The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Definition of Bacterial Infection
- Definite infection—patients with definite viral/bacterial infection established on clinical and microbiological criteria.
- Probable infection—patients with clinical manifestation of infection plus radiological evidence without microbiological confirmation.
- Possible infection—patients with clinical features of infection without established microbiological or radiological confirmation.
2.3. Data Collection and HNP1-3 Measurement
2.4. Reference Standard: Expert Panel Adjudication and Predetermined Criteria
2.5. Statistical Analysis
3. Results
3.1. Performance of the HNP1-3 Test
3.2. Baseline Data of the Whole Study Population According to Quartiles of HNP1-3
4. Discussion
5. Conclusions
6. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu-Fanne, R.; Maraga, E.; Abd-Elrahman, I.; Hankin, A.; Blum, G.; Abdeen, S.; Hijazi, N.; Cines, D.B.; Higazi, A.A.-R. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol. J. Biol. Chem. 2016, 291, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Wilde, C.G.; Griffith, J.E.; Marra, M.N.; Snable, J.L.; Scott, R.W. Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J. Biol. Chem. 1989, 264, 11200–11203. [Google Scholar] [CrossRef]
- Wu, Z.; Ericksen, B.; Tucker, K.; Lubkowski, J.; Lu, W. Synthesis and characterization of human alpha-defensins 4–6. J. Pept. Res. 2004, 64, 118–125. [Google Scholar] [CrossRef]
- Singh, A.; Bateman, A.; Zhu, Q.Z.; Shimasaki, S.; Esch, F.; Solomon, S. Structure of a novel human granulocyte peptide with anti-ACTH activity. Biochem. Biophys. Res. Commun. 1988, 155, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Manco, M.; Fernandez-Real, J.M.; Vecchio, F.M.; Vellone, V.; Moreno, J.M.; Tondolo, V.; Nanni, G.B.G.; Mingrone, G. The Decrease of Serum Levels of Human Neutrophil Alpha-Defensins Parallels with the Surgery-Induced Amelioration of NASH in Obesity. Obes. Surg. 2010, 20, 1682–1689. [Google Scholar] [CrossRef]
- Tataranni, P.A.; Ortega, E. A burning question: Does an adipokine induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005, 54, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Maneerat, Y.; Prasongsukarn, K.; Benjathummarak, S.; Dechkhajorn, W.; Chaisri, U. Increased alpha-defensin expression is associated with risk of coronary heart disease: A feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients. Lipids Health Dis. 2016, 15, 117. [Google Scholar] [CrossRef]
- Prats-Puig, A.; Gispert-Saüch, M.; Carreras-Badosa, G.; Osiniri, I.; Soriano-Rodríguez, P.; Planella-Colomer, M.; de Zegher, F.; Ibánez, L.; Bassols, J.; López-Bermejo, A. α-Defensins and bacterial/permeability-increasing protein as new markers of childhood obesity. Pediatr. Obes. 2016, 12, e10–e13. [Google Scholar] [CrossRef]
- Gubern, C.; López-Bermejo, A.; Biarnés, J.; Vendrell, J.; Ricart, W.; Fernández-Real, J.M. Natural antibiotics and insulin sensitivity: The role of bactericidal/permeability increasing protein. Diabetes 2006, 55, 216–224. [Google Scholar] [CrossRef]
- López-Bermejo, A.; Chico-Julià, B.; Castro, A.; Recasens, M.; Esteve, E.; Biarnés, J.; Casamitjana, R.; Ricart, W.; Fernández-Real, J.M. Alpha defensins 1, 2, and 3: Potential roles in dyslipidemia and vascular dysfunction in humans. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1166–1171. [Google Scholar] [CrossRef]
- Nigrovic, L.E.; Mahajan, P.V.; Blumberg, S.M.; Browne, L.R.; Linakis, J.G.; Ruddy, R.M.; Bennett, J.E.; Rogers, A.J.; Tzimenatos, L.; Kuppermann, N.; et al. The Yale Observation Scale Score and the Risk of Serious Bacterial Infections in Febrile Infants. Pediatrics 2017, 140, e20170695. [Google Scholar] [CrossRef]
- Bachur, R.G.; Harper, M.B. Predictive model for serious bacterial infections among infants younger than 3 months of age. Pediatrics 2001, 108, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.D.; Avner, J.R.; Bell, L.M. Failure of infant observation scales in detecting serious illness in febrile, 4- to 8-week-old infants. Pediatrics 1990, 85, 1040–1043. [Google Scholar] [CrossRef]
- Craig, J.C.; Williams, G.J.; Jones, M.; Codarini, M.; Macaskill, P.; Hayen, A.; Irwig, L.; Fitzgerald, D.A.; McCaskill, M. The accuracy of clinical symptoms and signs for the diagnosis of serious bacterial infection in young febrile children: Prospective cohort study of 15,781 febrile illnesses. BMJ 2010, 340, c1594. [Google Scholar] [CrossRef]
- Srugo, I.; Klein, A.; Stein, M.; Golan-Shany, O.; Kerem, N.; Chistyakov, I.; Genizi, J.; Glazer, O.; Yaniv, L.; Gervaix, A.; et al. Validation of a Novel Assay to Distinguish Bacterial and Viral Infections. Pediatrics 2017, 140, e20163453. [Google Scholar] [CrossRef]
- Naess, A.; Nilssen, S.S.; Mo, R.; Eide, G.E.; Sjursen, H. Role of neutrophil to lymphocyte and monocyte to lymphocyte ratios in the diagnosis of bacterial infection in patients with fever. Infection 2017, 45, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003, 3, 710–720. [Google Scholar] [CrossRef]
- Ganz, T. The role of antimicrobial peptides in innate immunity. Integr. Comp. Biol. 2003, 43, 300–304. [Google Scholar] [CrossRef]
- Ren, Q.; Li, M.; Zhang, C.Y.; Chen, K.P. Six defensins from the triangle-shell pearl mussel Hyriopsis cumingii. Fish Shellfish Immunol. 2011, 31, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhu, S. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution. Biochem. Biophys. Res. Commun. 2012, 426, 630–635. [Google Scholar] [CrossRef]
- Sochacki, K.A.; Barns, K.J.; Bucki, R.; Weisshaar, J.C. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc. Natl. Acad. Sci. USA 2011, 108, E77–E81. [Google Scholar] [CrossRef]
- Higazi, A.A.; Lavi, E.; Bdeir, K.; Ulrich, A.M.; Jamieson, D.G.; Rader, D.J.; Usher, D.C.; Kane, W.; Ganz, T.; Cines, D.B. Defensin stimulates the binding of Lp(a) to human vascular endothelial and smooth muscle cells. Blood 1997, 89, 4290–4298. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care. Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, S.; Aronson, P.L.; Marin, J.R. United States’ Emergency Department Visits for Fever by Young Children 2007–2017. West J. Emerg. Med. 2020, 21, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Fleming-Dutra, K.E.; Hersh, A.L.; Shapiro, D.J.; Bartoces, M.; Enns, E.A.; File, T.M., Jr.; Finkelstein, J.A.; Gerber, J.S.; Hyun, D.Y.; Linder, J.A.; et al. Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010–2011. JAMA 2016, 315, 1864–1873. [Google Scholar] [CrossRef]
- Oved, K.; Cohen, A.; Boico, O.; Navon, R.; Friedman, T.; Etshtein, L.; Kriger, O.; Bamberger, E.; Fonar, Y.; Yacobov, R.; et al. A novel host-proteome signature for distinguishing between acute bacterial and viral infections. PLoS ONE 2015, 10, e0120012. [Google Scholar] [CrossRef]
- Panyutich, A.V.; Panyutich, E.A.; Krapivin, V.A.; Baturevich, E.A.; Ganz, T. Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. 1993, 122, 202–207. [Google Scholar] [PubMed]
- Sutherland, J.S.; Jeffries, D.J.; Donkor, S.; Walther, B.; Hill, P.C.; Adetifa, I.M.O.; Adegbola, R.A.; Ota, M.O.C. High granulocyte/lymphocyte ratio and paucity of NKT cells defnes TB disease in a TB-endemic setting. Tuberculosis 2009, 89, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Yoon, N.B.; Son, C.; Um, S.J. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann. Lab. Med. 2013, 33, 105–110. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; de Jager, C.P.C.; Tosserams, J.; Kosters, R.; Hilbink, M.; Wever, P.C.; van den Brule, A.J. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PLoS ONE 2014, 9, e87315. [Google Scholar] [CrossRef]
- Venge, P.; Douhan-Håkansson, L.; Garwicz, D.; Peterson, C.; Xu, S.; Pauksen, K. Human Neutrophil Lipocalin as a Superior Diagnostic Means To Distinguish between Acute Bacterial and Viral Infections. Clin. Vaccine Immunol. 2015, 22, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.A.; Sy, S.; Galen, B.; Goldstein, D.Y.; Orner, E.; Keller, M.J.; Herold, K.C.; Herold, B.C. Natural mucosal barriers and COVID-19 in children. JCI Insight 2021, 6, e148694. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Nie, Y.; Zhu, A.; Chen, Z.; Wu, P.; Zhang, L.; Luo, M.; Sun, Q.; Cai, L.; Han, Y.P.; et al. Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Front. Physiol. 2016, 7, 498. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Wang, Z.; Wang, J.; Xu, H.; Zhou, H. Serum vitamin D levels among children aged 0-12 years in the First Affiliated Hospital of Harbin Medical University, China. J. Public Health 2018, 40, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Limper, M.; de Kruif, M.D.; Duits, A.J.; Brandjes, D.P.M.; van Gorp, E.C.M. The diagnostic role of Procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J. Infect. 2010, 60, 409–416. [Google Scholar] [CrossRef]
- Tang, B.M.; Eslick, G.D.; Craig, J.C.; McLean, A.S. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: Systematic review and meta-analysis. Lancet Infect. Dis. 2007, 7, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Engel, M.F.; Paling, F.P.; Hoepelman, A.I.M.; van der Meer, V.; Oosterheert, J.J. Evaluating the evidence for the implementation of C-reactive protein measurement in adult patients with suspected lower respiratory tract infection in primary care: A systematic review. Fam. Pract. 2012, 29, 383–393. [Google Scholar] [CrossRef]
- Quenot, J.-P.; Luyt, C.-E.; Roche, N.; Chalumeau, M.; Charles, P.-E.; Claessens, Y.-E.; Lasocki, S.; Bedos, J.-P.; Pean, Y.; Phillipart, F.; et al. Role of biomarkers in the management of antibiotic therapy: An expert panel review II: Clinical use of biomarkers for initiation or discontinuation of antibiotic therapy. Ann. Intensive Care 2013, 3, 21. [Google Scholar] [CrossRef]
- Van der Meer, V.; Neven, A.K.; van den Broek, P.J.; Assendelft, W.J.J. Diagnostic value of C reactive protein in infections of the lower respiratory tract: Systematic review. BMJ 2005, 331, 26. [Google Scholar] [CrossRef]
Control | Bacterial | Viral | |
---|---|---|---|
N | 13 | 41 | 57 |
Female:Male | 5:8 | 19:22 | 26:31 |
Age | 8.2 ± 5 | 5.8 ± 4.8 | 4.5 ± 4.5 |
Weight | 32.6 ± 16.4 | 26.7 ± 22.4 | 18.2 ± 12.9 |
Fever | 36.8 ± 0.4 | 38.4 ± 1.1 | 38.4 ± 1.2 |
Sat% | 99.2 ± 1% | 97.7 ± 2.1% | 97.9 ± 1.9% |
Heart rate | 93.5 ± 21.4 | 138.3 ± 26.9 | 139.4 ± 28.8 |
Bacterial (n) | Viral (n) |
---|---|
Pneumonia (22) | URTI (36) |
UTI (5) | Gastroenteritis (8) |
Gastroenteritis (4) | Pneumonia (8) |
URTI (5) | Nondetermined (5) |
Otitis media (4) | |
Osteomyelitis (1) |
Bacterial (n) | Viral (n) |
---|---|
Definite (13) | Definite (31) |
Probable (22) | Probable (0) |
Possible (6) | Possible (26) |
Definite Viral (n) | Definite Bacterial (n) |
---|---|
H. influenza A (17) | E. coli (4) |
H. influenza B (2) | Shigella (2) |
Adenovirus (5) | H. influenza (2) |
RSV (4) | Streptococcus A (2) |
EBV (3) | MRSA (2) |
Campylobacter (1) |
Bacterial; n = 41 | Viral; n = 57 | p Value | |
---|---|---|---|
HNP1-3 | 10,428 [5789–14,866] | 7352 [3762–10,672] | p = 0.007 |
CRP | 107 [45–215] | 20.5 [4.6–42.4] | p < 0.001 |
WBC | 17.2 [10.2–23.1] | 8.9 [6.7–14.85] | p < 0.001 |
Neutrophils | 11.5 [6.3–17.8] | 5.15 [2.15–8.75] | p < 0.001 |
Lymphocytes | 2.67 [1.40–5.56] | 3.13 [1.54–4.94] | p = 0.90 |
Platelets | 331 [238–416] | 287 [310–397] | p = 0.22 |
Glucose | 104.5 [96.3–117.8] | 98 [90–104.5] | p = 0.005 |
Bacterial | Viral | |
---|---|---|
Definite infection | 10,546 | 6931 |
Probable infection | 13,271 | |
Possible infection | 10,545 | 10,672 |
HNP1-3 Tertiles [pg/mL] | 156–3808 (1) | 3808–7433 (2) | 7433–10,998 (3) | >10,998 (4) | p Value |
---|---|---|---|---|---|
Age | 8 [2.5–14.8] | 2.5 [1.1–6.3] | 3.5 [1.3–8.0] | 2.15 [1.43–8.38] | p1 = 0.009 p3 = 0.056 |
Gender | p = 0.61 | ||||
Male | 18 (64%) | 15 (54%) | 15 (56%) | 13 (46%) | |
Female | 10 (36%) | 13 (46%) | 12 (44%) | 15 (54%) | |
BMI | 19.4 ± 5.6 | 18.4 ± 5.5 | 17.8 ± 2.85 | 17.1 ± 2.40 | p = 0.85 |
Ethnicity | p = 0.89 | ||||
Jewish | 11 (39%) | 12 (43%) | 13 (48%) | 11 (39%) | |
Arab | 17 (61%) | 16 (57%) | 14 (52%) | 17 (61%) |
HNP1-3 Tertiles [pg/mL] | 156–3808 (1) | 3808–7433 (2) | 7433–10,998 (3) | >10,998 (4) | p Value |
---|---|---|---|---|---|
Age | 8 [2.5–14.8] | 2.5 [1.1–6.3] | 3.5 [1.3–8.0] | 2.15 1.43–8.38 | p1 = 0.009 p3 = 0.056 |
CRP | 2.25 [0.63–9.2] | 26.2 [5.12–53.8] | 41.4 [20.12–140.2] | 92.6 [28.7–144.8] | p1 = 0.049 p2,3 < 0.001 p4 = 0.046 |
WBC | 7.2 [5.05–8.6] | 11.3 [6.8–14.0] | 15.0 [9.2–21.0] | 16.3 [9.5–21.4] | p2,3 < 0.001 p5 = 0.052 |
Neutrophils | 3.2 [1.7–5.3] | 5.6 [2.2–10.0] | 8.6 [4.1–15.4] | 10.8 [6.3–15.5] | p2,3 < 0.001 p5 = 0.007 |
Lymphocytes | 2.3 [1.7–3.4] | 2.7 [1.5–5.4] | 3.4 [2.34–5.6] | 3.16 [1.35–5.4] | p = 0.27 |
Platelets | 255.5 [210–336] | 3074 [204–401] | 322 [264–369] | 316 [215–445] | p = 0.16 |
Glucose | 96 [90–105] | 99 [89–102] | 104 [93–118] | 103 [97–118] | p = 0.11 |
B | p Value | Odds Ratio | 95% CI. for EXP(B) | |||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Step 1 | n_HNP1-3 8027 (1) | −0.036 | 0.953 | 0.964 | 0.289 | 3.219 |
n_CRP.42.3(1) | 1.805 | 0.004 | 6.081 | 1.766 | 20.937 | |
n_WBC.12.4(1) | −0.001 | 0.999 | 0.999 | 0.123 | 8.091 | |
n_Neutrophils (1) | 1.424 | 0.142 | 4.154 | 0.621 | 27.785 | |
Platelets | 0.000 | 0.843 | 1.000 | 0.995 | 1.004 | |
Lymphocytes | 0.105 | 0.389 | 1.111 | 0.874 | 1.412 | |
Age | 0.170 | 0.013 | 1.185 | 1.037 | 1.354 | |
Gender (1) | −0.424 | 0.451 | 0.654 | 0.217 | 1.970 | |
Constant | −2.717 | 0.008 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassem, E.; Shapira, M.; Sussan, M.; Mahamid, L.; Amsalem, N.; Abu Fanne, R. The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness. J. Clin. Med. 2023, 12, 6514. https://doi.org/10.3390/jcm12206514
Kassem E, Shapira M, Sussan M, Mahamid L, Amsalem N, Abu Fanne R. The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness. Journal of Clinical Medicine. 2023; 12(20):6514. https://doi.org/10.3390/jcm12206514
Chicago/Turabian StyleKassem, Eiass, Maanit Shapira, Miral Sussan, Loay Mahamid, Naama Amsalem, and Rami Abu Fanne. 2023. "The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness" Journal of Clinical Medicine 12, no. 20: 6514. https://doi.org/10.3390/jcm12206514
APA StyleKassem, E., Shapira, M., Sussan, M., Mahamid, L., Amsalem, N., & Abu Fanne, R. (2023). The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness. Journal of Clinical Medicine, 12(20), 6514. https://doi.org/10.3390/jcm12206514