, I.; Wright, D.; Nicolaides, K.H. Competing-risks model for prediction of small-for-gestational-age neonate from maternal characteristics and medical history. Ultrasound Obstet. Gynecol. 2020, 56, 196–205. [Google Scholar] [CrossRef]
- Leonard, S.A.; Hutcheon, J.A.; Bodnar, L.M.; Petito, L.C.; Abrams, B. Gestational Weight Gain-for-Gestational Age Z-Score Charts Applied across U. S. Populations. Paediatr. Perinat. Epidemiol. 2018, 32, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Vats, H.; Saxena, R.; Sachdeva, M.P.; Walia, G.K.; Gupta, V. Impact of maternal pre-pregnancy body mass index on maternal, fetal and neonatal adverse outcomes in the worldwide populations: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2021, 15, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, C.; Taricco, E.; Coco, C.; Di Domenico, F.; Mandò, C.; Cetin, I. Perinatal and Neonatal Outcomes in Fetal Growth Restriction and Small for Gestational Age. J. Clin. Med. 2022, 11, 2729. [Google Scholar] [CrossRef] [PubMed]
- Lefizelier, E.; Misbert, E.; Brooks, M.; Le Thuaut, A.; Winer, N.; Ducarme, G. Preterm Birth and Small-for-Gestational Age Neonates among Prepregnancy Underweight Women: A Case-Controlled Study. J. Clin. Med. 2021, 10, 5733. [Google Scholar] [CrossRef] [PubMed]
- Action Against Hunger. World Hunger Facts. Available online: https://www.actionagainsthunger.org/the-hunger-crisis/world-hunger-facts/ (accessed on 12 September 2022).
- Stevens, B.; Buettner, P.; Watt, K.; Clough, A.; Brimblecombe, J.; Judd, J. The effect of balanced protein energy supplementation in undernourished pregnant women and child physical growth in low- and middle-income countries: A systematic review and meta-analysis. Matern. Child. Nutr. 2015, 11, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Salcedo-Bellido, I.; González-Mata, G.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal dietary consumption of legumes, vegetables and fruit during pregnancy, does it protect against small for gestational age? BMC Pregnancy Childbirth 2018, 18, 486. [Google Scholar] [CrossRef]
- Brown, B.; Wright, C. Safety and efficacy of supplements in pregnancy. Nutr. Rev. 2020, 78, 813–826. [Google Scholar] [CrossRef]
- Hodgetts, V.A.; Morris, R.K.; Francis, A.; Gardosi, J.; Ismail, K.M. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: A population study, systematic review and meta-analysis. BJOG 2015, 122, 478–490. [Google Scholar] [CrossRef]
- Bialy, L.; Fenton, T.; Shulhan-Kilroy, J.; Johnson, D.W.; McNeil, D.A.; Hartling, L. Vitamin D supplementation to improve pregnancy and perinatal outcomes: An overview of 42 systematic reviews. BMJ Open 2020, 10, e032626. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Tai, W.; Xu, P.; Fu, Z.; Wang, X.; Long, W.; Guo, X.; Ji, C.; Zhang, L.; Zhang, Y.; et al. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: A nested case-control study and meta-analysis. J. Matern. Fetal Neonatal. Med. 2021, 34, 1576–1585. [Google Scholar] [CrossRef]
- Gupta, N.; Bansal, S.; Gupta, M.; Nadda, A. A comparative study of serum zinc levels in small for gestational age babies and appropriate for gestational age babies in a Tertiary Hospital, Punjab. J. Fam. Med. Prim. Care 2020, 9, 933–937. [Google Scholar] [CrossRef]
- Boskabadi, H.; Maamouri, G.; Akhondian, J.; Ashrafzadeh, F.; Boskabadi, A.; Faramarzi, R.; Heidar, E.; Pourbadakhshan, N.; Shojaei, S.R.H.; Zakerihamidi, M.; et al. Comparison of birth weights of neonates of mothers receiving vs. not receiving zinc supplement at pregnancy. BMC Pregnancy Childbirth 2021, 21, 187. [Google Scholar] [CrossRef] [PubMed]
- Wilding, S.; Ziauddeen, N.; Roderick, P.; Smith, D.; Chase, D.; Macklon, N.; McGrath, N.; Hanson, M.; Alwan, N.A. Are socioeconomic inequalities in the incidence of small-for-gestational-age birth narrowing? Findings from a population-based cohort in the South of England. BMJ Open 2019, 9, e026998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvalvik, L.G.; Haug, K.; Klungsøyr, K.; Morken, N.H.; DeRoo, L.A.; Skjaerven, R. Maternal Smoking Status in Successive Pregnancies and Risk of Having a Small for Gestational Age Infant. Paediatr. Perinat. Epidemiol. 2017, 31, 21–28. [Google Scholar] [CrossRef]
- Shepard, D.S.; Slade, E.P.; Nighbor, T.D.; DeSarno, M.J.; Roemhildt, M.L.; Williams, R.K.; Higgins, S.T. Economic analysis of financial incentives for smoking cessation during pregnancy and postpartum. Prev. Med. 2022, 165, 107079. [Google Scholar] [CrossRef]
- Ussher, M.; Best, C.; Lewis, S.; McKell, J.; Coleman, T.; Cooper, S.; Orton, S.; Bauld, L. Financial Incentives for Preventing Postpartum return to Smoking (FIPPS): Study protocol for a three-arm randomised controlled trial. Trials 2021, 22, 512. [Google Scholar] [CrossRef]
- Cardenas, V.M.; Ali, M.M.; Fischbach, L.A.; Nembhard, W.N. Dual use of cigarettes and electronic nicotine delivery systems during pregnancy and the risk of small for gestational age neonates. Ann. Epidemiol. 2020, 52, 86–92.e2. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Zaitsu, M.; Okawa, S.; Morisaki, N.; Hori, A.; Nishihama, Y.; Nakayama, S.F.; Fujiwara, T.; Hamada, H.; Satoh, T.; et al. Association between Heated Tobacco Product Use during Pregnancy and Fetal Growth in Japan: A Nationwide Web-Based Survey. Int. J. Environ. Res. Public Health 2022, 19, 11826. [Google Scholar] [CrossRef]
- Burd, L.; Blair, J.; Dropps, K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J. Perinatol. 2012, 32, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Dejong, K.; Olyaei, A.; Lo, J.O. Alcohol Use in Pregnancy. Clin. Obstet. Gynecol. 2019, 62, 142–155. [Google Scholar] [CrossRef]
- Hoope-Bender, P.T.; de Bernis, L.; Campbell, J.; Downe, S.; Fauveau, V.; Fogstad, H.; Homer, C.S.; Kennedy, H.P.; Matthews, Z.; McFadden, A.; et al. Improvement of maternal and newborn health through midwifery. Lancet 2014, 384, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- McRae, D.N.; Muhajarine, N.; Stoll, K.; Mayhew, M.; Vedam, S.; Mpofu, D.; Janssen, P.A. Is model of care associated with infant birth outcomes among vulnerable women? A scoping review of midwifery-led versus physician-led care. SSM Popul. Health 2016, 2, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Fell, D.B.; Dhinsa, T.; Alton, G.D.; Török, E.; Dimanlig-Cruz, S.; Regan, A.K.; Sprague, A.E.; Buchan, S.A.; Kwong, J.C.; Wilson, S.E.; et al. Association of COVID-19 Vaccination in Pregnancy with Adverse Peripartum Outcomes. JAMA 2022, 327, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Blakeway, H.; Prasad, S.; Kalafat, E.; Heath, P.T.; Ladhani, S.N.; Le Doare, K.; Magee, L.A.; O’brien, P.; Rezvani, A.; von Dadelszen, P.; et al. COVID-19 vaccination during pregnancy: Coverage and safety. Am. J. Obstet. Gynecol. 2022, 226, 236.e1–236.e14. [Google Scholar] [CrossRef] [PubMed]
- Mullins, E.; Perry, A.; Banerjee, J.; Townson, J.; Grozeva, D.; Milton, R.; Kirby, N.; Playle, R.; Bourne, T.; Lees, C.; et al. Pregnancy and neonatal outcomes of COVID-19: The PAN-COVID study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 276, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Kalafat, E.; Blakeway, H.; Townsend, R.; O’Brien, P.; Morris, E.; Draycott, T.; Thangaratinam, S.; Le Doare, K.; Ladhani, S.; et al. Systematic review and meta-analysis of the effectiveness and perinatal outcomes of COVID-19 vaccination in pregnancy. Nat. Commun. 2022, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.D.; Ellington, S.; Strid, P.; Galang, R.R.; Oduyebo, T.; Tong, V.T.; Woodworth, K.R.; Nahabedian, J.F., III; Azziz-Baumgartner, E.; Gilboa, S.M.; et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, January 22–October 3, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1641–1647. [Google Scholar] [CrossRef] [PubMed]
- Kotelchuck, M. The adequacy of prenatal care utilization index: Its US distribution and association with low birthweight. Am. J. Public Health 1994, 84, 1486–1489. [Google Scholar] [CrossRef] [Green Version]
- Papageorghiou, A.T.; Ohuma, E.O.; Gravett, M.G.; Hirst, J.; da Silveira, M.F.; Lambert, A.; Carvalho, M.; Jaffer, Y.A.; Altman, D.G.; Noble, J.A.; et al. International standards for symphysis-fundal height based on serial measurements from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: Prospective cohort study in eight countries. BMJ 2016, 355, i5662. [Google Scholar] [CrossRef]
- Hammami, A.; Zumaeta, A.M.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Ultrasonographic estimation of fetal weight: Development of new model and assessment of performance of previous models. Ultrasound Obstet. Gynecol. 2018, 52, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterscheider, J.; O’Donoghue, K.; Malone, F.D. Guidelines on fetal growth restriction: A comparison of recent national publications. Am. J. Perinatol. 2015, 32, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Farina, A. Systematic review on first trimester three-dimensional placental volumetry predicting small for gestational age infants. Prenat. Diagn. 2016, 36, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Su, E.J. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry. Am. J. Obstet. Gynecol. 2015, 213, S123–S130. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.G.; Chen, C.Y.; Chen, Y.Y. The effects of absent or reversed end-diastolic umbilical artery Doppler flow velocity. Taiwan J. Obstet. Gynecol. 2009, 48, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baschat, A.A. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet. Gynecol. 2011, 37, 501–514. [Google Scholar] [CrossRef]
First Author and Year of Publication | Study Design | Number of Subjects | Study Period | Significance |
---|---|---|---|---|
Gete, 2020 [24] | Systematic review | Included articles (40):
| Publications from February 2002 to August 2018 | High intake of vegetables, fruits, whole grains, dairy products, and protein may reduce the risk of SGA births. “Mediterranean diets” were associated with a lower risk of having an SGA infant. A “Western diet” (high-fat dairy products, red and processed meat) may increase the risk of SGA births. |
Bulloch, 2020 [25] | International prospective cohort study | A total of 5606 women were recruited as part of the Screening for Pregnancy Endpoints (SCOPE) international prospective multi-center cohort study: New Zealand, Australia, United Kingdom and Ireland. | Participants were recruited between 2004 and 2011 from: Auckland (NZ), Adelaide (Australia), Cork (Ireland), London, Leeds and Manchester (UK) | Pre-conception folic acid supplementation was associated with a lower risk of SGA (aOR = 0.82, 95% CI 0.67 to 01.00, p = 0.047) |
Zhao, 2022 [26] | Systematic review and dose-response meta-analysis of observational studies | The relation between maternal 25(OH)D concentrations and risk of SGA was evaluated in 37 studies, comprising 53,000 participants and 5098 cases. Out of 37 articles, 21 studies were included in the dose–response analysis for SGA. | Years of publication spanning 2010–2020 | Maternal 25-hydroxyvitamin D concentration is closely related to SGA births (RR = 0.61; 95% CI 0.49 to 0.76). Each 25 nmol/L increase in 25(OH)D was linked even with a 10% risk reduction of SGA (RR = 0.90; 95% CI 0.84 to 0.97). |
Wilson, 2016 [27] | Systematic review | A total of 67 studies met the inclusion criteria, including 29 on SGA/LBW (human prospective cohorts, case-control, longitudinal and cross-sectional studies). | Year of publications related to SGA spanning 1978–2015. | A potential association between maternal dietary zinc intake and infant birthweight |
Martínez-Galiano, 2019 [28] | Case-control study | A total of 533 cases were selected:
| Case and control groups were enrolled from 15 May 2012, through 15 July 2015 in Spain. | Women receiving iron supplementation >40 mg/day appears to be protective versus women not taking supplements (aOR = 0.64, 95% CI 0.42 to 0.99). |
Tao, 2022 [29] | Retrospective cohort study | Total of 3566 pregnant women were included in the study. | Medical information of pregnant women collected from January 2014 to September 2021 at the Zhongnan Hospital of Wuhan University, China. | A linear relationship between maternal ferritin levels and an increased risk of SGA was found (p-trend = 0.04), with adjusted OR = 1.87 (95% CI 1.38 to 2.54) for SGA with an increase in Ln-ferritin concentrations per unit. |
Higgins, 2022 [30] | Randomized controlled trial | A total of 169 women assigned to best practices (BP) or BP plus financial incentives (BP + FI) for smoking cessation available through to 12 weeks postpartum. A third condition included 80 never-smokers sociodemographically-matched to women who smoked. | Study in Burlington, Vermont, USA, January 2014 through January 2020. | Financial incentives added to Best Practice increase smoking cessation among not only antepartum, but also postpartum women, reducing the risk of SGA and potential adverse outcomes connected. |
Baía, 2022 [31] | Systematic Review and Meta-analysis | A total of 32 studies were included: 1 of presented data evaluated SGA. | Restricted to studies published after 2000:
| Pregnant women using cannabis are at increased risk for SGA (aOR = 1.47; 95% CI 1.38 to 1.58). |
Pereira, 2019 [32] | Systematic Review and Meta-Analysis | A total of 39 studies were included:
| Restricted to studies published between 1980′s and 2016:
| Retrospectives cohort studies found that alcohol intake during pregnancy appears to be associated with a lower birth weight. However, in prospective cohort studies and case-control studies the association between maternal exposure to alcohol and birth weight was not observed. |
McRae, 2018 [33] | Retrospective cohort study | A total of 57,872 pregnant women were included:
| Pregnant women who delivered between 2005 and 2012 from British Columbia and Canada. | Antenatal midwifery care is associated with lower risk of delivering SGA neonates versus general practitioner (aOR = 0.71, 95% CI 0.62 to 0.82) or versus obstetrician care (aOR = 0.59, 95% CI 0.50 to 0.69), especially in a group of women with a low socio-economic status. |
Lipkind, 2022 [34] | Retrospective cohort study | Single-gestation pregnancies (46,079) with estimated start or last menstrual period between May and October 2020 were included. | A total of 10,064 pregnant women (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy between December 2020 and July 2022. | COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI 0.87 to 1.03). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wołejszo, S.; Genowska, A.; Motkowski, R.; Strukcinskiene, B.; Klukowski, M.; Konstantynowicz, J. Insights into Prevention of Health Complications in Small for Gestational Age (SGA) Births in Relation to Maternal Characteristics: A Narrative Review. J. Clin. Med. 2023, 12, 531. https://doi.org/10.3390/jcm12020531
Wołejszo S, Genowska A, Motkowski R, Strukcinskiene B, Klukowski M, Konstantynowicz J. Insights into Prevention of Health Complications in Small for Gestational Age (SGA) Births in Relation to Maternal Characteristics: A Narrative Review. Journal of Clinical Medicine. 2023; 12(2):531. https://doi.org/10.3390/jcm12020531
Chicago/Turabian StyleWołejszo, Sebastian, Agnieszka Genowska, Radosław Motkowski, Birute Strukcinskiene, Mark Klukowski, and Jerzy Konstantynowicz. 2023. "Insights into Prevention of Health Complications in Small for Gestational Age (SGA) Births in Relation to Maternal Characteristics: A Narrative Review" Journal of Clinical Medicine 12, no. 2: 531. https://doi.org/10.3390/jcm12020531
APA StyleWołejszo, S., Genowska, A., Motkowski, R., Strukcinskiene, B., Klukowski, M., & Konstantynowicz, J. (2023). Insights into Prevention of Health Complications in Small for Gestational Age (SGA) Births in Relation to Maternal Characteristics: A Narrative Review. Journal of Clinical Medicine, 12(2), 531. https://doi.org/10.3390/jcm12020531