Favorable Prognosis in Patients with Recovered Pulmonary Hypertension after TAVI: An Analysis of the LAPLACE-TAVI Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. TRPG, E/A and E/e’ Estimation by Pre- and Post TAVI Echocardiography
2.3. Participants, Outcome Measures, and Follow-Up Period of the Study
2.4. Statistical Analysis
3. Results
3.1. Baseline Demographics, Medications, Procedural Characteristics and Devices of PH (−) and Recovered and Persistent PH Groups within PH (+) Group
3.2. Long-Term Cumulative Incidences of the Composite of CV Death and Heart Failure Hospitalization Following TAVI in PH (−), Persistent PH and Recovered PH Groups
3.3. Unadjusted and Adjusted Cox Proportional Hazard Analyses Assessed the Prognostic Impact of the Reduction in TRPG through TAVI
3.4. Changes in Echocardiographic Indicators of Left Atrial Overload after TAVI in Recovered and Persistent PH Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.-L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodali, S.K.; Williams, M.R.; Smith, C.R.; Svensson, L.G.; Webb, J.G.; Makkar, R.R.; Fontana, G.P.; Dewey, T.M.; Thourani, V.H.; Pichard, A.D.; et al. Two-Year Outcomes after Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2012, 366, 1686–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J., Jr.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamm, C.W.; Möllmann, H.; Holzhey, D.; Beckmann, A.; Veit, C.; Figulla, H.-R.; Cremer, J.; Kuck, K.-H.; Lange, R.; Zahn, R.; et al. The German Aortic Valve Registry (GARY): In-hospital outcome. Eur. Heart J. 2014, 35, 1588–1598. [Google Scholar] [CrossRef]
- Tamburino, C.; Barbanti, M.; D’Errigo, P.; Ranucci, M.; Onorati, F.; Covello, R.D.; Santini, F.; Rosato, S.; Santoro, G.; Fusco, D.; et al. 1-year outcomes after transfemoral transcatheter or surgical aortic valve replacement: Results from the Italian OBSERVANT study. J. Am. Coll. Cardiol. 2015, 66, 804–812. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Steinbrüchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef] [Green Version]
- Chikata, Y.; Iwata, H.; Doi, S.; Funamizu, T.; Okazaki, S.; Dohi, S.; Higuchi, R.; Saji, M.; Takamisawa, I.; Tamura, H.; et al. Simultaneous Estimation of Gender Male and Atrial Fibrillation as Risk Factors for Adverse Outcomes Following Transcatheter Aortic Valve Implantation. J. Clin. Med. 2020, 9, 3963. [Google Scholar] [CrossRef]
- Saji, M.; Tobaru, T.; Higuchi, R.; Mahara, K.; Takamisawa, I.; Iguchi, N.; Doi, S.; Okazaki, S.; Tamura, H.; Takanashi, S.; et al. Usefulness of the Transcatheter Aortic Valve Replacement Risk Score to Determine Mid-Term Outcomes. Circ. J. 2019, 83, 1755–1761. [Google Scholar] [CrossRef] [Green Version]
- Silver, K.; Aurigemma, G.; Krendel, S.; Barry, N.; Ockene, I.; Alpert, J. Pulmonary artery hypertension in severe aortic stenosis: Incidence and mechanism. Am. Heart J. 1993, 125, 146–150. [Google Scholar] [CrossRef]
- Fang, J.C.; DeMarco, T.; Givertz, M.M.; Borlaug, B.A.; Lewis, G.D.; Rame, J.E.; Gomberg-Maitland, M.; Murali, S.; Frantz, R.P.; McGlothlin, D.; et al. World Health Organization Pulmonary Hypertension Group 2: Pulmonary hypertension due to left heart disease in the adult—A summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2012, 31, 913–933. [Google Scholar] [CrossRef]
- Copeland, J.G.; Griepp, R.B.; Stinson, E.B.; Shumway, N.E. Long-term follow-up after isolated aortic valve replacement. J. Thorac. Cardiovasc. Surg. 1977, 74, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Tracy, G.P.; Proctor, M.S.; Hizny, C.S. Reversibility of pulmonary artery hypertension in aortic stenosis after aortic valve replacement. Ann. Thorac. Surg. 1990, 50, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Malouf, J.F.; Enriquez-Sarano, M.; Pellikka, P.A.; Oh, J.K.; Bailey, K.R.; Chandrasekaran, K.; Mullany, C.J.; Tajik, A. Severe pulmonary hypertension in patients with severe aortic valve stenosis: Clinical profile and prognostic implications. J. Am. Coll. Cardiol. 2002, 40, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Snopek, G.; Pogorzelska, H.; Zielinski, T.; Rajecka, A.; Korewicki, J.; Biederman, A.; Kotlinski, Z. Valve replacement for aortic stenosis with severe congestive heart failure and pulmonary hypertension. J. Heart Valve Dis. 1996, 5, 268–272. [Google Scholar]
- Berger, M.; Haimowitz, A.; Van Tosh, A.; Berdoff, R.L.; Goldberg, E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave doppler ultrasound. J. Am. Coll. Cardiol. 1985, 6, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography: Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef]
- Huston, J.H.; Maron, B.A.; French, J.; Huang, S.; Thayer, T.; Farber-Eger, E.H.; Wells, Q.S.; Choudhary, G.; Hemnes, A.R.; Brittain, E.L. Association of Mild Echocardiographic Pulmonary Hypertension With Mortality and Right Ventricular Function. JAMA Cardiol. 2019, 4, 1112–1121. [Google Scholar] [CrossRef]
- Kitamura, Y.; Otsuka, M.; Yamada, G. Serial measurements of tricus-pid regurgitation pressure gradient by echocardiography predict prognosis in idiopathic pulmonary fibrosis. Pulm. Res. Respir. Med. Open J. 2016, 3, 2–9. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Kato, T.; Morimoto, T.; Yaku, H.; Inuzuka, Y.; Tamaki, Y.; Ozasa, N.; Shiba, M.; Yamamoto, E.; Yoshikawa, Y.; et al. A decrease in tricuspid regurgitation pressure gradient associates with favorable outcome in patients with heart failure. ESC Heart Fail. 2021, 8, 2826–2836. [Google Scholar] [CrossRef] [PubMed]
- Didier, R.; Eltchaninoff, H.; Donzeau-Gouge, P.; Chevreul, K.; Fajadet, J.; Leprince, P.; Leguerrier, A.; Lièvre, M.; Prat, A.; Teiger, E.; et al. Five-Year Clinical Outcome and Valve Durability After Transcatheter Aortic Valve Replacement in High-Risk Patients. Circulation 2018, 138, 2597–2607. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Tobaru, T.; Muto, Y.; Hagiya, K.; Higuchi, R.; Saji, M.; Takamisawa, I.; Shimizu, J.; Takanashi, S.; Takayama, M.; et al. Long-term outcomes in Japanese nonagenarians undergoing transcatheter aortic valve implantation: A multi-center analysis. Clin. Cardiol. 2019, 42, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Higuchi, R.; Hagiya, K.; Saji, M.; Takamisawa, I.; Iguchi, N.; Takanashi, S.; Doi, S.; Okazaki, S.; Sato, K.; et al. Prognosis of patients with active cancer undergoing transcatheter aortic valve implantation: An insight from Japanese multicenter registry. IJC Heart Vasc. 2022, 40. [Google Scholar] [CrossRef] [PubMed]
- Melby, S.J.; Moon, M.R.; Lindman, B.R.; Bailey, M.S.; Hill, L.L.; Damiano, R.J. Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. J. Thorac. Cardiovasc. Surg. 2011, 141, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, P.; Antonini-Canterin, F.; Ribichini, F.; D’Aloia, A.; Ferrero, V.; Cervesato, E.; Pavan, D.; Burelli, C.; Nicolosi, G. Pulmonary artery hypertension in adult patients with symptomatic valvular aortic stenosis. Am. J. Cardiol. 2000, 85, 204–208. [Google Scholar] [CrossRef]
- Johnson, L.W.; Hapanowicz, M.B.; Buonanno, C.; Bowser, M.A.; Marvasti, M.A.; Parker, F.B. Pulmonary hypertension in isolated aortic stenosis. Hemodynamic correlations and follow-up. J. Thorac. Cardiovasc. Surg. 1988, 95, 603–607. [Google Scholar] [CrossRef]
- Aragam, J.R.; Folland, E.D.; Lapsley, D.; Sharma, S.; Khuri, S.F.; Sharma, G.V.R.K. Cause and impact of pulmonary hypertension in isolated aortic stenosis on operative mortality for aortic valve replacement in men. Am. J. Cardiol. 1992, 69, 1365–1367. [Google Scholar] [CrossRef]
- Canty, J.M.; Weil, B.R. Interstitial Fibrosis and Diastolic Dysfunction in Aortic Stenosis. JACC Basic Transl. Sci. 2020, 5, 481–483. [Google Scholar] [CrossRef]
- Kampaktsis, P.N.; Kokkinidis, D.; Wong, S.-C.; Vavuranakis, M.; Skubas, N.J.; Devereux, R.B. The role and clinical implications of diastolic dysfunction in aortic stenosis. Heart 2017, 103, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.; Rickli, H.; Haager, P.K.; Joerg, L.; Weilenmann, D.; Brenner, R.; Taramasso, M.; Baier, P.; Maisano, F.; Maeder, M.T. Haemodynamic mechanisms and long-term prognostic impact of pulmonary hypertension in patients with severe aortic stenosis undergoing valve replacement. Eur. J. Heart Fail. 2018, 21, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Généreux, P.; Pibarot, P.; Redfors, B.; Mack, M.J.; Makkar, R.R.; Jaber, W.A.; Svensson, L.G.; Kapadia, S.; Tuzcu, E.M.; Thourani, V.H.; et al. Staging classification of aortic stenosis based on the extent of cardiac damage. Eur. Heart J. 2017, 38, 3351–3358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, C.J.; Wenaweser, P.; Ceylan, O.; Rat-Wirtzler, J.; Stortecky, S.; Heg, D.; Spitzer, E.; Zanchin, T.; Praz, F.; Tüller, D.; et al. Effect of Pulmonary Hypertension Hemodynamic Presentation on Clinical Outcomes in Patients With Severe Symptomatic Aortic Valve Stenosis Undergoing Transcatheter Aortic Valve Implantation: Insights From the New Proposed Pulmonary Hypertension Classification. Circ. Cardiovasc. Interv. 2015, 8, e002358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouzu, H.; Nakatani, S.; Kyotani, S.; Kanzaki, H.; Nakanishi, N.; Kitakaze, M. Noninvasive Estimation of Pulmonary Vascular Resistance by Doppler Echocardiography in Patients With Pulmonary Arterial Hypertension. Am. J. Cardiol. 2009, 103, 872–876. [Google Scholar] [CrossRef]
- Shamim, T.; Yamaguchi, K.; Yoshitomi, H.; Yasuda, Y.; Morita, Y.; Kawahara, H.; Sato, H.; Endo, A.; Tanabe, K. The Prognostic Impact of Echocardiographic Indices in Patients with Severe Aortic Stenosis Who Underwent Transcatheter Aortic Valve Implantation. Shimane J. Med. Sci. 2022, 39, 27–32. [Google Scholar] [CrossRef]
- Budev, M.M.; Arroliga, A.C.; Jennings, C.A. Diagnosis and evaluation of pulmonary hypertension. Clevel. Clin. J. Med. 2003, 70, S9–S17. [Google Scholar] [CrossRef]
PH (−) n = 1407, 68.4% | PH (+) n = 649, 31.6% | p-Value | |
---|---|---|---|
Age, years | 84.1 ± 5.3 | 84.9 ± 5.3 | 0.0011 |
Male, n | 494 (35.1%) | 196 (30.2%) | 0.0284 |
BMI 1, kg/m2 | 22.7 ± 3.7 | 21.8 ± 3.7 | <0.0001 |
NYHA class III or IV, n | 614 (44.1%) | 371 (57.7%) | <0.0001 |
Logistic EuroSCORE, % | 14.7 (14.2, 15.2) | 18.6 (17.6, 19.7) | <0.0001 |
EuroSCOREII, % | 5.8 (5.4, 6.1) | 8.0 (7.3, 8.7) | <0.0001 |
STS-PROM, % | 6.4 (6.2, 6.6) | 8.3 (7.8, 8.7) | <0.0001 |
Comorbidities | |||
History of heart failure, n | 221 (24.6%) | 146 (40.0%) | <0.0001 |
Hypertension, n | 1074 (76.7%) | 499 (77.1%) | 0.84 |
Diabetes mellitus, n | 324 (23.0%) | 140 (21.6%) | 0.46 |
Dyslipidemia, n | 797 (56.7%) | 347 (53.5%) | 0.18 |
AF/AFL 2, n | 281 (20.2%) | 216 (33.8%) | <0.0001 |
Cancer, n | 270 (19.2%) | 104 (16.0%) | 0.08 |
History of stroke, n | 166 (11.8%) | 65 (10.0%) | 0.23 |
COPD 3, n | 119 (8.5%) | 64 (10.0%) | 0.29 |
CKD (stage 3 or more), n | 933 (66.3%) | 464 (71.5%) | 0.0192 |
PAD 4, n | 198 (14.1%) | 129 (20.1%) | 0.0007 |
OMI 5, n | 72 (5.1%) | 40 (6.2%) | 0.33 |
History of coronary revascularization 6, n | 332 (23.6%) | 122 (18.8%) | 0.0148 |
p-PTAV 7, n | 30 (2.1%) | 19 (2.9%) | 0.27 |
PMI 8, n | 72 (5.1%) | 50 (5.9%) | 0.0212 |
Laboratory data | |||
NT-proBNP 9, pg/mL | 2704 (2139, 3270) | 4777 (3710, 5844) | 0.0002 |
Creatinine, mg/dL | 0.98 ± 0.6 | 1.10 ± 0.9 | 0.0003 |
eGFR 10, ml/min | 53.6 ± 18.4 | 50.3 ± 19.2 | 0.0002 |
Hemoglobin, g/dL | 11.6 ± 1.6 | 11.3 ± 1.6 | <0.0001 |
Albumin, g/dL | 3.8 ± 0.4 | 3.7 ± 0.5 | 0.0001 |
Echocardiographic findings | |||
LVEF 11, % | 61.1 ± 10.0 | 59.9 ± 12.4 | 0.0162 |
AVA, cm2 | 0.70 ± 0.21 | 0.66 ± 0.21 | 0.0002 |
Peak gradient, mmHg | 84.8 ± 29.4 | 88.3 ± 33.8 | 0.0152 |
Mean gradient, mmHg | 48.7 ± 17.9 | 51.0 ± 21.1 | 0.0128 |
AR ≥ moderate, n | 113 (8.0%) | 52 (8.0%) | 0.99 |
MR ≥ moderate, n | 76 (5.4%) | 92 (14.2%) | <0.0001 |
TR ≥ moderate, n | 33 (2.4%) | 105 (16.2%) | <0.0001 |
TRPG, mmHg | 21.9 ± 4.7 | 38.6 ± 9.4 | <0.0001 |
Medications | |||
Beta-blockers | 437 (31.1%) | 281 (43.4%) | <0.0001 |
ACEIs 12/ARBs 13 | 747 (53.1%) | 362 (55.9%) | 0.24 |
Statins | 741 (52.7%) | 331 (51.1%) | 0.50 |
Diuretics | 580 (41.2%) | 379 (58.5%) | <0.0001 |
Oral anticoagulants | 311 (22.1%) | 239 (36.8%) | <0.0001 |
Procedural variables | |||
Procedure time, min | 82.5 (80.5, 85.0) | 81.5 (78, 85) | 0.64 |
Fluoroscopy time, min | 22.3 (21.8, 22.9) | 22.2 (21.3, 23.0) | 0.73 |
Contrast medium volume, mL | 62.8 (60.7, 65.0) | 63.3 (60.0, 66.7) | 0.80 |
Conscious sedation, n | 954 (67.8%) | 404 (62.3%) | 0.0134 |
Transfemoral approach, n | 1329 (94.9%) | 599 (93.0%) | 0.08 |
Valve size, mm | 24.9 ± 2.4 | 24.7 ± 2.4 | 0.16 |
Balloon expandable, n | 988 (71.3%) | 413 (69.5%) | 0.0096 |
Recovered PH n = 253, 39.0% | Persistent PH n = 396, 61.0% | p-Value | |
---|---|---|---|
Age, years | 84.5 ± 5.1 | 85.1 ± 5.4 | 0.15 |
Male, n | 89 (35.2%) | 107 (27.0%) | 0.0273 |
BMI, kg/m2 | 21.6 ± 3.5 | 21.9 ± 3.7 | 0.24 |
NYHA class III or IV, n | 149 (59.4) | 222 (56.6%) | 0.49 |
Logistic EuroSCORE, % | 18.8 (17.1, 20.6) | 18.5 (17.3, 19.8) | 0.78 |
EuroSCOREII, % | 8.2 (7.0, 9.4) | 7.9 (7.0, 8.7) | 0.64 |
STS-PROM, % | 8.1 (7.4, 8.8) | 8.4 (7.8, 9.0) | 0.57 |
Comorbidities | |||
History of heart failure, n | 52 (35.9%) | 94 (37.6%) | 0.73 |
Hypertension, n | 188 (74.6%) | 311 (78.7%) | 0.22 |
Diabetes mellitus, n | 51 (20.2%) | 89 (22.5%) | 0.48 |
Dyslipidemia, n | 128 (50.6%) | 219 (55.3%) | 0.24 |
AF/AFL, n | 68 (27.4%) | 148 (37.9%) | 0.0066 |
Cancer, n | 36 (14.2%) | 68 (17.2%) | 0.32 |
History of stroke, n | 30 (11.9%) | 35 (8.8%) | 0.21 |
COPD, n | 26 (10.4%) | 38 (9.7%) | 0.77 |
CKD (stage 3 or more), n | 174 (68.8%) | 290 (73.2%) | 0.22 |
PAD, n | 55 (22.3%) | 74 (18.7%) | 0.27 |
OMI, n | 20 (7.9%) | 20 (5.1%) | 0.14 |
History of coronary revascularization n | 50 (19.8%) | 72 (18.2%) | 0.61 |
p-PTAV, n | 5 (2.0%) | 14 (2.4%) | 0.25 |
PMI, n | 17 (6.7%) | 33 (8.3%) | 0.45 |
Laboratory data | |||
NT-proBNP, pg/mL | 4406 (3332, 5481) | 4991 (3422, 6560) | 0.60 |
Creatinine, mg/dL | 1.09 ± 0.9 | 1.11 ± 0.9 | 0.72 |
eGFR, ml/min | 52.2 ± 20.0 | 49.0 ± 18.9 | 0.0371 |
Hemoglobin, g/dL | 11.5 ± 1.7 | 11.2 ± 1.6 | 0.0188 |
Albumin, g/dL | 3.7 ± 0.5 | 3.7 ± 0.5 | 0.89 |
Echocardiographic findings | |||
LVEF, % | 58.4 ± 13.8 | 60.9 ± 11.3 | 0.0138 |
AVA, cm2 | 0.65 ± 0.23 | 0.67 ± 0.20 | 0.33 |
Peak gradient, mmHg | 89.5 ± 33.8 | 87.7 ± 34.0 | 0.50 |
Mean gradient, mmHg | 52.2 ± 20.5 | 50.1 ± 21.5 | 0.24 |
AR ≥ moderate, n | 24 (9.5%) | 28 (7.1%) | 0.27 |
MR ≥ moderate, n | 34 (13.4%) | 58 (14.7%) | 0.67 |
TR ≥ moderate, n | 30 (11.9%) | 75 (18.9%) | 0.0169 |
TRPG, mmHg | 36.9 ± 9.0 | 39.7 ± 9.4 | 0.0001 |
Medications | |||
Beta-blockers | 105 (41.7%) | 176 (44.4%) | 0.49 |
ACEIs/ARBs | 138 (54.8%) | 224 (56.6%) | 0.65 |
Statins | 129 (51.2%) | 202 (51.0%) | 0.96 |
Diuretics | 148 (58.7%) | 231 (58.3%) | 0.92 |
Oral anticoagulants | 81 (32.0%) | 158 (39.9%) | 0.0423 |
Procedural variables | |||
Procedure time, min | 79.8 (75, 84) | 82.5 (78, 87) | 0.44 |
Fluoroscopy time, min | 22.6 (21.3, 23.8) | 21.9 (20.8, 23.0) | 0.42 |
Contrast medium volume, mL | 61.6 (56.2, 67.1) | 64.4 (60.1, 68.7) | 0.42 |
Conscious sedation, n | 143 (56.5%) | 261 (65.9%) | 0.0161 |
Transfemoral approach, n | 233 (93.2%) | 366 (92.9%) | 0.88 |
Valve size, mm | 25.1 ± 2.4 | 24.5 ± 2.4 | 0.0028 |
Balloon expandable, n | 156 (63.2%) | 257 (67.1%) | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koike, T.; Iwata, H.; Chikata, Y.; Doi, S.; Naito, R.; Yasuda, H.; Funamizu, T.; Endo, H.; Miyazaki, S.; Okazaki, S.; et al. Favorable Prognosis in Patients with Recovered Pulmonary Hypertension after TAVI: An Analysis of the LAPLACE-TAVI Registry. J. Clin. Med. 2023, 12, 729. https://doi.org/10.3390/jcm12020729
Koike T, Iwata H, Chikata Y, Doi S, Naito R, Yasuda H, Funamizu T, Endo H, Miyazaki S, Okazaki S, et al. Favorable Prognosis in Patients with Recovered Pulmonary Hypertension after TAVI: An Analysis of the LAPLACE-TAVI Registry. Journal of Clinical Medicine. 2023; 12(2):729. https://doi.org/10.3390/jcm12020729
Chicago/Turabian StyleKoike, Takuma, Hiroshi Iwata, Yuichi Chikata, Shinichiro Doi, Ryo Naito, Hidetoshi Yasuda, Takehiro Funamizu, Hirohisa Endo, Sakiko Miyazaki, Shinya Okazaki, and et al. 2023. "Favorable Prognosis in Patients with Recovered Pulmonary Hypertension after TAVI: An Analysis of the LAPLACE-TAVI Registry" Journal of Clinical Medicine 12, no. 2: 729. https://doi.org/10.3390/jcm12020729
APA StyleKoike, T., Iwata, H., Chikata, Y., Doi, S., Naito, R., Yasuda, H., Funamizu, T., Endo, H., Miyazaki, S., Okazaki, S., Higuchi, R., Takamisawa, I., Sato, K., Tamura, H., Yokoyama, H., Tobaru, T., Takanashi, S., Tabata, M., & Minamino, T. (2023). Favorable Prognosis in Patients with Recovered Pulmonary Hypertension after TAVI: An Analysis of the LAPLACE-TAVI Registry. Journal of Clinical Medicine, 12(2), 729. https://doi.org/10.3390/jcm12020729