Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and the Study Design
2.2. Baseline Examination
2.3. Experimental Sessions
2.4. Hemodyanmic Parameters
2.5. Sample Size and Randomization
2.6. Statistics
3. Results
3.1. SIT1
3.1.1. Peripheral Blood Pressure
3.1.2. Central Blood Pressure
3.1.3. Pulse Wave Velocity and the Heart Rate
3.2. SIT3
3.2.1. Peripheral Blood Pressure
3.2.2. Central Blood Pressure
3.2.3. Pulse Wave Velocity and Heart Rate
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliwill, J.R. Mechanisms and Clinical Implications of Post-exercise Hypotension in Humans. Exerc. Sport Sci. Rev. 2001, 29, 65–70. [Google Scholar] [CrossRef]
- Halliwill, J.R.; Buck, T.M.; Lacewell, A.N.; Romero, S.A. Postexercise hypotension and sustained postexercise vasodilatation: What happens after we exercise? Exp. Physiol. 2013, 98, 7–18. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. Exercise and Hypertension. Med. Sci. Sport. Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Brito, L.C.; Fecchio, R.Y.; Peçanha, T.; Andrade-Lima, A.; Halliwill, J.R.; Forjaz, C.L.M. Postexercise hypotension as a clinical tool: A “single brick” in the wall. J. Am. Soc. Hypertens. 2018, 12, e59–e64. [Google Scholar] [CrossRef]
- Wegmann, M.; Hecksteden, A.; Poppendieck, W.; Steffen, A.; Kraushaar, J.; Morsch, A.; Meyer, T. Postexercise Hypotension as a Predictor for Long-Term Training-Induced Blood Pressure Reduction. Clin. J. Sport Med. 2018, 28, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Hecksteden, A.; Grütters, T.; Meyer, T. Association Between Postexercise Hypotension and Long-term Training-Induced Blood Pressure Reduction. Clin. J. Sport Med. 2013, 23, 58–63. [Google Scholar] [CrossRef]
- Milatz, F.; Ketelhut, S.; Ketelhut, R.G. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing. Vasa 2015, 44, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Milatz, F.; Heise, W.; Ketelhut, R.G. Influence of a high-intensity interval training session on peripheral and central blood pressure at rest and during stress testing in healthy individuals. Vasa 2016, 45, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Perrier-Melo, R.J.; Costa, E.C.; Farah, B.Q.; Costa, M.d.C. Acute effect of interval vs. Continuous exercise on blood pressure: Systematic review and meta-analysis. Arq. Bras. Cardiol. 2020, 115, 5–14. [Google Scholar] [CrossRef]
- Laursen, P.; Buchheit, M. Science and Application of High-Intensity Interval Training; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sport. Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Korkiakangas, E.E.; Alahuhta, M.A.; Laitinen, J.H. Barriers to regular exercise among adults at high risk or diagnosed with type 2 diabetes: A systematic review. Health Promot. Int. 2009, 24, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Angadi, S.S.; Bhammar, D.M.; Gaesser, G.A. Postexercise Hypotension after Continuous, Aerobic Interval, and Sprint Interval Exercise. J. Strength Cond. Res. 2015, 29, 2888–2893. [Google Scholar] [CrossRef] [PubMed]
- Rossow, L.; Yan, H.; Fahs, C.A.; Ranadive, S.M.; Agiovlasitis, S.; Wilund, K.R.; Baynard, T.; Fernhall, B. Postexercise hypotension in an endurance-trained population of men and women following high-intensity interval and steady-state cycling. Am. J. Hypertens. 2010, 23, 358–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.H.; Burns, S.F. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Appl. Physiol. Nutr. Metab. 2013, 38, 182–187. [Google Scholar] [CrossRef]
- Stuckey, M.I.; Tordi, N.; Mourot, L.; Gurr, L.J.; Rakobowchuk, M.; Millar, P.J.; Toth, R.; Macdonald, M.J.; Kamath, M.V. Autonomic recovery following sprint interval exercise. Scand. J. Med. Sci. Sport. 2012, 22, 756–763. [Google Scholar] [CrossRef]
- Ketelhut, S.; Möhle, M.; Gürlich, T.; Hottenrott, L.; Hottenrott, K. Optimizing sprint interval exercise for post-exercise hypotension: A randomized crossover trial. Eur. J. Sport Sci. 2022, 1–9. [Google Scholar] [CrossRef]
- Vollaard, N.B.J.; Metcalfe, R.S.; Williams, S. Effect of number of sprints in an SIT session on change in v O2max: A meta-analysis. Med. Sci. Sport. Exerc. 2017, 49, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Boyne, P.; Dunning, K.; Carl, D.; Gerson, M.; Khoury, J.; Kissela, B. Within-session responses to high-intensity interval training in chronic stroke. Med. Sci. Sport. Exerc. 2014, 47, 476–484. [Google Scholar] [CrossRef]
- Jones, M.D.; Munir, M.; Wilkonski, A.; Ng, K.; Beynon, G.; Keech, A. Post-exercise hypotension time-course is influenced by exercise intensity: A randomised trial comparing moderate-intensity, high-intensity, and sprint exercise. J. Hum. Hypertens. 2021, 35, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.L.d.B.; Vancea, D.M.M.; Cappato de Araújo, R.; Soltani, P.; Guimarães, F.J.d.S.P.; Costa, M.d.C. Cardiovascular and Enjoyment Comparisons after Active Videogame and Running in Type-1 Diabetics: A Randomized Crossover Trial. Games Health J. 2021, 10, 339–346. [Google Scholar] [CrossRef]
- Pimenta, F.C.; Tanil, F.; Victor, M.; Dourado, Z.; Fernando, L.; Alves, G.; Wesley, B.; Vieira, D.O.; Medeiros, A. High-intensity interval exercise promotes post-exercise hypotension of greater magnitude compared to moderate-intensity continuous exercise. Eur. J. Appl. Physiol. 2019, 119, 1235–1243. [Google Scholar] [CrossRef]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute effects of exercise on blood pressure: A meta-analytic investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Nickel, K.J.; Acree, L.S.; Gardner, A.W. Effects of a single bout of exercise on arterial compliance in older adults. Angiology 2011, 62, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, P.; Morris, B.L.; Kubo, T.; Picton, P.E.; Su, W.S.; Notarius, C.F.; Floras, J.S. Hemodynamic after-effects of acute dynamic exercise in sedentary normotensive postmenopausal women. J. Hypertens. 2005, 23, 285–292. [Google Scholar] [CrossRef]
- Senitko, A.N.; Charkoudian, N.; Halliwill, J.R. Influence of endurance exercise training status and gender on postexercise hypotension. J. Appl. Physiol. 2002, 92, 2368–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Carpes, L.; Domingues, L.B.; Schimitt, R.; Ferrari, R. Sex Differences in Post-exercise Hypotension, Ambulatory Blood Pressure Variability, and Endothelial Function after a Power Training Session in Older Adults. Front. Physiol. 2021, 12, 657373. [Google Scholar] [CrossRef]
- Iellamo, F.; Caminiti, G.; Montano, M.; Manzi, V.; Franchini, A.; Mancuso, A.; Volterrani, M. Prolonged Post-Exercise Hypotension: Effects of Different Exercise Modalities and Training Statuses in Elderly Patients with Hypertension. Int. J. Environ. Res. Public Health 2021, 18, 3229. [Google Scholar] [CrossRef]
- Kaufman, F.L.; Hughson, R.L.; Schaman, J.P. Effect of exercise on recovery blood pressure in normotensive and hypertensive subjects. Med. Sci. Sport. Exerc. 1987, 19, 17–20. [Google Scholar] [CrossRef]
- Lakatta, E.G.; Levy, D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003, 107, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Brito, L.C.; Queiroz, A.C.C.; Forjaz, C.L.M. Influence of population and exercise protocol characteristics on hemodynamic determinants of post-aerobic exercise hypotension. Braz. J. Med. Biol. Res. 2014, 47, 626–636. [Google Scholar] [CrossRef]
- Forjaz, C.L.M.; Tinucci, T.; Ortega, K.C.; Santaella, D.F.; Mion, D.; Negrão, C.E. Factors affecting post-exercise hypotension in normotensive and hypertensive humans. Blood Press. Monit. 2000, 5, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Frey, I.; Berg, A.; Grathwohl, D.; Keul, J. Freiburger Fragebogen zur kSrperlichen Aktivit it-Entwicklung, PriJfung und Anwendung. Soz. Prav. 1999, 44, 55–64. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 practice guidelines for the management of arterial hypertension of the European society of cardiology and the European society of hypertension ESC/ESH task force for the management of arterial hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef] [Green Version]
- Weisell, R.C. Body mass index as an indicator of obesity. Asia Pac. J. Clin. Nutr. 2002, 11, S681–S684. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.; Gouveia, M.C.; de Souza Júnior, F.A.; da Silva Rodrigues, C.E.; dos Santos, J.M.; de Oliveira, A.J.S. Effect of a High-Intensity Interval Training Session on Post-Exercise Hypotension and Autonomic Cardiac Activity in Hypertensive Elderly Subjects. J. Exerc. Physiol. Online 2018, 21, 58–70. [Google Scholar]
- Schimitt, R.P.; Carpes, L.O.; Domingues, L.B.; Tanaka, H.; Fuchs, S.C.; Ferrari, R. Effects of a single bout of power exercise training on ambulatory blood pressure in older adults with hypertension: A randomized controlled crossover study. Complement. Ther. Med. 2020, 54, 102554. [Google Scholar] [CrossRef]
- Canuto, P.M.d.B.C.; Nogueira, I.D.B.; da Cunha, E.S.; Ferreira, G.M.H.; de Mendonça, K.M.P.P.; da Costa, F.A.; Nogueira, P.A.d.M.S. Influence of resistance training performed at different intensities and same work volume over bp of elderly hypertensive female patients. Rev. Bras. Med. Esporte 2011, 17, 246–249. [Google Scholar] [CrossRef]
- Brandão Rondon, M.U.P.; Alves, M.J.N.N.; Braga, A.M.F.W.; Teixeira, O.T.U.N.; Barretto, A.C.P.; Krieger, E.M.; Negrão, C.E. Postexercise blood pressure reduction in elderly hypertensive patients. J. Am. Coll. Cardiol. 2002, 39, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness. A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef] [Green Version]
- Jeeva, K.; Bhattacharya, P. Effect of body mass index on post-exercise hypotension in healthy adult males. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8, 1457–1462. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Guidry, M.A.; Blanchard, B.; Kerr, A.; Taylor, A.-L.; Johnson, A.N.; Maresh, C.M.; Rodriguez, N.; Thompson, P.D. Exercise intensity alters postexercise hypotension. J. Hypertens. 2004, 22, 1881–1888. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Cheng, H.M.; Chuang, S.Y.; Spurgeon, H.A.; Ting, C.T.; Lakatta, E.G.; Yin, F.C.P.; Chou, P.; Chen, C.H. Central or peripheral systolic or pulse pressure: Which best relates to target organs and future mortality? J. Hypertens. 2009, 27, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esformes, J.I.; Norman, F.; Sigley, J.; Birch, K.M. The influence of menstrual cycle phase upon postexercise hypotension. Med. Sci. Sport. Exerc. 2006, 38, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Ketelhut, R.G.; Weisser, B.; Nigg, C.R. Interval Training in Sports Medicine: Current Thoughts on an Old Idea. J. Clin. Med. 2022, 11, 5468. [Google Scholar] [CrossRef]
Outcome | Total | Young | Older | p-Values |
---|---|---|---|---|
Gender (f/m) | 12/12 | 6/6 | 6/6 | |
Age (years) | 37 ± 14 | 24 ± 3 | 50 ± 7 | <0.001 *** |
Body mass (kg) | 66.9 ± 9.4 | 66.4 ± 8.8 | 67.4 ± 10.4 | 0.792 |
Height (cm) | 173.4 ± 10.1 | 176.4 ± 11.0 | 170.3 ± 8.4 | 0.141 |
Body-mass-index (kg/m2) | 22.4 ± 2.7 | 21.4 ± 1.9 | 23.5 ± 3.1 | 0.056 |
VO2max (mL/kg/min) | 47.8 ± 8.8 | 50.6 ± 9.2 | 45.0 ± 7.7 | 0.111 |
VO2max-percentile | 85.2 ± 12.5 | 84.8 ± 12.4 | 85.6 ± 13.1 | 0.884 |
Training h/week | 8.33 ± 2.8 | 8.3 ± 2.6 | 8.3 ± 3.1 | 0.999 |
pSBP (mmHg) | 119 ± 12 | 119 ± 13 | 120 ± 11 | 0.786 |
pDBD (mmHg) | 73 ± 9 | 69 ± 8 | 77 ± 8 | 0.010 * |
cSBP (mmHg) | 110 ± 13 | 107 ± 14 | 112 ± 11 | 0.294 |
cDBP (mmHg) | 74 ± 8 | 70 ± 8 | 78 ± 7 | 0.019 |
PWV (m/s) | 6.1 ± 1.3 | 5.1 ± 0.5 | 7.1 ± 0.9 | <0.001 *** |
HR (min−1) | 59 ± 10 | 57 ± 11 | 61 ± 8 | 0.244 |
Outcome | Protocol | Group | rest | 5 min. | 15 min. | 30 min. | 45 min. | p-Values (Group × Time) |
---|---|---|---|---|---|---|---|---|
pSBP (mmHg) | SIT1 | O | 120 ± 12 | 121 ± 10 | 119 ± 10 | 120 ± 12 | 119 ± 13 | 0.242 |
Y | 119 ± 13 | 123 ± 12 | 119 ± 12 | 118 ± 12 | 115 ± 11 | |||
pDBP (mmHg) | O | 78 ± 8 | 81 ± 7 | 80 ± 7 | 78 ± 6 | 77 ± 6 | 0.373 | |
Y | 69 ± 8 | 75 ± 11 * | 72 ± 10 | 69 ± 11 | 66 ± 9 | |||
cSBP (mmHg) | O | 112 ± 11 | 117 ± 10 | 115 ± 10 | 115 ± 13 | 114 ± 12 | 0.091 | |
Y | 107 ± 14 | 116 ± 12 | 114 ± 11 | 111 ± 10 | 105 ± 11 | |||
cDBP (mmHg) | O | 78 ± 7 | 82 ± 8 | 81 ± 8 | 78 ± 6 | 77 ± 7 | 0.625 | |
Y | 70 ± 8 | 76 ± 11 * | 73 ± 11 | 69 ± 11 | 68 ± 9 | |||
PWV (m/s) | O | 7.1 ± 0.9 | 7.2 ± 0.9 | 7.2 ± 0.8 | 7.2 ± 0.8 | 7.1 ± 0.9 | 0.133 | |
Y | 5.1 ± 0.5 | 5.4 ± 0.5 | 5.3 ± 0.4 | 5.3 ± 0.4 | 5.1 ± 0.4 | |||
HR (min−1) | O | 61 ± 8 | 78 ± 8 *** | 75 ± 8 *** | 65 ± 5 | 63 ± 6 | 0.190 | |
Y | 57 ± 11 | 82 ± 12 | 76 ± 12 | 68 ± 13 | 64 ± 12 | |||
pSBP (mmHg) | SIT3 | O | 124 ± 7 | 124 ± 10 | 116 ± 8 ** | 116 ± 8 *** | 111.5 ± 8 *** | 0.773 |
Y | 121 ± 12 | 122 ± 10 | 116 ± 10 | 114 ± 8 ** | 110 ± 10 *** | |||
pDBP (mmHg) | O | 79 ± 6 | 82 ± 7 | 79 ± 5 | 75 ± 6 * | 76 ± 7 | 0.972 | |
Y | 70 ± 9 | 73 ± 7 | 71 ± 8 | 67 ± 8 | 67 ± 10 | |||
cSBP (mmHg) | O | 116 ± 7 | 119 ± 10 | 113 ± 9 | 110 ± 9 * | 107 ± 7 ** | 0.239 | |
Y | 110 ± 10 | 118 ± 9 * | 110 ± 9 | 107 ± 7 | 104 ± 9 | |||
cDBP (mmHg) | O | 80 ± 6 | 83 ± 7 * | 80 ± 5 | 75 ± 6 ** | 76 ± 7 | 0.535 | |
Y | 71 ± 9 | 74 ± 8 | 72 ± 8 | 68 ± 8 | 69 ± 10 | |||
PWV (m/s) | O | 7.2 ± 0.8 | 7.3 ± 0.9 | 7.1 ± 0.8 | 7.0 ± 0.7 | 6.9 ± 0.8 ** | 0.402 | |
Y | 5.2 ± 0.4 | 5.5 ± 0.6 | 5.3 ± 0.4 | 5.2 ± 0.4 | 5.1 ± 0.4 | |||
HR (min−1) | O | 62 ± 8 | 81 ± 7 *** | 73 ± 8 | 69 ± 6 | 66 ± 7 | 0.933 | |
Y | 58 ± 9 | 81 ± 15 ** | 73 ± 12 * | 68 ± 10 * | 66 ± 10 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketelhut, S.; Möhle, M.; Gürlich, T.; Hottenrott, L.; Hottenrott, K. Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults. J. Clin. Med. 2023, 12, 640. https://doi.org/10.3390/jcm12020640
Ketelhut S, Möhle M, Gürlich T, Hottenrott L, Hottenrott K. Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults. Journal of Clinical Medicine. 2023; 12(2):640. https://doi.org/10.3390/jcm12020640
Chicago/Turabian StyleKetelhut, Sascha, Martin Möhle, Tina Gürlich, Laura Hottenrott, and Kuno Hottenrott. 2023. "Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults" Journal of Clinical Medicine 12, no. 2: 640. https://doi.org/10.3390/jcm12020640
APA StyleKetelhut, S., Möhle, M., Gürlich, T., Hottenrott, L., & Hottenrott, K. (2023). Comparing Post-Exercise Hypotension after Different Sprint Interval Training Protocols in a Matched Sample of Younger and Older Adults. Journal of Clinical Medicine, 12(2), 640. https://doi.org/10.3390/jcm12020640