Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rhinoplasty
3.2. Blepharoplasty
3.3. Facelift
3.4. Potential Bias
3.5. Celebrity Faces
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Metwaly, A.M.; Ghoneim, M.M.; Eissa, I.H.; Eissa, I.H.; Elsehemy, I.A.; Mostafa, A.E.; Hegazy, M.M.; Afifi, W.M.; Doue, A. Traditional ancient Egyption Medicine: A review. Saudi J. Biol. Sci. 2021, 28, 5823–5832. [Google Scholar] [CrossRef]
- Singh, V. Shrushta: The father of surgery. Natl. J. Maxillofac. Surg. 2017, 8, 1–3. [Google Scholar] [CrossRef]
- Wang, W.; Lin, X.; Zhang, Y.; Li, Q. The Practice of China’s Cosmetic Medicine Dated Back to 3800–4800 Years Ago. Chin. J. Plast. Reconstr. Surg. 2021, 3, 109–112. [Google Scholar] [CrossRef]
- Seth, I.; Bulloch, G.; Lee, A. Redefining Academic Integrity, Authorship, and Innovation: The Impact of ChatGPT on Surgical Research. Ann. Surg. Oncol. 2023, 30, 5284–5285. [Google Scholar] [CrossRef]
- Asimopoulos, D.C.; Nitsiou, M.; Lazaridis, L.; Fragulis, G.F. Generative Adversarial Networks: A systematic review and applications. EDP Sci. 2022, 139, 03012. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Wei, Z.; Heidari, A.A.; Zheng, N.; Li, Z.; Chen, H.; Hu, H.; Zhou, Q.; Guan, Q. Generative Adversarial Networks in Medical Image augmentation: A review. Comput. Biol. Med. 2022, 144, 105382. [Google Scholar] [CrossRef]
- Seth, I.; Bulloch, G.; Rozen, W.M. Applications of Artificial Intelligence and Large Language Models to Plastic Surgery. Aesth. Surg. J. 2023, 1, sjad210. [Google Scholar] [CrossRef]
- Seth, I.; Lim, B.; Yi, X.; Hunter-Smith, D.J.; Rozen, W.M. Exploring the role of artificial intelligence chatbot on the management of scaphoid fractures. J. Hand Surg. 2023, 48, 814–818. [Google Scholar] [CrossRef]
- Khalid, N.; Qayyum, A.; Bilal, M.; Al-Fuqaha, A.; Junaid, Q. Privacy-preserving artificial intelligence in healthcare: Techniques and applications. Comput. Biol. Med. 2023, 158, 106848. [Google Scholar] [CrossRef]
- Allen, B.; Agarwal, S.; Kalpathy-Cramer, J.; Dreyer, K. Democratizing AI. J. Am. Coll. Radiol. 2019, 16, 961–963. [Google Scholar] [CrossRef]
- Chartier, C.; Watt, A.; Lin, O.; Chandawarkar, A.; Lee, J.; Hall-Findlay, E. BreastGAN: Artificial Intelligence-Enabled Breast Augmentation Simulation. Aesthet. Surg. J. Open Forum 2021, 4, ojab052. [Google Scholar] [CrossRef]
- Spoer, D.L.; Kiene, J.M.; Dekker, P.K.; Huffman, S.S.; Kim, K.G.; Abadeer, A.I.; Fan, K. A Systematic Review of Artificial Intelligence Applications in Plastic Surgery: Looking to the Future. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4608. [Google Scholar] [CrossRef]
- Dorfman, R.; Cheng, I.; Saadat, S.; Roostaeian, J. Making the Subjective Objection: Machine Learning and Rhinoplasty. Aesthet. Surg. J. 2020, 40, 493–498. [Google Scholar] [CrossRef]
- Nuyen, B.; Kandathil, C.K.; Saltychev, M.; Most, S.P. Social Perception of the Nasal Dorsal Contour in Male Rhinoplasty. JAMA Facial Plast. Surg. 2019, 21, 419–425. [Google Scholar] [CrossRef]
- Brito, Í.M.; Avashia, Y.; Rohrich, R.J. Evidence-based Nasal Analysis for Rhinoplasty: The 10-7-5 Method. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2632. [Google Scholar] [CrossRef]
- Tasman, A.J. Rhinoplasty—Indications and techniques. GMS Curr. Top Otorhinolaryngool. Head Neck Surg. 2007, 6, Doc09. [Google Scholar]
- Park, S.S. Fundamental Principles in Aesthetic Rhinoplasty. Clin. Exp. Otorhinolaryngol. 2011, 4, 55–66. [Google Scholar] [CrossRef]
- Çakir, B.; Doğan, T.; Öreroğlu, A.R.; Daniel, R.K. Rhinoplasty: Surface Aesthetics and Surgical Techniques. Aesth. Surg. J. 2013, 33, 363–375. [Google Scholar] [CrossRef]
- Hwang, H.S.; Spiegel, J.H. The Effect of “Single” vs. “Double” Eyelids on the Perceived Attractiveness of Chinese Women. Aesth. Surg. J. 2014, 34, 374–382. [Google Scholar] [CrossRef]
- Chen, T.; Lian, K.; Lorenzana, D.; Shahzad, N.; Wong, R. Occidentalisation of Beauty Standards: Eurocentrism in Asia. Int. Socioecon. Lab. 2020, 1, 1–11. [Google Scholar]
- Ma, J.; Lin, H.; Pan, B.; Xue, H. Vertical enlargement of the palpebral aperture by surgical modification of the lower eyelid: A new cosmetic option for Chinese patients. J. Plast. Aesth. Surg. 2020, 73, 1151–1158. [Google Scholar] [CrossRef]
- Little, A.C.; Jones, B.C.; DeBruine, L.M. Facial attractiveness: Evolutionary based research. Philos. Trans. R Soc. Lond B Biol. Sci. 2011, 366, 1638–1659. [Google Scholar] [CrossRef]
- Sforza, C.; Laino, A.; D’Alessio, R.; Grandi, G.; Binelli, M.; Ferrario, V. Soft-Tissue Facial Characteristics of Attractive Italian Women as Compared to Normal Women. Angle Orthod. 2009, 79, 17–23. [Google Scholar] [CrossRef]
- Stephen, I.D.; Hiew, V.; Coetzee, V.; Tiddeman, B.P.; Perrett, D.I. Facial Shape Analysis Identifies Valid Cues to Aspects of Physiological Health in Caucasian, Asian, and African Populations. Front. Psychol. 2017, 8, 1883. [Google Scholar] [CrossRef]
- Little, A.C. Facial attractiveness. Wires Cognit. Sci. 2014, 5, 621–634. [Google Scholar] [CrossRef]
- Qin, F.; Gu, J. Artificial Intelligence in plastic surgery: Current developments and future perspectives. Plast. Aesthet. Res. 2023, 10, 3. [Google Scholar] [CrossRef]
- Rokhshad, R.; Keyhan, S.O.; Yousefi, P. Artificial intelligence applications and ethical challenges in oral and maxillo-facial cosmetic surgery: A narrative review. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 14. [Google Scholar] [CrossRef]
- Mantelakis, A.; Khajuria, A. The applications of machine learning in plastic and reconstructive surgery: Protocol of a systematic review. Syst. Rev. 2020, 9, 44. [Google Scholar] [CrossRef]
- Arora, A.; Arora, A. Generative adversarial networks and synthetic patient data: Current challenges and future perspectives. Future Healthc. J. 2022, 9, 190–193. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, C.; Mesa, D.A.; Sun, J.; Malin, B.A. Ensuring electronic medical record simulation through better training, modeling, and evaluation. J. Am. Med. Inform. Assoc. 2020, 27, 99–108. [Google Scholar] [CrossRef]
- Celi, L.A.; Cellini, J.; Charpignon, M.L.; Dee, E.C.; Dernoncourt, F.; Eber, R.; Mitchell, W.G.; Moukheiber, L.; Schirmer, J.; Situ, J.; et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—A global review. PLoS Dig. Health 2022, 1, e0000022. [Google Scholar] [CrossRef]
- Shreshta, S.; Das, S. Exploring gender biases in ML and AI academic research through systematic review. Front. Artif. Intell. 2022, 11, 976838. [Google Scholar] [CrossRef]
- Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data Cognit. Comput. 2023, 7, 15. [Google Scholar] [CrossRef]
Criteria | DALL-E | Midjourney | Blue Willow |
---|---|---|---|
The AI-generated images resemble traditional real-world beauty standards | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [x] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree |
The AI-generated images adequately represent the specific organ(s) | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree |
The AI-generated images’ details are visible and easily discernible | [ ] 1—Strongly Disagree [ ] 2—Disagree [x] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [x] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [x] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree |
The AI-generated images are of high quality | [ ] 1—Strongly Disagree [ ] 2—Disagree [x] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [x] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [ ] 2—Disagree [ ] 3—Neither Agree or Disagree [x] 4—Agree [ ] 5—Strongly Agree |
The AI-generated images are beneficial for educational purposes | [ ] 1—Strongly Disagree [x] 2—Disagree [ ] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [x] 2—Disagree [ ] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree | [ ] 1—Strongly Disagree [x] 2—Disagree [ ] 3—Neither Agree or Disagree [ ] 4—Agree [ ] 5—Strongly Agree |
Characteristic | Gender Male Female | Skin Tone White/Caucasian Other | Age (Assumed) <50 yrs >50 yrs | BMI (Assumed) <20 >20 | ||
---|---|---|---|---|---|---|
Nose | Number (%) | Dall-E2 | 0 (0%) 4 (100%) | 3 (75%) 1 (25%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) |
Midjourney | 0 (0%) 4 (100%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | ||
Blue Willow | 0 (0%) 4 (100%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | ||
Face | Characteristic | |||||
Number (%) | Dall-E2 | 0 (0%) 4 (100%) | 3 (75%) 1 (25%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | |
Midjourney | 0 (0%) 4 (100%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | ||
Blue Willow | 0 (0%) 4 (100%) | 3 (75%) 1 (25%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | ||
Eyelids | Characteristic | |||||
Number (%) | Dall-E2 | 0 (0%) 4 (100%) | Unable to determine | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | |
Midjourney | 0 (0%) 4 (100%) | 3 (75%) 1 (25%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | ||
Blue Willow | 0 (0%) 4 (100%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) | 4 (100%) 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.; Seth, I.; Kah, S.; Sofiadellis, F.; Ross, R.J.; Rozen, W.M.; Cuomo, R. Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures. J. Clin. Med. 2023, 12, 6524. https://doi.org/10.3390/jcm12206524
Lim B, Seth I, Kah S, Sofiadellis F, Ross RJ, Rozen WM, Cuomo R. Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures. Journal of Clinical Medicine. 2023; 12(20):6524. https://doi.org/10.3390/jcm12206524
Chicago/Turabian StyleLim, Bryan, Ishith Seth, Skyler Kah, Foti Sofiadellis, Richard J. Ross, Warren M. Rozen, and Roberto Cuomo. 2023. "Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures" Journal of Clinical Medicine 12, no. 20: 6524. https://doi.org/10.3390/jcm12206524
APA StyleLim, B., Seth, I., Kah, S., Sofiadellis, F., Ross, R. J., Rozen, W. M., & Cuomo, R. (2023). Using Generative Artificial Intelligence Tools in Cosmetic Surgery: A Study on Rhinoplasty, Facelifts, and Blepharoplasty Procedures. Journal of Clinical Medicine, 12(20), 6524. https://doi.org/10.3390/jcm12206524