KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration
Abstract
:1. Introduction
2. Molecular Biological Functions of KRAS
3. KRAS Mutations in Cancers
3.1. Frequencies and Types of KRAS Mutations
3.2. Clinicopathological Characteristics of KRAS Mutations
3.3. Prognostic Value of KRAS Mutations
3.3.1. Overall Impact of KRAS Mutations on Prognosis
3.3.2. Impacts of Different KRAS Mutation Subtypes on Prognosis
3.3.3. Impact of KRAS Co-Alterations on Prognosis
4. Therapeutic Strategies in KRAS-Mutant Cancers
4.1. Immunotherapy in KRAS-Mutant Cancers
4.2. Direct and Indirect Inhibitors of KRAS
4.2.1. Directly Targeted Therapy
4.2.2. Indirectly Targeted Therapy
4.3. Other Unconventional Therapies
5. Advances in Drug Resistance and Oncological Mechanisms of KRAS-Mutant Cancers
5.1. Drug Resistance of KRAS Inhibitors
5.1.1. Primary Resistance
5.1.2. Acquired Resistance
5.2. Drug Resistances of Other Therapies
5.3. Oncological Mechanisms of KRAS-Mutant Cancers
5.3.1. Tumor Proliferation, Survival, and Migration
5.3.2. The Immune Microenvironment
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhang, J.; Liu, Q.; Fan, X.X.; Leung, E.L.; Yao, X.J.; Liu, L. Resistance looms for KRAS G12C inhibitors and rational tackling strategies. Pharmacol. Ther. 2022, 229, 108050. [Google Scholar] [CrossRef] [PubMed]
- McBride, O.W.; Swan, D.C.; Tronick, S.R.; Gol, R.; Klimanis, D.; Moore, D.E.; Aaronson, S.A. Regional chromosomal localization of N-ras, K-ras-1, K-ras-2 and myb oncogenes in human cells. Nucleic Acids Res. 1983, 11, 8221–8236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Luo, J.; Liu, W.; Ashby, C.R., Jr.; Chen, Z.S.; Lin, L. Sotorasib: A treatment for non-small cell lung cancer with the KRAS G12C mutation. Drugs Today 2022, 58, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRAS(G12C) Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef]
- Moore, A.R.; Rosenberg, S.C.; McCormick, F.; Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discov. 2020, 19, 533–552. [Google Scholar] [CrossRef]
- Ostrem, J.M.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design. Nat. Rev. Drug Discov. 2016, 15, 771–785. [Google Scholar] [CrossRef]
- Shukla, S.; Allam, U.S.; Ahsan, A.; Chen, G.; Krishnamurthy, P.M.; Marsh, K.; Rumschlag, M.; Shankar, S.; Whitehead, C.; Schipper, M.; et al. KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation. Neoplasia 2014, 16, W3–W5. [Google Scholar] [CrossRef] [Green Version]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Vigil, D.; Cherfils, J.; Rossman, K.L.; Der, C.J. Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nat. Rev. Cancer 2010, 10, 842–857. [Google Scholar] [CrossRef]
- Hillig, R.C.; Sautier, B.; Schroeder, J.; Moosmayer, D.; Hilpmann, A.; Stegmann, C.M.; Werbeck, N.D.; Briem, H.; Boemer, U.; Weiske, J.; et al. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl. Acad. Sci. USA 2019, 116, 2551–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drosten, M.; Barbacid, M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020, 37, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Wang, G.; Tsai, C.J.; Jang, H.; Lu, S.; Banerjee, A.; Zhang, J.; Gaponenko, V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer 2017, 3, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, E.; Morgillo, F.; Troiani, T.; Ciardiello, F. Cancer resistance to therapies against the EGFR-RAS-RAF pathway: The role of MEK. Cancer Treat. Rev. 2017, 53, 61–69. [Google Scholar] [CrossRef]
- Fresno Vara, J.Á.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. P13K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30, 193–204. [Google Scholar] [CrossRef]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients with Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef]
- El Osta, B.; Behera, M.; Kim, S.; Berry, L.D.; Sica, G.; Pillai, R.N.; Owonikoko, T.K.; Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; et al. Characteristics and Outcomes of Patients with Metastatic KRAS-Mutant Lung Adenocarcinomas: The Lung Cancer Mutation Consortium Experience. J. Thorac. Oncol. 2019, 14, 876–889. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Ma, P.; Fang, Y.; Yu, Y.; Jiang, N.; Miao, H.; Tang, Q.; Yang, Y.; Xing, S.; et al. KRAS Mutation in Rare Tumors: A Landscape Analysis of 3453 Chinese Patients. Front. Mol. Biosci. 2022, 9, 831382. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, X.; Wang, X.; Chen, Y.; Li, Z.; Yu, J.; Yang, W.; Mao, B.; Zhang, H.; Li, J.; et al. Genetic differences between lung metastases and liver metastases from left-sided microsatellite stable colorectal cancer: Next generation sequencing and clinical implications. Ann. Transl. Med. 2021, 9, 967. [Google Scholar] [CrossRef]
- Ottaiano, A.; Nasti, G.; Santorsola, M.; Altieri, V.; Di Fruscio, G.; Circelli, L.; Luce, A.; Cossu, A.M.; Scognamiglio, G.; Perri, F.; et al. KRAS Mutational Regression Is Associated with Oligo-Metastatic Status and Good Prognosis in Metastatic Colorectal Cancer. Front. Oncol. 2021, 11, 632962. [Google Scholar] [CrossRef] [PubMed]
- Ceddia, S.; Landi, L.; Cappuzzo, F. KRAS-Mutant Non-Small-Cell Lung Cancer: From Past Efforts to Future Challenges. Int. J. Mol. Sci. 2022, 23, 9391. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, C.; Qi, X.; Zhou, L.; Liu, D.; Lv, H.; Li, T.; Sun, D.; Zhang, X. Distinctive targetable genotypes of younger patients with lung adenocarcinoma: A cBioPortal for cancer genomics data base analysis. Cancer Biol. Ther. 2020, 21, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Macerelli, M.; Caramella, C.; Faivre, L.; Besse, B.; Planchard, D.; Polo, V.; Ngo Camus, M.; Celebic, A.; Koubi-Pick, V.; Lacroix, L.; et al. Does KRAS mutational status predict chemoresistance in advanced non-small cell lung cancer (NSCLC)? Lung Cancer 2014, 83, 383–388. [Google Scholar] [CrossRef]
- Safi, S.A.; Haeberle, L.; Goering, W.; Keitel, V.; Fluegen, G.; Stoecklein, N.; Rehders, A.; Knoefel, W.T.; Esposito, I. Genetic Alterations Predict Long-Term Survival in Ductal Adenocarcinoma of the Pancreatic Head. Cancers 2022, 14, 850. [Google Scholar] [CrossRef]
- Itonaga, M.; Ashida, R.; Murata, S.I.; Yamashita, Y.; Hatamaru, K.; Tamura, T.; Kawaji, Y.; Kayama, Y.; Emori, T.; Kawai, M.; et al. Kras Gene Analysis Using Liquid-Based Cytology Specimens Predicts Therapeutic Responses and Prognosis in Patients with Pancreatic Cancer. Cancers 2022, 14, 551. [Google Scholar] [CrossRef]
- Schlick, K.; Markus, S.; Huemer, F.; Ratzinger, L.; Zaborsky, N.; Clemens, H.; Neureiter, D.; Neumayer, B.; Beate, A.S.; Florian, S.; et al. Evaluation of circulating cell-free KRAS mutational status as a molecular monitoring tool in patients with pancreatic cancer. Pancreatology 2021, 21, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Ako, S.; Kato, H.; Nouso, K.; Kinugasa, H.; Terasawa, H.; Matushita, H.; Takada, S.; Saragai, Y.; Mizukawa, S.; Muro, S.; et al. Plasma KRAS mutations predict the early recurrence after surgical resection of pancreatic cancer. Cancer Biol. Ther. 2021, 22, 564–570. [Google Scholar] [CrossRef]
- Kolbeinsson, H.M.; Preihs, R.; Bengel, A.; Chandana, S.; Assifi, M.M.; Chung, M.H.; Wright, G.P. Kirsten rat sarcoma (KRAS) oncogene mutation predicts magnitude of response and outcomes in hepatic arterial infusion pump therapy of unresectable colorectal liver metastases. J. Gastrointest. Oncol. 2022, 13, 163–170. [Google Scholar] [CrossRef]
- Sato, T.; Osumi, H.; Shinozaki, E.; Ooki, A.; Shimozaki, K.; Kamiimabeppu, D.; Nakayama, I.; Wakatsuki, T.; Ogura, M.; Takahari, D.; et al. Clinical Impact of Primary Tumor Location and RAS, BRAF V600E, and PIK3CA Mutations on Epidermal Growth Factor Receptor Inhibitor Efficacy as Third-line Chemotherapy for Metastatic Colorectal Cancer. Anticancer Res. 2021, 41, 3905–3915. [Google Scholar] [CrossRef]
- Díez-Alonso, M.; Mendoza-Moreno, F.; Jiménez-Álvarez, L.; Nuñez, O.; Blazquez-Martín, A.; Sanchez-Gollarte, A.; Matías-García, B.; Molina, R.; San-Juan, A.; Gutierrez-Calvo, A. Prognostic factors of survival in stage IV colorectal cancer with synchronous liver metastasis: Negative effect of the KRAS mutation. Mol. Clin. Oncol. 2021, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, J.; Cecchini, M.; Sheth, A.; Stein, S.; Lacy, J.; Kim, H.S. Microsatellite Instability and KRAS Mutation in Stage IV Colorectal Cancer: Prevalence, Geographic Discrepancies, and Outcomes From the National Cancer Database. J. Natl. Compr. Cancer Netw. 2021, 19, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Ozer, M.; Goksu, S.Y.; Sanford, N.N.; Ahn, C.; Beg, M.S.; Ali Kazmi, S.M. Age-dependent prognostic value of KRAS mutation in metastatic colorectal cancer. Future Oncol. 2021, 17, 4883–4893. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, M.; Auclin, E.; Mosteiro, M.; Dempsey, N.; Majem, M.; Lobefaro, R.; López-Castro, R.; Bosch-Barrera, J.; Pilotto, S.; Escalera, E.; et al. Durvalumab consolidation in patients with unresectable stage III non-small cell lung cancer with driver genomic alterations. Eur. J. Cancer 2022, 167, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lauko, A.; Kotecha, R.; Barnett, A.; Li, H.; Tatineni, V.; Ali, A.; Patil, P.; Mohammadi, A.M.; Chao, S.T.; Murphy, E.S.; et al. Impact of KRAS mutation status on the efficacy of immunotherapy in lung cancer brain metastases. Sci. Rep. 2021, 11, 18174. [Google Scholar] [CrossRef]
- Yoh, K.; Matsumoto, S.; Furuya, N.; Nishino, K.; Miyamoto, S.; Oizumi, S.; Okamoto, N.; Itani, H.; Kuyama, S.; Nakamura, A.; et al. Comprehensive assessment of PD-L1 expression, tumor mutational burden and oncogenic driver alterations in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer 2021, 159, 128–134. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Xie, J.; Chen, M.; Liu, H.; Zhan, P.; Lv, T.; Song, Y. The Predictive Value of Clinical and Molecular Characteristics or Immunotherapy in Non-Small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. Front. Oncol. 2021, 11, 732214. [Google Scholar] [CrossRef]
- Pujol, J.L.; Vansteenkiste, J.; Paz-Ares Rodríguez, L.; Gregorc, V.; Mazieres, J.; Awad, M.; Jänne, P.A.; Chisamore, M.; Hossain, A.M.; Chen, Y.; et al. Abemaciclib in Combination with Pembrolizumab for Stage IV KRAS-Mutant or Squamous NSCLC: A Phase 1b Study. JTO Clin. Res. Rep. 2021, 2, 100234. [Google Scholar] [CrossRef]
- Noordhof, A.L.; Damhuis, R.A.M.; Hendriks, L.E.L.; de Langen, A.J.; Timens, W.; Venmans, B.J.W.; van Geffen, W.H. Prognostic impact of KRAS mutation status for patients with stage IV adenocarcinoma of the lung treated with first-line pembrolizumab monotherapy. Lung Cancer 2021, 155, 163–169. [Google Scholar] [CrossRef]
- Kartolo, A.; Feilotter, H.; Hopman, W.; Fung, A.S.; Robinson, A. A single institution study evaluating outcomes of PD-L1 high KRAS-mutant advanced non-small cell lung cancer (NSCLC) patients treated with first line immune checkpoint inhibitors. Cancer Treat. Res. Commun. 2021, 27, 100330. [Google Scholar] [CrossRef]
- Gökyer, A.; Küçükarda, A.; Köstek, O.; Gökmen, İ.; Özcan, E.; Sayın, S.; Taştekin, E.; Hacıoğlu, B.; Erdoğan, B.; Uzunoğlu, S.; et al. Comparison of real-life data from patients with NGS panel negative and KRAS mutation positive metastatic lung adenocarcinoma. Tumori 2022, 108, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.G.; Liao, W.Y.; Su, K.Y.; Yu, S.L.; Huang, Y.L.; Yu, C.J.; Chih-Hsin Yang, J.; Shih, J.Y. Prognostic Characteristics and Immunotherapy Response of Patients with Nonsquamous NSCLC with Kras Mutation in East Asian Populations: A Single-Center Cohort Study in Taiwan. JTO Clin. Res. Rep. 2021, 2, 100140. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, M.; Eberhardt, W.E.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; et al. KRAS G12C-mutated advanced non-small cell lung cancer: A real-world cohort from the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer 2021, 154, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, R.; Lupi, A.; Ziranu, P.; Bittoni, A.; Pretta, A.; Pecci, F.; Persano, M.; Giglio, E.; Copparoni, C.; Crocetti, S.; et al. Retrospective Comparative Analysis of KRAS G12C vs. Other KRAS Mutations in mCRC Patients Treated with First-Line Chemotherapy Doublet + Bevacizumab. Front. Oncol. 2021, 11, 736104. [Google Scholar] [CrossRef]
- Van’t Erve, I.; Wesdorp, N.J.; Medina, J.E.; Ferreira, L.; Leal, A.; Huiskens, J.; Bolhuis, K.; van Waesberghe, J.T.M.; Swijnenburg, R.J.; van den Broek, D.; et al. KRAS A146 Mutations Are Associated with Distinct Clinical Behavior in Patients with Colorectal Liver Metastases. JCO Precis. Oncol. 2021, 5, 1758–1767. [Google Scholar] [CrossRef]
- Scheffler, M.; Ihle, M.A.; Hein, R.; Merkelbach-Bruse, S.; Scheel, A.H.; Siemanowski, J.; Brägelmann, J.; Kron, A.; Abedpour, N.; Ueckeroth, F.; et al. K-ras Mutation Subtypes in NSCLC and Associated Co-occuring Mutations in Other Oncogenic Pathways. J. Thorac. Oncol. 2019, 14, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Arbour, K.C.; Jordan, E.; Kim, H.R.; Dienstag, J.; Yu, H.A.; Sanchez-Vega, F.; Lito, P.; Berger, M.; Solit, D.B.; Hellmann, M.; et al. Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2018, 24, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Shoucair, S.; Habib, J.R.; Pu, N.; Kinny-Köster, B.; van Ooston, A.F.; Javed, A.A.; Lafaro, K.J.; He, J.; Wolfgang, C.L.; Yu, J. Comprehensive Analysis of Somatic Mutations in Driver Genes of Resected Pancreatic Ductal Adenocarcinoma Reveals KRAS G12D and Mutant TP53 Combination as an Independent Predictor of Clinical Outcome. Ann. Surg. Oncol. 2022, 29, 2720–2731. [Google Scholar] [CrossRef]
- Shimozaki, K.; Shinozaki, E.; Yamamoto, N.; Imamura, Y.; Osumi, H.; Nakayama, I.; Wakatsuki, T.; Ooki, A.; Takahari, D.; Ogura, M.; et al. KRAS mutation as a predictor of insufficient trastuzumab efficacy and poor prognosis in HER2-positive advanced gastric cancer. J. Cancer Res. Clin. Oncol. 2022. Available online: https://link.springer.com/article/10.1007/s00432-022-03966-7#citeas (accessed on 29 November 2021). [CrossRef]
- Fu, Y.; Wang, A.; Zhou, J.; Feng, W.; Shi, M.; Xu, X.; Zhao, H.; Cai, L.; Feng, J.; Lv, X.; et al. Advanced NSCLC Patients with EGFR T790M Harboring TP53 R273C or KRAS G12V Cannot Benefit From Osimertinib Based on a Clinical Multicentre Study by Tissue and Liquid Biopsy. Front. Oncol. 2021, 11, 621992. [Google Scholar] [CrossRef]
- Fung, A.S.; Karimi, M.; Michiels, S.; Seymour, L.; Brambilla, E.; Le-Chevalier, T.; Soria, J.C.; Kratzke, R.; Graziano, S.L.; Devarakonda, S.; et al. Prognostic and predictive effect of KRAS gene copy number and mutation status in early stage non-small cell lung cancer patients. Transl. Lung Cancer Res. 2021, 10, 826–838. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, M.; Yang, Z.; Huang, X.; Li, N. The role of distinct co-mutation patterns with TP53 mutation in immunotherapy for NSCLC. Genes Dis. 2022, 9, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Sholl, L.M. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod. Pathol. 2022, 35, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Arbour, K.C.; Lin, J.J.; Vajdi, A.; Vokes, N.; Hong, L.; Zhang, J.; Tolstorukov, M.Y.; Li, Y.Y.; Spurr, L.F.; et al. Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. J. Thorac. Oncol. 2022, 17, 399–410. [Google Scholar] [CrossRef]
- Feng, H.B.; Chen, Y.; Xie, Z.; Jiang, J.; Zhong, Y.M.; Guo, W.B.; Yan, W.Q.; Lv, Z.Y.; Lu, D.X.; Liang, H.L.; et al. High SHP2 expression determines the efficacy of PD-1/PD-L1 inhibitors in advanced KRAS mutant non-small cell lung cancer. Thorac. Cancer 2021, 12, 2564–2573. [Google Scholar] [CrossRef]
- Luo, X.; Peng, S.; Ding, S.; Zeng, Q.; Wang, R.; Ma, Y.; Chen, S.; Wang, Y.; Wang, W. Prognostic values, ceRNA network, and immune regulation function of SDPR in KRAS-mutant lung cancer. Cancer Cell Int. 2021, 21, 49. [Google Scholar] [CrossRef]
- Hussung, S.; Akhoundova, D.; Hipp, J.; Follo, M.; Klar, R.F.U.; Philipp, U.; Scherer, F.; von Bubnoff, N.; Duyster, J.; Boerries, M.; et al. Longitudinal analysis of cell-free mutated KRAS and CA 19-9 predicts survival following curative resection of pancreatic cancer. BMC Cancer 2021, 21, 49. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, M.; Li, D.; Tan, Y.; Zhang, R.; Xia, Z.; Wang, P.; Jiao, B.; Liu, P.; Ren, R. PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells. J. Biol. Chem. 2020, 295, 18343–18354. [Google Scholar] [CrossRef]
- Tian, C.; Li, X.; Ge, C. High expression of LAMA3/AC245041.2 gene pair associated with KRAS mutation and poor survival in pancreatic adenocarcinoma: A comprehensive TCGA analysis. Mol. Med. 2021, 27, 62. [Google Scholar] [CrossRef]
- Zocche, D.M.; Ramirez, C.; Fontao, F.M.; Costa, L.D.; Redal, M.A. Global impact of KRAS mutation patterns in FOLFOX treated metastatic colorectal cancer. Front. Genet. 2015, 6, 116. [Google Scholar] [CrossRef]
- Dai, M.; Chen, S.; Teng, X.; Chen, K.; Cheng, W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J. Cancer 2022, 13, 3209–3220. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, S.; Saber-Ayad, M.; Abdel-Rahman, W.M. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 2021, 22, 10219. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, H.G.; Park, J.; Lee, G.; Kim, H.S.; Paeng, K.; Song, S.; Park, G.; Ock, C.Y.; Chae, Y.K. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer. Am. J. Pathol. 2022, 192, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Pirlog, R.; Piton, N.; Lamy, A.; Guisier, F.; Berindan-Neagoe, I.; Sabourin, J.C.; Marguet, F. Morphological and Molecular Characterization of KRAS G12C-Mutated Lung Adenocarcinomas. Cancers 2022, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Dias Carvalho, P.; Machado, A.L.; Martins, F.; Seruca, R.; Velho, S. Targeting the Tumor Microenvironment: An Unexplored Strategy for Mutant KRAS Tumors. Cancers 2019, 11, 2010. [Google Scholar] [CrossRef] [Green Version]
- Uehara, Y.; Watanabe, K.; Hakozaki, T.; Yomota, M.; Hosomi, Y. Efficacy of first-line immune checkpoint inhibitors in patients with advanced NSCLC with KRAS, MET, FGFR, RET, BRAF, and HER2 alterations. Thorac Cancer 2022, 13, 1703–1711. [Google Scholar] [CrossRef]
- Landre, T.; Justeau, G.; Assié, J.B.; Chouahnia, K.; Davoine, C.; Taleb, C.; Chouaïd, C.; Duchemann, B. Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: A meta-analysis of randomized-controlled trials. Cancer Immunol. Immunother. 2022, 71, 719–726. [Google Scholar] [CrossRef]
- Cefalì, M.; Epistolio, S.; Ramelli, G.; Mangan, D.; Molinari, F.; Martin, V.; Freguia, S.; Mazzucchelli, L.; Froesch, P.; Frattini, M.; et al. Correlation of KRAS G12C Mutation and High PD-L1 Expression with Clinical Outcome in NSCLC Patients Treated with Anti-PD1 Immunotherapy. J. Clin. Med. 2022, 11, 1627. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, J.; Liu, Y.; Xin, Y.; Wang, Y.; Niu, K.; Wei, H. Efficacy of immune checkpoint inhibitors in the treatment of non-small cell lung cancer patients with different genes mutation: A meta-analysis. Medicine 2021, 100, e19713. [Google Scholar] [CrossRef]
- Chen, H.; Huang, D.; Lin, G.; Yang, X.; Zhuo, M.; Chi, Y.; Zhai, X.; Jia, B.; Wang, J.; Wang, Y.; et al. The prevalence and real-world therapeutic analysis of Chinese patients with KRAS-Mutant Non-Small Cell lung cancer. Cancer Med. 2022, 11, 3581–3592. [Google Scholar] [CrossRef]
- West, H.J.; McCleland, M.; Cappuzzo, F.; Reck, M.; Mok, T.S.; Jotte, R.M.; Nishio, M.; Kim, E.; Morris, S.; Zou, W.; et al. Clinical efficacy of atezolizumab plus bevacizumab and chemotherapy in KRAS-mutated non-small cell lung cancer with STK11, KEAP1, or TP53 comutations: Subgroup results from the phase III IMpower150 trial. J. Immunother. Cancer 2022, 10, e003027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Y.; Yang, F.; Zhang, Y.; Jiang, M.; Zhang, X. The Efficacy and Safety of PD-1 Inhibitors Combined with Nab-Paclitaxel Plus Gemcitabine versus Nab-Paclitaxel Plus Gemcitabine in the First-Line Treatment of Advanced Pancreatic Cancer: A Retrospective Monocentric Study. Cancer Manag. Res. 2022, 14, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hsu, M.; Cohen, R.B.; Langer, C.J.; Mamtani, R.; Aggarwal, C. Association Between KRAS Variant Status and Outcomes with First-line Immune Checkpoint Inhibitor-Based Therapy in Patients with Advanced Non-Small-Cell Lung Cancer. JAMA Oncol. 2021, 7, 937–939. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Carbone, D.P.; Garassino, M.; Barlesi, F. Targeting KRAS in non-small-cell lung cancer: Recent progress and new approaches. Ann. Oncol. 2021, 32, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, G.; Liu, Q.; Li, S.; Zhang, Y. Inhibitors of the GTPase KRAS(G12C) in cancer: A patent review (2019–2021). Expert Opin. Ther. Pat. 2022, 32, 475–505. [Google Scholar] [CrossRef]
- Nakayama, A.; Nagashima, T.; Nishizono, Y.; Kuramoto, K.; Mori, K.; Homboh, K.; Yuri, M.; Shimazaki, M. Characterisation of a novel KRAS G12C inhibitor ASP2453 that shows potent anti-tumour activity in KRAS G12C-mutated preclinical models. Br. J. Cancer 2022, 126, 744–753. [Google Scholar] [CrossRef]
- Dawson, J.C.; Munro, A.; Macleod, K.; Muir, M.; Timpson, P.; Williams, R.J.; Frame, M.; Brunton, V.G.; Carragher, N.O. Pathway profiling of a novel SRC inhibitor, AZD0424, in combination with MEK inhibitors for cancer treatment. Mol. Oncol. 2022, 16, 1072–1090. [Google Scholar] [CrossRef]
- Kenney, C.; Kunst, T.; Webb, S.; Christina, D., Jr.; Arrowood, C.; Steinberg, S.M.; Mettu, N.B.; Kim, E.J.; Rudloff, U. Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRAS(G12R)-mutant pancreatic ductal adenocarcinoma. Investig. N. Drugs 2021, 39, 821–828. [Google Scholar] [CrossRef]
- Jung, H.R.; Oh, Y.; Na, D.; Min, S.; Kang, J.; Jang, D.; Shin, S.; Kim, J.; Lee, S.E.; Jeong, E.M.; et al. CRISPR screens identify a novel combination treatment targeting BCL-X(L) and WNT signaling for KRAS/BRAF-mutated colorectal cancers. Oncogene 2021, 40, 3287–3302. [Google Scholar] [CrossRef]
- Fujino, S.; Miyoshi, N.; Ito, A.; Yasui, M.; Ohue, M.; Ogino, T.; Takahashi, H.; Uemura, M.; Matsuda, C.; Mizushima, T.; et al. Crenolanib Regulates ERK and AKT/mTOR Signaling Pathways in RAS/BRAF-Mutated Colorectal Cancer Cells and Organoids. Mol. Cancer Res. 2021, 19, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, H.; Tian, Y.; Cha, Y.; Xiong, H.; Yuan, X. Efficacy and safety analysis of bevacizumab combined with capecitabine in the maintenance treatment of RAS-mutant metastatic colorectal cancer. J. Clin. Pharm. Ther. 2022, 47, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, J. Analysis of Efficacy, Safety, and Prognostic Factors of mFOLFOX6 Regimen Combined with Cetuximab and Simvastatin in the Treatment of K-RAS Mutant Colorectal Cancer. Evid. Based Complement. Altern. Med. 2021, 2021, 2280440. [Google Scholar] [CrossRef] [PubMed]
- Fung, A.S.; Graham, D.M.; Chen, E.X.; Stockley, T.L.; Zhang, T.; Le, L.W.; Albaba, H.; Pisters, K.M.; Bradbury, P.A.; Trinkaus, M.; et al. A phase I study of binimetinib (MEK 162), a MEK inhibitor, plus carboplatin and pemetrexed chemotherapy in non-squamous non-small cell lung cancer. Lung Cancer 2021, 157, 21–29. [Google Scholar] [CrossRef]
- Froesch, P.; Mark, M.; Rothschild, S.I.; Li, Q.; Godar, G.; Rusterholz, C.; Oppliger Leibundgut, E.; Schmid, S.; Colombo, I.; Metaxas, Y.; et al. Binimetinib, pemetrexed and cisplatin, followed by maintenance of binimetinib and pemetrexed in patients with advanced non-small cell lung cancer (NSCLC) and KRAS mutations. The phase 1B SAKK 19/16 trial. Lung Cancer 2021, 156, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Almotlak, A.A.; Farooqui, M.; Soloff, A.C.; Siegfried, J.M.; Stabile, L.P. Targeting the ERβ/HER Oncogenic Network in KRAS Mutant Lung Cancer Modulates the Tumor Microenvironment and Is Synergistic with Sequential Immunotherapy. Int. J. Mol. Sci. 2021, 23, 81. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, Y.; Liu, W.; Ju, X.; Zhao, X.; Jiang, L.; Ye, Y.; Jin, G.; Zhang, H. Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: An open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2022, 23, e105–e115. [Google Scholar] [CrossRef]
- Teo, M.Y.M.; Ng, J.J.C.; Fong, J.Y.; Hwang, J.S.; Song, A.A.; Lim, R.L.H.; In, L.L.A. Development of a single-chain fragment variable fused-mutant HALT-1 recombinant immunotoxin against G12V mutated KRAS colorectal cancer cells. PeerJ 2021, 9, e11063. [Google Scholar] [CrossRef]
- Oh, Y.; Jung, H.R.; Min, S.; Kang, J.; Jang, D.; Shin, S.; Kim, J.; Lee, S.E.; Sung, C.O.; Lee, W.S.; et al. Targeting antioxidant enzymes enhances the therapeutic efficacy of the BCL-X(L) inhibitor ABT-263 in KRAS-mutant colorectal cancers. Cancer Lett. 2021, 497, 123–136. [Google Scholar] [CrossRef]
- McAndrews, K.M.; Xiao, F.; Chronopoulos, A.; LeBleu, V.S.; Kugeratski, F.G.; Kalluri, R. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic Kras(G12D) in pancreatic cancer. Life Sci. Alliance 2021, 4, e202000875. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, H.; Zhang, Y.; Luo, S.; Du, Z.; Lin, Q.; Zhang, Z.; Zhang, L. An exosome-mimicking membrane hybrid nanoplatform for targeted treatment toward Kras-mutant pancreatic carcinoma. Biomater. Sci. 2021, 9, 5599–5611. [Google Scholar] [CrossRef] [PubMed]
- Yazal, T.; Bailleul, J.; Ruan, Y.; Sung, D.; Chu, F.I.; Palomera, D.; Dao, A.; Sehgal, A.; Gurunathan, V.; Aryan, L.; et al. Radiosensitizing Pancreatic Cancer via Effective Autophagy Inhibition. Mol. Cancer Ther. 2022, 21, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, S.; Na, K. Immune Stimulating Antibody-Photosensitizer Conjugates via Fc-Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for KRAS-Mutated Pancreatic Cancer Treatment. Small 2021, 17, e2006650. [Google Scholar] [CrossRef]
- Hashimoto, A.; Handa, H.; Hata, S.; Tsutaho, A.; Yoshida, T.; Hirano, S.; Hashimoto, S.; Sabe, H. Inhibition of mutant KRAS-driven overexpression of ARF6 and MYC by an eIF4A inhibitor drug improves the effects of anti-PD-1 immunotherapy for pancreatic cancer. Cell Commun. Signal. 2021, 19, 54. [Google Scholar] [CrossRef]
- Sad, K.; Parashar, P.; Tripathi, P.; Hungyo, H.; Sistla, R.; Soni, R.; Tandon, V. Prochlorperazine enhances radiosensitivity of non-small cell lung carcinoma by stabilizing GDP-bound mutant KRAS conformation. Free. Radic. Biol. Med. 2021, 177, 299–312. [Google Scholar] [CrossRef]
- Fanini, F.; Bandini, E.; Plousiou, M.; Carloni, S.; Wise, P.; Neviani, P.; Murtadha, M.; Foca, F.; Fabbri, F.; Vannini, I.; et al. MicroRNA-16 Restores Sensitivity to Tyrosine Kinase Inhibitors and Outperforms MEK Inhibitors in KRAS-Mutated Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2021, 22, 13357. [Google Scholar] [CrossRef]
- Chao, Y.C.; Lee, K.Y.; Wu, S.M.; Kuo, D.Y.; Shueng, P.W.; Lin, C.W. Melatonin Downregulates PD-L1 Expression and Modulates Tumor Immunity in KRAS-Mutant Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2021, 22, 5649. [Google Scholar] [CrossRef]
- Jiang, Z.B.; Wang, W.J.; Xu, C.; Xie, Y.J.; Wang, X.R.; Zhang, Y.Z.; Huang, J.M.; Huang, M.; Xie, C.; Liu, P.; et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 2021, 515, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.H.; Kwon, M.; Jung, H.; Ko, E.; Kim, S.A.; Choi, Y.; Song, S.J.; Kim, S.; Lee, Y.; Kim, G.B.; et al. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J. Immunother. Cancer 2021, 9, e002474. [Google Scholar] [CrossRef]
- Nagasaka, M.; Potugari, B.; Nguyen, A.; Sukari, A.; Azmi, A.S.; Ou, S.I. KRAS Inhibitors- yes but what next? Direct targeting of KRAS- vaccines, adoptive T cell therapy and beyond. Cancer Treat. Rev. 2021, 101, 102309. [Google Scholar] [CrossRef]
- Singh, A.; Greninger, P.; Rhodes, D.; Koopman, L.; Violette, S.; Bardeesy, N.; Settleman, J. A gene expression signature associated with "K-Ras addiction" reveals regulators of EMT and tumor cell survival. Cancer Cell 2009, 15, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzumdar, M.D.; Chen, P.Y.; Dorans, K.J.; Chung, K.M.; Bhutkar, A.; Hong, E.; Noll, E.M.; Sprick, M.R.; Trumpp, A.; Jacks, T. Survival of pancreatic cancer cells lacking KRAS function. Nat. Commun. 2017, 8, 1090. [Google Scholar] [CrossRef] [Green Version]
- Franke, T.F. PI3K/Akt: Getting it right matters. Oncogene 2008, 27, 6473–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, A.; Yao, W.; Ying, H.; Hua, S.; Liewen, A.; Wang, Q.; Zhong, Y.; Wu, C.J.; Sadanandam, A.; Hu, B.; et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 2014, 158, 185–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, P.; Ma, X.; Yang, Z.; Zhang, Q.; Wu, C.J.; Li, J.; Tan, L.; Yao, W.; Yan, L.; Zhou, X.; et al. USP21 deubiquitinase elevates macropinocytosis to enable oncogenic KRAS bypass in pancreatic cancer. Genes Dev. 2021, 35, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Kapoor, A.; Zhang, Q.; Li, J.; Wu, C.J.; Li, J.; Lan, Z.; Tang, M.; Ma, X.; Ackroyd, J.J.; et al. Tumor Microenvironment Remodeling Enables Bypass of Oncogenic KRAS Dependency in Pancreatic Cancer. Cancer Discov. 2020, 10, 1058–1077. [Google Scholar] [CrossRef]
- Reita, D.; Pabst, L.; Pencreach, E.; Guérin, E.; Dano, L.; Rimelen, V.; Voegeli, A.C.; Vallat, L.; Mascaux, C.; Beau-Faller, M. Direct Targeting KRAS Mutation in Non-Small Cell Lung Cancer: Focus on Resistance. Cancers 2022, 14, 1321. [Google Scholar] [CrossRef]
- Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; et al. Acquired Resistance to KRAS(G12C) Inhibition in Cancer. N. Engl. J. Med. 2021, 384, 2382–2393. [Google Scholar] [CrossRef]
- Tanaka, N.; Lin, J.J.; Li, C.; Ryan, M.B.; Zhang, J.; Kiedrowski, L.A.; Michel, A.G.; Syed, M.U.; Fella, K.A.; Sakhi, M.; et al. Clinical Acquired Resistance to KRAS(G12C) Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer Discov. 2021, 11, 1913–1922. [Google Scholar] [CrossRef]
- Koga, T.; Suda, K.; Fujino, T.; Ohara, S.; Hamada, A.; Nishino, M.; Chiba, M.; Shimoji, M.; Takemoto, T.; Arita, T.; et al. KRAS Secondary Mutations That Confer Acquired Resistance to KRAS G12C Inhibitors, Sotorasib and Adagrasib, and Overcoming Strategies: Insights From In Vitro Experiments. J. Thorac. Oncol. 2021, 16, 1321–1332. [Google Scholar] [CrossRef]
- Akhave, N.S.; Biter, A.B.; Hong, D.S. Mechanisms of Resistance to KRAS(G12C)-Targeted Therapy. Cancer Discov. 2021, 11, 1345–1352. [Google Scholar] [CrossRef]
- Misale, S.; Arena, S.; Lamba, S.; Siravegna, G.; Lallo, A.; Hobor, S.; Russo, M.; Buscarino, M.; Lazzari, L.; Sartore-Bianchi, A.; et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl. Med. 2014, 6, 224ra226. [Google Scholar] [CrossRef]
- Ryan, M.B.; Fece de la Cruz, F.; Phat, S.; Myers, D.T.; Wong, E.; Shahzade, H.A.; Hong, C.B.; Corcoran, R.B. Vertical Pathway Inhibition Overcomes Adaptive Feedback Resistance to KRAS(G12C) Inhibition. Clin. Cancer Res. 2020, 26, 1633–1643. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.Y.; Zhao, Y.; Aronowitz, J.; Mai, T.T.; Vides, A.; Qeriqi, B.; Kim, D.; Li, C.; de Stanchina, E.; Mazutis, L.; et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 2020, 577, 421–425. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Zhang, J.; Liu, P.; Jiao, B.; Wang, Z.; Ren, R. Focal Adhesion Kinase (FAK) Inhibition Synergizes with KRAS G12C Inhibitors in Treating Cancer through the Regulation of the FAK-YAP Signaling. Adv. Sci. 2021, 8, e2100250. [Google Scholar] [CrossRef]
- Adachi, Y.; Ito, K.; Hayashi, Y.; Kimura, R.; Tan, T.Z.; Yamaguchi, R.; Ebi, H. Epithelial-to-Mesenchymal Transition is a Cause of Both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26, 5962–5973. [Google Scholar] [CrossRef]
- Hallin, J.; Engstrom, L.D.; Hargis, L.; Calinisan, A.; Aranda, R.; Briere, D.M.; Sudhakar, N.; Bowcut, V.; Baer, B.R.; Ballard, J.A.; et al. The KRAS(G12C) Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2020, 10, 54–71. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Yonesaka, K.; Teramura, T.; Takehara, T.; Kato, R.; Sakai, H.; Haratani, K.; Tanizaki, J.; Kawakami, H.; Hayashi, H.; et al. KRAS Inhibitor Resistance in MET-Amplified KRAS (G12C) Non-Small Cell Lung Cancer Induced By RAS- and Non-RAS-Mediated Cell Signaling Mechanisms. Clin. Cancer Res. 2021, 27, 5697–5707. [Google Scholar] [CrossRef]
- Ho, C.S.L.; Tüns, A.I.; Schildhaus, H.U.; Wiesweg, M.; Grüner, B.M.; Hegedus, B.; Schuler, M.; Schramm, A.; Oeck, S. HER2 mediates clinical resistance to the KRAS(G12C) inhibitor sotorasib, which is overcome by co-targeting SHP2. Eur. J. Cancer 2021, 159, 16–23. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, S.; Lan, Y.; Yan, M.; Jiang, Z.; Zhu, J.; Liao, G.; Ping, Y.; Xu, J.; Pang, B.; et al. Revealing the contribution of somatic gene mutations to shaping tumor immune microenvironment. Brief. Bioinform. 2022, 23, bbac064. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, S.; Wang, Z.; Wang, S.; Wang, X.; Yang, L.; Xu, H.; Cao, Z.; Feng, X.; Xue, Q.; et al. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun. 2022, 42, 828–847. [Google Scholar] [CrossRef]
- Skoulidis, F.; Goldberg, M.E.; Greenawalt, D.M.; Hellmann, M.D.; Awad, M.M.; Gainor, J.F.; Schrock, A.B.; Hartmaier, R.J.; Trabucco, S.E.; Gay, L.; et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. 2018, 8, 822–835. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Shen, C.; Estrada-Bernal, A.; Robb, R.; Chatterjee, M.; Sebastian, N.; Webb, A.; Mo, X.; Chen, W.; Krishnan, S.; et al. Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Res. 2021, 49, 11067–11082. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, T.; Xu, H.; Li, S.; Yue, M.; Ma, J.; Yao, J.; Wang, Y.; Zhang, X.; Ge, W.; et al. Synergistic blocking of RAS downstream signaling and epigenetic pathway in KRAS mutant pancreatic cancer. Aging 2022, 14, 3597–3606. [Google Scholar] [CrossRef]
- McDonald, P.C.; Chafe, S.C.; Brown, W.S.; Saberi, S.; Swayampakula, M.; Venkateswaran, G.; Nemirovsky, O.; Gillespie, J.A.; Karasinska, J.M.; Kalloger, S.E.; et al. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells with Activated KRAS in Response to Hypoxia. Gastroenterology 2019, 157, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, N.; Kang, K.; Kim, W.; Won, J.; Cho, J. Whole Transcriptome Analysis Identifies TNS4 as a Key Effector of Cetuximab and a Regulator of the Oncogenic Activity of KRAS Mutant Colorectal Cancer Cell Lines. Cells 2019, 8, 878. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.H.; Kim, S.H.; Choi, M.; Bae, Y.K.; Han, C.; Choi, B.K.; Kim, S.S.; Han, J.Y. Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1. Oncogene 2022, 41, 280–292. [Google Scholar] [CrossRef]
- Yu, X.; Liu, J.; Qiu, H.; Hao, H.; Zhu, J.; Peng, S. Combined inhibition of ACK1 and AKT shows potential toward targeted therapy against KRAS-mutant non-small-cell lung cancer. Bosn. J. Basic Med. Sci. 2021, 21, 198–207. [Google Scholar] [CrossRef]
- Rangel, D.F.; Dubeau, L.; Park, R.; Chan, P.; Ha, D.P.; Pulido, M.A.; Mullen, D.J.; Vorobyova, I.; Zhou, B.; Borok, Z.; et al. Endoplasmic reticulum chaperone GRP78/BiP is critical for mutant Kras-driven lung tumorigenesis. Oncogene 2021, 40, 3624–3632. [Google Scholar] [CrossRef]
- Sun, S.; Hu, Z.; Huang, S.; Ye, X.; Wang, J.; Chang, J.; Wu, X.; Wang, Q.; Zhang, L.; Hu, X.; et al. REG4 is an indicator for KRAS mutant lung adenocarcinoma with TTF-1 low expression. J. Cancer Res. Clin. Oncol. 2019, 145, 2273–2283. [Google Scholar] [CrossRef]
- Lee, H.; Cai, F.; Kelekar, N.; Velupally, N.K.; Kim, J. Targeting PGM3 as a Novel Therapeutic Strategy in KRAS/LKB1 Co-Mutant Lung Cancer. Cells 2022, 11, 176. [Google Scholar] [CrossRef]
- Chang, W.H.; Nguyen, T.T.; Hsu, C.H.; Bryant, K.L.; Kim, H.J.; Ying, H.; Erickson, J.W.; Der, C.J.; Cerione, R.A.; Antonyak, M.A. KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Lett. 2021, 517, 66–77. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Akiyama, T.; Kato, R.; Sawayama, H.; Ogawa, K.; Yoshida, N.; Baba, H. Prognostic Significance of Systemic Inflammation Indices by KRAS Status in Patients with Metastatic Colorectal Cancer. Dis. Colon Rectum 2022. Available online: https://journals.lww.com/dcrjournal/Abstract/9000/Prognostic_Significance_of_Systemic_Inflammation.99157.aspx (accessed on 21 February 2022). [CrossRef]
- Lou, E.; Xiu, J.; Baca, Y.; Nelson, A.C.; Weinberg, B.A.; Beg, M.S.; Salem, M.E.; Lenz, H.J.; Philip, P.; El-Deiry, W.S.; et al. Expression of Immuno-Oncologic Biomarkers Is Enriched in Colorectal Cancers and Other Solid Tumors Harboring the A59T Variant of KRAS. Cells 2021, 10, 1275. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, J.F.; Li, X.G.; Shi, Y.H.; Tang, Z.; Liu, W.R.; Zhang, X.; Huang, A.; Luo, X.M.; Gao, Q.; et al. KRAS acting through ERK signaling stabilizes PD-L1 via inhibiting autophagy pathway in intrahepatic cholangiocarcinoma. Cancer Cell Int. 2022, 22, 128. [Google Scholar] [CrossRef]
- Wang, X.; Luo, X.; Tian, Y.; Wu, T.; Weng, J.; Li, Z.; Ye, F.; Huang, X. Equipping Natural Killer Cells with Cetuximab through Metabolic Glycoengineering and Bioorthogonal Reaction for Targeted Treatment of KRAS Mutant Colorectal Cancer. ACS Chem. Biol. 2021, 16, 724–730. [Google Scholar] [CrossRef]
- Pan, L.N.; Ma, Y.F.; Li, Z.; Hu, J.A.; Xu, Z.H. KRAS G12V mutation upregulates PD-L1 expression via TGF-β/EMT signaling pathway in human non-small-cell lung cancer. Cell Biol. Int. 2021, 45, 795–803. [Google Scholar] [CrossRef]
- Peng, D.H.; Rodriguez, B.L.; Diao, L.; Gaudreau, P.O.; Padhye, A.; Konen, J.M.; Ochieng, J.K.; Class, C.A.; Fradette, J.J.; Gibson, L.; et al. Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53 mutant lung cancers. Nat. Commun. 2021, 12, 2606. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Qu, X.; Bie, F.; Wang, Y.; Du, J. TRIM58 is a prognostic biomarker remodeling the tumor microenvironment in KRAS-driven lung adenocarcinoma. Future Oncol. 2021, 17, 565–579. [Google Scholar] [CrossRef]
- Gao, G.; Liao, W.; Ma, Q.; Zhang, B.; Chen, Y.; Wang, Y. KRAS G12D mutation predicts lower TMB and drives immune suppression in lung adenocarcinoma. Lung Cancer 2020, 149, 41–45. [Google Scholar] [CrossRef]
- Dillard, P.; Casey, N.; Pollmann, S.; Vernhoff, P.; Gaudernack, G.; Kvalheim, G.; Wälchli, S.; Inderberg, E.M. Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncoimmunology 2021, 10, 1936757. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Xia, X.; He, Y.Q.; Hu, Y.; Cremer, K.; Robert, A.; Liu, J.; Wang, F.; Ling, J.; Chiao, P.J.; et al. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol. 2021, 38, 101780. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | KRAS Mutation | ||||
---|---|---|---|---|---|
N of Samples | Rate (%) | Top 3 Subtypes (Proportion of All KRAS Mutations, %) | |||
Pan-cancer | 87,606 | 11.60 | G12D (29.19) | G12V (22.97) | G12C (13.43) |
Pancreatic adenocarcinoma | 990 | 81.72 | G12D (40.20) | G12V (31.96) | G12R (17.10) |
Colorectal carcinoma | 3853 | 37.97 | G12D (28.04) | G12V (18.50) | G13D (18.10) |
Non-small cell lung cancer | 4584 | 21.20 | G12C (45.42) | G12V (15.78) | G12D (13.03) |
Drug Name | Treatment Strategy | Stage | Patient Characteristics | Number of Patients | Initiation Year | NCT Number |
---|---|---|---|---|---|---|
Sotorasib (AMG 510) | Monotherapy | Phase 2 | Advanced NSCLC with KRAS G12C mutations | 116 | 2021 | NCT04625647 |
Monotherapy | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 793 | 2018 | NCT03600883 | |
Monotherapy | Phase 2 | Stage IV NSCLC with KRAS G12C mutations without prior treatment | 170 | 2022 | NCT04933695 | |
Monotherapy | Phase 2 | Stage Ib-IIIA resectable NSCLC with KRAS G12C mutations | 25 | 2022 | NCT05400577 | |
Monotherapy | Phase 2 | Stage III unresectable NSCLC with KRAS G12C mutations | 43 | 2022 | NCT05398094 | |
Monotherapy | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 12 | 2020 | NCT04380753 | |
Monotherapy | Phase 2 | Stage III unresectable NSCLC with KRAS G12C mutations | 43 | 2022 | NCT05398094 | |
Monotherapy (VS Docetaxel) | Phase 3 | Advanced NSCLC with KRAS G12C mutations | 345 | 2020 | NCT04303780 | |
Combined with Tarloxotinib (pan-ERBB inhibitor) | Phase 1–2 | Advanced NSCLC with KRAS G12C mutations | 30 | 2022 | NCT05313009 | |
Combined with BBP-398 (SHP2 inhibitor) | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 85 | 2022 | NCT05480865 | |
Combined with VS-6766 (RAF/MEK inhibitor) | Phase 1–2 | Advanced NSCLC with KRAS G12C mutations | 53 | 2022 | NCT05074810 | |
Combined with targeted therapy, chemotherapy, or immunotherapy | Phase 1–2 | Advanced Solid tumors with KRAS G12C mutations | 1054 | 2019 | NCT04185883 | |
Combined targeted therapy, chemotherapy, or immunotherapy | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 1054 | 2019 | NCT04185883 | |
Combined with Panitumumab (anti-EGFR mAb) vs. Trifluridine and Tipiracil (chemotherapy) + Regorafenib (multi-kinase inhibitor *) | Phase 3 | Advanced CRC with KRAS G12C mutations | 153 | 2022 | NCT05198934 | |
Combined with MVASI (antiangiogenic drug) | Phase 1–2 | Advanced NSCLC with KRAS G12C mutations and Brain metastasis | 43 | 2022 | NCT05180422 | |
Combined with Cisplatin or Carboplatin and Pemetrexed (chemotherapy) | Phase 2 | Stage IIA-IIIB resectable non-squamous NSCLC with KRAS G12C mutations | 27 | 2022 | NCT05118854 | |
Adagrasib (MRTX849) | MRTX monotherapy or combined with Pembrolizumab (anti-PD-1 ICI)/Cetuximab (anti-EGFR IgG1 mAb)/Afatinib (EGFR TKI) | Phase 1–2 | Advanced or metastatic cancer with KRAS G12C mutations | 740 | 2019 | NCT03785249 |
Monotherapy | Phase 2 | Advanced or metastatic NSCLC with KRAS G12C mutations | 116 | 2022 | NCT03785249 | |
MRTX849 monotherapy or combined with Pembrolizumab (anti-PD-1 ICI) | Phase 2 | Advanced or metastatic NSCLC with KRAS G12C mutations | 250 | 2020 | NCT04613596 | |
Monotherapy vs. Docetaxel (chemotherapy) | Phase 3 | Advanced or metastatic NSCLC | 340 | 2021 | NCT04685135 | |
MRTX849 combined with Cetuximab (anti- EGFR IgG1 mAb) vs. mFOLFOX6 and FOLFIRI (chemotherapy) | Phase 3 | Advanced CRC with KRAS G12C mutations | 420 | 2021 | NCT04793958 | |
Combined with VS-6766 (RAF-MEK inhibitor) | Phase 1–2 | Advanced NSCLC with KRAS G12C mutations | 85 | 2022 | NCT05375994 | |
JAB-21822 | Monotherapy | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 144 | 2021 | NCT05009329 |
Monotherapy or combined with Cetuximab (anti-EGFR IgG1 mAb) | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 100 | 2021 | NCT05002270 | |
Combined with Cetuximab (anti-EGFR IgG1 mAb) | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 62 | 2022 | NCT05194995 | |
Combined with JAB-3312 (SHP2 inhibitor) | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 124 | 2022 | NCT05288205 | |
JDQ443 | Monotherapy | Phase 3 | Advanced NSCLC with KRAS G12C mutations | 360 | 2022 | NCT05132075 |
Monotherapy or combined with TNO155 (SHP2 inhibitor) or tislelizumab (anti-PD-1 ICI) or TNO155 + tislelizumab | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 425 | 2021 | NCT04699188 | |
D3S-001 | Monotherapy | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 98 | 2022 | NCT05410145 |
GFH925 | Monotherapy | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 128 | 2021 | NCT05005234 |
YL-15293 | Monotherapy | Phase 1–2 | Advanced solid tumors with KRAS G12C mutations | 55 | 2021 | NCT05119933 |
JNJ-74699157 | Monotherapy | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 10 | 2019 | NCT04006301 |
GDC-6036 | Monotherapy or combined with chemotherapy, immunotherapy, etc. | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 498 | 2020 | NCT04449874 |
LY3537982 | Monotherapy or combined with targeted therapy, immunotherapy, etc. | Phase 1 | Advanced solid tumors with KRAS G12C mutations | 360 | 2021 | NCT04956640 |
RMC-6236 | Monotherapy (KRAS G12X inhibitor) | Phase 1 | Advanced solid tumors with KRAS mutations | 141 | 2022 | NCT05379985 |
Drug Definition | Drug Name | Treatment Strategy | Stage | Patient Characteristics | Number of Patients | Initiation Year | NCT Number |
---|---|---|---|---|---|---|---|
MEK inhibitors | BI 3011441 | Monotherapy | Phase 1 | Advanced, unresectable or metastatic refractory solid tumors with NRAS/KRAS mutations | 15 | 2021 | NCT04742556 |
LNP3794 | Monotherapy | Phase 1 | Advanced or metastatic refractory solid tumors with NRAS/KRAS mutations | 15 | 2020 | NCT05187858 | |
RO5126766 | Monotherapy | Phase 1 | Advanced NSCLC with KRAS mutations | 15 | 2018 | NCT03681483 | |
Trametinib | Combined with Pembrolizumab (anti-PD-1 ICI) | Phase 1 | Stage IV NSCLC with KRAS mutations | 15 | 2018 | NCT03299088 | |
Ponatinib; Trametinib | Combined with Ponatinib (BCR-ABL TKI) | Phase 1–2 | Advanced NSCLC with KRAS mutations | 12 | 2018 | NCT03704688 | |
TPX-0005; Trametinib | Combined with TPX-0005 (ROS1/TRK/ALK inhibitor) | Phase 1–2 | Advanced or metastatic solid tumors with KRAS mutations | 74 | 2021 | NCT05071183 | |
Trametinib; Anlotinib | Combined with Anlotinib (antiangiogenic drug) | Phase 1 | Advanced NSCLC with KRAS mutations | 30 | 2021 | NCT04967079 | |
Trametinib; Hydroxychloroquine | Combined with Hydroxychloroquine (chemotherapy) | Phase 2 | Refractory BTC with KRAS mutations | 30 | 2022 | NCT04566133 | |
MEK inhibitors | Binimetinib; Hydroxychloroquine | Combined with Hydroxychloroquine (chemotherapy) | Phase 1 | Advanced PDAC with KRAS mutations | 39 | 2019 | NCT04132505 |
Binimetinib; Hydroxychloroquine | Combined with Hydroxychloroquine (chemotherapy) | Phase 2 | Advanced NSCLC with KRAS mutations | 29 | 2021 | NCT04735068 | |
Binimetinib; Hydroxychloroquine | Combined with Hydroxychloroquine (chemotherapy) | Phase 2 | Advanced NSCLC with KRAS mutations | 29 | 2021 | NCT04735068 | |
Binimetinib; Futibatinib | Combined with Futibatinib (FGFR 1–4 inhibitor) | Phase 1–2 | Advanced or Metastatic Solid Tumors with KRAS mutations | 36 | 2021 | NCT04965818 | |
Binimetinib; Pemetrexed and Cisplatin | Combined with Pemetrexed and Cisplatin (chemotherapy) | Phase 1 | Advanced NSCLC with KRAS mutations | 18 | 2017 | NCT02964689 | |
Binimetinib; Palbociclib; Trifluridine and Tipiracil Hydrochloride | Binimetinib + Palbociclib (CDK4/6 Inhibitor) vs. Trifluridine and Tipiracil Hydrochloride (chemotherapy) | Phase 2 | Advanced CRC with KRAS or NRAS mutations | 101 | 2019 | NCT03981614 | |
Binimetinib; Palbociclib | Combined with Palbociclib (CDK4/6 inhibitor) | Phase 1–2 | Advanced NSCLC with KRAS mutations | 72 | 2017 | NCT03170206 | |
Cobimetinib; Hydroxychloroquine; Atezolizumab | Combined with Hydroxychloroquine (chemotherapy) and Atezolizumab (anti-PD-L1 ICI) | Phase 1–2 | Advanced solid tumors with KRAS mutations | 175 | 2020 | NCT04214418 | |
MEK inhibitors | VS-6766; Defactinib | Monotherapy vs, combination therapy of VS-6766 and Defactinib (FAK inhibitor) | Phase 2 | Recurrent NSCLC with KRAS and BRAF mutations | 100 | 2020 | NCT04620330 |
SHP2 inhibitors | HBI-2376 | Monotherapy | Phase 1 | Advanced malignant solid tumors with KRAS or EGFR mutations | 42 | 2021 | NCT05163028 |
RMC-4630; LY3214996 | Combined with LY3214996 (ERK1/2 inhibitor) | Phase 1 | Metastatic solid tumors with KRAS mutations | 55 | 2022 | NCT04916236 | |
BBP-398 with nivolumab | Combined with nivolumab (anti-PD-1 ICI) | Phase 1 | Advanced NSCLC with KRAS mutations | 45 | 2022 | NCT05375084 | |
Multi-targeting kinase inhibitor | Regorafenib; Methotrexate | Combined with Methotrexate (chemotherapy) | Phase 2 | Recurrent or metastatic NSCLC with KRAS mutations | 18 | 2018 | NCT03520842 |
PLK1 inhibitors | Onvansertib; Bevacizumab; FOLFIRI | Combined with Bevacizumab (antiangiogenic drug) and (FOLFIRI: chemotherapy) | Phase 1–2 | Metastatic CRC with KRAS mutations | 100 | 2019 | NCT03829410 |
Rigosertib; Nivolumab | Combined with Nivolumab (anti-PD-1 antibody) | Phase 1–2 | Stage IV NSCLC with KRAS mutations | 20 | 2020 | NCT04263090 |
Drug Name | Drug Definition | Treatment Strategy | Stage | Patient Characteristics | Number of Patients | Initiation Year | NCT Number |
---|---|---|---|---|---|---|---|
TVB-2640 | Fatty acid synthase (FASN) inhibitor | Monotherapy | Phase 2 | Metastatic or advanced NSCLC with KRAS mutations | 12 | 2019 | NCT03808558 |
ELI-002 | KRAS therapeutic vaccine | Monotherapy | Phase 1 | Solid tumors with KRAS mutations | 18 | 2021 | NCT04853017 |
REOLYSIN | Reovirus | Combined with FOLFIRI and Bevacizumab (chemotherapy and antiangiogenic drug) | Phase 1 | Metastatic CRC with KRAS mutations | 36 | 2010 | NCT01274624 |
Mutant KRAS G12V-specific TCR transduced autologous T cells | Mutant KRAS G12V-specific TCR transduced autologous T cells | Chemotherapy prior to combination therapy of Mutant KRAS G12V-specific TCR transduced autologous T cells and Anti-PD-1 monoclonal antibody | Phase 1–2 | Advanced PDAC with KRAS G12V mutations | 30 | 2021 | NCT04146298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, H.; Huang, S.; Chu, Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. J. Clin. Med. 2023, 12, 709. https://doi.org/10.3390/jcm12020709
Yang Y, Zhang H, Huang S, Chu Q. KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. Journal of Clinical Medicine. 2023; 12(2):709. https://doi.org/10.3390/jcm12020709
Chicago/Turabian StyleYang, Yunkai, Huan Zhang, Shanshan Huang, and Qian Chu. 2023. "KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration" Journal of Clinical Medicine 12, no. 2: 709. https://doi.org/10.3390/jcm12020709
APA StyleYang, Y., Zhang, H., Huang, S., & Chu, Q. (2023). KRAS Mutations in Solid Tumors: Characteristics, Current Therapeutic Strategy, and Potential Treatment Exploration. Journal of Clinical Medicine, 12(2), 709. https://doi.org/10.3390/jcm12020709