Lupus Anticoagulant Detection under the Magnifying Glass
Abstract
:1. Introduction
2. Indications to the Tests: Patients’ Selection and Timing of Testing
- ⮚
- Current guidelines recommend avoiding LA testing during an acute thrombotic event or an acute episode (e.g., an infection) [9], because of the interference of raised levels of coagulation factors (factor VIII) and of C-reactive protein on LA assays (see Section 3.2, “Interference”).
- ⮚
- During pregnancy, many coagulation factors are physiologically increased (especially factor VIII) [13], making LA testing results’ interpretation difficult; ISTH recommends that in this setting the results should be taken into consideration with caution [9] (see Section 3.2, “Interference”).
- ⮚
- Ideally, LA testing should be performed in patients not taking any anticoagulant drug [9]; the search for LA in anticoagulated patients is currently a matter of great debate, because in these patients, anticoagulant therapy is often started very soon and the possibility of performing LA testing while on anticoagulation drugs assumes importance. A recent guidance of the ISTH Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies faced this argument [14], concluding that LA detection during anticoagulation remains a challenge. The LA search in anticoagulated patients is adequately discussed in Section 5 (“LA detection in anticoagulated patients”).
3. Preanalytical Phase
3.1. Sample Characteristics
3.2. Interference
4. Lupus Anticoagulant Detection Procedure
4.1. General Principles: Three Steps Approach
- A screening assay, namely a PL-dependent test: aPTT, dRVVT (as recommended by ISTH guidelines [9], see above); if present in the patient plasma, LA is able to bind and inhibit PL, prolonging the clotting time beyond the upper limit of the reference range;
- A mixing assay, in which the coagulation test is repeated on a mixture of normal plasma and the patient’s plasma; if LA is present in the patient plasma, the increase of coagulation factors provided from the normal plasma will not be able to correct the prolongation of the clotting time;
- A confirmatory assay, in which the coagulation test is repeated while increasing the PL concentration; if LA is present in the patient’s plasma, the excess of PL is able to quench these antibodies, causing a shortening of the clotting time.
4.2. Choice of Assays
- A LA-sensitive test derived from aPTT (such as SCT, silica clotting time);
- The dRVVT (dilute Russell viper venom time).
4.3. Screening Tests
4.4. Mixing Tests
4.5. Confirmatory Tests
4.6. Interpretation of Results
4.6.1. Screening Tests
4.6.2. Mixing Tests
4.6.3. Confirmatory Tests
4.6.4. Integrated Assays
4.6.5. Cut-Offs
5. LA Detection in Anticoagulated Patients
5.1. Unfractionated Heparin (UFH) and Low-Molecular-Weight Heparin (LMWH)
5.2. Vitamin K Antagonists (VKA)
5.3. Direct Oral Anticoagulants (DOACs)
- Ask the patient for personal and familiar history of autoimmune diseases;
- Search for anti-cardiolipin and aβ2-GP-I antibodies (not influenced by anticoagulants):
- ⮚
- If negative: DOACs can be utilized;
- ⮚
- If positive: go to step 3;
6. LA and Other Coagulation Factors Assays
7. LA and Other Inhibitors
8. Diagnostic Algorithm(s)
9. Reporting of Results
10. Discussion and Conclusions
- Diagnosis of APS: LA is one of the key criteria for diagnosing APS. Alongside other antibodies such as anticardiolipin antibodies and anti-β2 glycoprotein I antibodies, the presence of LA helps confirm the diagnosis of APS. Accurate diagnosis is crucial for managing patients with APS and preventing serious complications such as recurrent thrombosis and pregnancy complications.
- Risk assessment and management: Patients with LA are at an increased thrombotic risk, including deep vein thrombosis (DVT), pulmonary embolism (PE), and stroke. Identifying this risk allows clinicians to take appropriate preventive measures. This might include anticoagulant medications or lifestyle modifications to reduce the risk.
- Guiding treatment decisions: Knowing that a patient has LA can influence treatment decisions, especially for those who have already been diagnosed with autoimmune conditions such as SLE. The presence of lupus anticoagulant might impact the choice of medications and their dosages, as certain drugs can interact with the hypercoagulable state associated with APS.
- Pregnancy management: Pregnant individuals with LA are at a higher risk of miscarriages, stillbirths, and other pregnancy-related complications due to the increased clotting tendency. Clinicians need to closely monitor and manage these pregnancies to improve the chances of successful outcomes.
- Monitoring and follow-up: Patients with LA require regular monitoring and follow-up. Monitoring clotting factors and markers, as well as assessing the effectiveness of any prescribed anticoagulation therapy, helps ensure optimal patient care and prevents complications.
- Educational support: Clinicians play a crucial role in educating patients about their condition. Informing patients about LA and its implications empowers them to be proactive in their own healthcare, adhere to prescribed treatments, and make informed decisions.
- Take home messages:
- LA detection is based on functional coagulation assays that are characterized by poor standardization, difficulty in interpreting the results, and interference by several drugs commonly used in the clinical setting in which LA search is appropriate.
- LA detection is performed following a three-step approach that consists of a sequence of three coagulation procedures: screening, mixing, and confirmation.
- dRVVT is the most sensitive and specific test to detect LA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feinstein, D.I.; Rapaport, S.I. Acquired Inhibitors of Blood Coagulation. Prog. Haemost. Thromb. 1972, 1, 75–95. [Google Scholar]
- Tripodi, A.; de Groot, P.G.; Pengo, V. Antiphospholipid Syndrome: Laboratory Detection, Mechanisms of Action and Treatment. J. Intern. Med. 2011, 270, 110–122. [Google Scholar] [CrossRef]
- Garcia, D.; Erkan, D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018, 378, 2010–2021. [Google Scholar] [CrossRef]
- Cervera, R. Antiphospholipid Syndrome. Thromb. Res. 2017, 151, S43–S47. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Ortel, T.L.; Pengo, V.; de Laat, B. Laboratory Criteria for Antiphospholipid Syndrome: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.W.M.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International Consensus Statement on an Update of the Classification Criteria for Definite Antiphospholipid Syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Vandevelde, A.; Devreese, K.M.J. Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances. J. Clin. Med. 2022, 11, 2164. [Google Scholar] [CrossRef]
- Tripodi, A. Diagnostic Challenges on the Laboratory Detection of Lupus Anticoagulant. Biomedicines 2021, 9, 844. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; de Groot, P.G.; de Laat, B.; Erkan, D.; Favaloro, E.J.; Mackie, I.; Martinuzzo, M.; Ortel, T.L.; Pengo, V.; Rand, J.H.; et al. Guidance from the Scientific and Standardization Committee for Lupus Anticoagulant/Antiphospholipid Antibodies of the International Society on Thrombosis and Haemostasis: Update of the Guidelines for Lupus Anticoagulant Detection and Interpretation. J. Thromb. Haemost. 2020, 18, 2828–2839. [Google Scholar] [CrossRef]
- Dlott, J.S.; Roubey, R.A. Drug-induced lupus anticoagulants and antiphospholipid antibodies. Curr. Rheumatol. Rep. 2012, 14, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Testa, S.; Fierro, T.; Marongiu, F.; De Micheli, V.; Gresele, P.; Tonello, M.; Ghirarduzzi, A.; et al. Incidence of a First Thromboembolic Event in Asymptomatic Carriers of High-Risk Antiphospholipid Antibody Profile: A Multicenter Prospective Study. Blood 2011, 118, 4714–4718. [Google Scholar] [CrossRef]
- Mustonen, P.; Lehtonen, K.V.; Javela, K.; Puurunen, M. Persistent Antiphospholipid Antibody (APL) in Asymptomatic Carriers as a Risk Factor for Future Thrombotic Events: A Nationwide Prospective Study. Lupus 2014, 23, 1468–1476. [Google Scholar] [CrossRef]
- Othman, M.; Pradhan, A. Laboratory Testing of Hemostasis in Pregnancy: A Brief Overview. Methods Mol. Biol. 2023, 2663, 111–125. [Google Scholar] [PubMed]
- Tripodi, A.; Cohen, H.; Devreese, K.M.J. Lupus Anticoagulant Detection in Anticoagulated Patients. Guidance from the Scientific and Standardization Committee for Lupus Anticoagulant/Antiphospholipid Antibodies of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2020, 18, 1569–1575. [Google Scholar] [CrossRef]
- Wayne, P. H60-A Laboratory Testing for the Lupus Anticoagulant, Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Favaloro, E.J. Preanalytical Variables in Coagulation Testing. Blood Coagul. Fibrinolysis 2007, 18, 86–89. [Google Scholar] [CrossRef]
- Exner, T.; Low, J. Detection of Procoagulant Phospholipid Interfering in Tests for Lupus Anticoagulant. Thromb. Res. 2004, 114, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, A.H.; Hammer, I.J.; Vannes, S.; Åsberg, A.; Aakre, K.M. Impact of Different Preanalytical Conditions on Results of Lupus Anticoagulant Tests. Int. J. Lab. Hematol. 2019, 41, 745–753. [Google Scholar] [CrossRef]
- ten Boekel, E.; Bartels, P. Abnormally Short Activated Partial Thromboplastin Times Are Related to Elevated Plasma Levels of TAT, F1+2, D-Dimer and FVIII:C. Pathophysiol. Haemost. Thromb. 2002, 32, 137–142. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Linskens, E.A.; Benoit, D.; Peperstraete, H. Antiphospholipid Antibodies in Patients with COVID-19: A Relevant Observation? J. Thromb. Haemost. 2020, 18, 2191–2201. [Google Scholar] [CrossRef] [PubMed]
- Foret, T.; Dufrost, V.; Salomon Du Mont, L.; Costa, P.; Lefevre, B.; Lacolley, P.; Regnault, V.; Zuily, S.; Wahl, D. Systematic Review of Antiphospholipid Antibodies in COVID-19 Patients: Culprits or Bystanders? Curr. Rheumatol. Rep. 2021, 23, 65. [Google Scholar] [CrossRef]
- Gendron, N.; Dragon-Durey, M.; Chocron, R.; Darnige, L.; Jourdi, G.; Philippe, A.; Chenevier-Gobeaux, C.; Hadjadj, J.; Duchemin, J.; Khider, L.; et al. Lupus Anticoagulant Single Positivity During the Acute Phase of COVID-19 Is Not Associated With Venous Thromboembolism or In-Hospital Mortality. Arthritis Rheumatol. 2021, 73, 1976–1985. [Google Scholar] [CrossRef]
- Schouwers, S.M.E.; Delanghe, J.R.; Devreese, K.M.J. Lupus Anticoagulant (LAC) Testing in Patients with Inflammatory Status: Does C-Reactive Protein Interfere with LAC Test Results? Thromb. Res. 2010, 125, 102–104. [Google Scholar] [CrossRef]
- Martirosyan, A.; Aminov, R.; Manukyan, G. Environmental Triggers of Autoreactive Responses: Induction of Antiphospholipid Antibody Formation. Front. Immunol. 2019, 10, 1609. [Google Scholar] [CrossRef]
- Moore, G.W. Testing for Lupus Anticoagulants. Semin. Thromb. Hemost. 2022, 48, 643–660. [Google Scholar] [CrossRef]
- Kumano, O.; Ieko, M.; Naito, S.; Yoshida, M.; Takahashi, N. APTT Reagent with Ellagic Acid as Activator Shows Adequate Lupus Anticoagulant Sensitivity in Comparison to Silica-based Reagent. J. Thromb. Haemost. 2012, 10, 2338–2343. [Google Scholar] [CrossRef] [PubMed]
- Rooney, A.M.; McNally, T.; Mackie, I.J.; Machin, S.J. The Taipan Snake Venom Time: A New Test for Lupus Anticoagulant. J. Clin. Pathol. 1994, 47, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Jones, P.O.; Platton, S.; Hussain, N.; White, D.; Thomas, W.; Rigano, J.; Pouplard, C.; Gray, E.; Devreese, K.M.J. International Multicenter, Multiplatform Study to Validate Taipan Snake Venom Time as a Lupus Anticoagulant Screening Test with Ecarin Time as the Confirmatory Test: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2021, 19, 3177–3192. [Google Scholar] [CrossRef]
- Moore, G.W.; Culhane, A.P.; Maloney, J.C.; Archer, R.A.; Breen, K.A.; Hunt, B.J. Taipan Snake Venom Time Coupled with Ecarin Time Enhances Lupus Anticoagulant Detection in Nonanticoagulated Patients. Blood Coagul. Fibrinolysis 2016, 27, 477–480. [Google Scholar] [CrossRef]
- Dragoni, F.; Minotti, C.; Palumbo, G.; Faillace, F.; Redi, R.; Bongarzoni, V.; Avvisati, G. As Compared To Kaolin Clotting Time, Silica Clotting Time Is a Specific and Sensitive Automated Method For Detecting Lupus Anticoagulant. Thromb. Res. 2001, 101, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Derksen, R.H.W.M.; de Groot, P.G. Tests for Lupus Anticoagulant Revisited. Thromb. Res. 2004, 114, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W. Alternative Assays to dRVVT and aPTTfor Lupus Anticoagulant Detection. Am. J. Hematol. 2020, 95, 992–998. [Google Scholar] [CrossRef]
- Pengo, V.; Tripodi, A.; Reber, G.; Rand, J.H.; Ortel, T.L.; Galli, M.; De Groot, P.G. Update of the Guidelines for Lupus Anticoagulant Detection. J. Thromb. Haemost. 2009, 7, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Liestøl, S.; Jacobsen, E.M.; Wisløff, F. Dilute Prothrombin Time-Based Lupus Ratio Test. Thromb. Res. 2002, 105, 177–182. [Google Scholar] [CrossRef]
- Devreese, K.M.J. Evaluation of a New Commercial Dilute Prothrombin Time in the Diagnosis of Lupus Anticoagulants. Thromb. Res. 2008, 123, 404–411. [Google Scholar] [CrossRef]
- Keeling, D.; Mackie, I.; Moore, G.W.; Greer, I.A.; Greaves, M. Guidelines on the Investigation and Management of Antiphospholipid Syndrome. Br. J. Haematol. 2012, 157, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Practical Haemostasis. Available online: https://practical-haemostasis.com/ (accessed on 28 July 2023).
- Santoro, R.C.; Molinari, A.C.; Leotta, M.; Martini, T. Isolated Prolongation of Activated Partial Thromboplastin Time: Not Just Bleeding Risk! Medicina 2023, 59, 1169. [Google Scholar] [CrossRef] [PubMed]
- Slagboom, J.; Kool, J.; Harrison, R.A.; Casewell, N.R. Haemotoxic Snake Venoms: Their Functional Activity, Impact on Snakebite Victims and Pharmaceutical Promise. Br. J. Haematol. 2017, 177, 947–959. [Google Scholar] [CrossRef]
- Tiede, A.; Werwitzke, S.; Scharf, R. Laboratory Diagnosis of Acquired Hemophilia A: Limitations, Consequences, and Challenges. Semin. Thromb. Hemost. 2014, 40, 803–811. [Google Scholar] [CrossRef]
- Kanouchi, K.; Narimatsu, H.; Shirata, T.; Morikane, K. Diagnostic analysis of lupus anticoagulant using clot waveform analysis in activated partial thromboplastin time prolonged cases: A retrospective analysis. Health Sci. Rep. 2021, 4, e258. [Google Scholar] [CrossRef]
- Okuda, M.; Yamamoto, Y. Usefulness of Synthetic Phospholipid in Measurement of Activated Partial Thromboplastin Time: A New Preparation Procedure to Reduce Batch Difference. Clin. Lab. Haematol. 2004, 26, 215–223. [Google Scholar] [CrossRef]
- Stevenson, K.J.; Seddon, J.M. The Role of Lipids in the Detection of Lupus Anticoagulant by the Dilute Russell Viper Venom Test: Are Platelets or Reagents Containing Hexagonal HII Phases Necessary? Br. J. Haematol. 1994, 86, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, P.R.; Stevenson, K.J.; Poller, L. The Diagnosis of Lupus Anticoagulants by the Activated Partial Thromboplastin Time—the Central Role of Phosphatidyl Serine. Thromb. Haemost. 1984, 52, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Dlott, J.; Norbis, F.; Ruggeri, L.; Cler, L.; Triplett, D.A.; Barbui, T. Lupus Anticoagulants and Thrombosis: Clinical Association of Different Coagulation and Immunologic Tests. Thromb. Haemost. 2000, 84, 1012–1016. [Google Scholar]
- Ledford-Kraemer, M. Laboratory Testing for Lupus Anticoagulants: Preexamination Variables, Mixing Studies, and Diagnostic Criteria. Semin. Thromb. Hemost. 2008, 34, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Moore, G. Current Controversies in Lupus Anticoagulant Detection. Antibodies 2016, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W. Recent Guidelines and Recommendations for Laboratory Detection of Lupus Anticoagulants. Semin. Thromb. Hemost. 2014, 40, 163–171. [Google Scholar] [CrossRef] [PubMed]
- AICE (Associazione Italiana Centri Emofilia) Quality Laboratory Working Group. Consensus Document: Procedures for Hemostasis Laboratory, Mixing Test and Measurement of Factors VIII and IX; AICE, Italian Association of Hemophilia Centres: Milan, Italy, 2022. [Google Scholar]
- Li, R.; Swaelens, C.; Vandermijnsbrugge, F.; Cantinieaux, B. Applying a Direct APTT Ratio (PlatelinLS/ActinFS) Permits to Identify Rapidly and Reliably a Bleeding-Related Factor Deficiency or a Lupus Anticoagulant Sequential to an Isolated Prolongation of APTT in Paediatric Pre-Operative Screening. Eur. J. Haematol. 2016, 96, 578–585. [Google Scholar] [CrossRef]
- Kumano, O.; Amiral, J.; Dunois, C.; Peyrafitte, M.; Moore, G.W. Paired APTTs of Low and High Lupus Anticoagulant Sensitivity Permit Distinction from Other Abnormalities and Achieve Good Lupus Anticoagulant Detection Rates in Conjunction with dRVVT. Int. J. Lab. Hematol. 2019, 41, 60–68. [Google Scholar] [CrossRef]
- Triplett, D.A.; Stocker, K.F.; Unger, G.A.; Barna, L.K. The Textarin/Ecarin Ratio: A Confirmatory Test for Lupus Anticoagulants. Thromb. Haemost. 1993, 70, 925–931. [Google Scholar] [CrossRef]
- Saxena, R.; Saraya, A.K.; Kotte, V.K.; Singh, Y.N.; Prasad, L.; Malviya, A.N. Evaluation of Four Coagulation Tests to Detect Plasma Lupus Anticoagulants. Am. J. Clin. Pathol. 1991, 96, 755–758. [Google Scholar] [CrossRef]
- Bailly, J.; Louw, S.S.; De Koker, A.A.; Potgieter, J.J.C.; Coetzee, M.J.; Chapanduka, Z.C.; Zivanai, C.; Opie, J.J. Guidelines for Lupus Anticoagulant Testing in South Africa. J. Med. Lab. Sci. Technol. South. Afr. 2020, 2, 6–12. [Google Scholar] [CrossRef]
- Limper, M.; de Leeuw, K.; Lely, A.T.; Westerink, J.; Teng, Y.K.O.; Eikenboom, J.; Otter, S.; Jansen, A.J.G.; Ree, M.V.; Spierings, J.; et al. Diagnosing and Treating Antiphospholipid Syndrome: A Consensus Paper. Neth. J. Med. 2019, 77, 98–108. [Google Scholar]
- Rosner, E.; Pauzner, R.; Lusky, A.; Modan, M.; Many, A. Detection and Quantitative Evaluation of Lupus Circulating Anticoagulant Activity. Thromb. Haemost. 1987, 57, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Depreter, B.; Devreese, K.M.J. Differences in Lupus Anticoagulant Final Conclusion through Clotting Time or Rosner Index for Mixing Test Interpretation. Clin. Chem. Lab. Med. CCLM 2016, 54, 1511–1516. [Google Scholar] [CrossRef]
- Moore, G.W.; Culhane, A.P.; Daw, C.R.; Noronha, C.P.; Kumano, O. Mixing Test Specific Cut-off Is More Sensitive at Detecting Lupus Anticoagulants than Index of Circulating Anticoagulant. Thromb. Res. 2016, 139, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Kumano, O.; Moore, G.W. Lupus Anticoagulant Mixing Tests for Multiple Reagents Are More Sensitive If Interpreted with a Mixing Test-specific Cut-off than Index of Circulating Anticoagulant. Res. Pract. Thromb. Haemost. 2018, 2, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Zardo, L.; Cattini, M.G.; Bison, E.; Pontara, E.; Altinier, S.; Cheng, C.; Denas, G. Prothrombin Is Responsible for the Lupus Cofactor Phenomenon in a Patient with Lupus Anticoagulant/Hypoprothrombinemia Syndrome. TH Open 2020, 4, e40–e44. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Chantarangkul, V.; Cini, M.; Devreese, K.; Dlott, J.S.; Giacomello, R.; Gray, E.; Legnani, C.; Martinuzzo, M.E.; Pradella, P.; et al. Variability of Cut-off Values for the Detection of Lupus Anticoagulants: Results of an International Multicenter Multiplatform Study. J. Thromb. Haemost. 2017, 15, 1180–1190. [Google Scholar] [CrossRef]
- Pradella, P.; Azzarini, G.; Santarossa, L.; Caberlotto, L.; Bardin, C.; Poz, A.; D’Aurizio, F.; Giacomello, R. Cooperation Experience in a Multicentre Study to Define the Upper Limits in a Normal Population for the Diagnostic Assessment of the Functional Lupus Anticoagulant Assays. Clin. Chem. Lab. Med. CCLM 2013, 51, 379–385. [Google Scholar] [CrossRef]
- Moore, G.W.; Kumano, O. Lupus Anticoagulant Assay Cut-offs Vary between Reagents Even When Derived from a Common Set of Normal Donor Plasmas. J. Thromb. Haemost. 2020, 18, 439–444. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. Lupus Anticoagulant Testing during Anticoagulation, Including Direct Oral Anticoagulants. Res. Pract. Thromb. Haemost. 2022, 6, e12676. [Google Scholar] [CrossRef]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs. Warfarin in High-Risk Patients with Antiphospholipid Syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Ordi-Ros, J.; Sáez-Comet, L.; Pérez-Conesa, M.; Vidal, X.; Riera-Mestre, A.; Castro-Salomó, A.; Cuquet-Pedragosa, J.; Ortiz-Santamaria, V.; Mauri-Plana, M.; Solé, C.; et al. Rivaroxaban Versus Vitamin K Antagonist in Antiphospholipid Syndrome. Ann. Intern. Med. 2019, 171, 685. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency PRAC. Recommendations on Signals. Adopted at the 8–11 April 2019 PRAC Meeting. EMA Pharmacovigilance Risk Assessment Committee (PRAC). Available online: https://www.ema.europa.eu/en/documents/prac-recommendation/pracrecommendations-signals-adopted-8-11-april-2019-prac-meeting_en.pdf (accessed on 8 August 2023).
- Olah, Z.; Szarvas, M.; Bereczky, Z.; Kerenyi, A.; Kappelmayer, J.; Boda, Z. Direct Thrombin Inhibitors and Factor Xa Inhibitors Can Influence the Diluted Prothrombin Time Used as the Initial Screen for Lupus Anticoagulant. Arch. Pathol. Lab. Med. 2013, 137, 967–973. [Google Scholar] [CrossRef]
- Martinuzzo, M.E.; Barrera, L.H.; D’Adamo, M.A.; Otaso, J.C.; Gimenez, M.I.; Oyhamburu, J. Frequent False-Positive Results of Lupus Anticoagulant Tests in Plasmas of Patients Receiving the New Oral Anticoagulants and Enoxaparin. Int. J. Lab. Hematol. 2014, 36, 144–150. [Google Scholar] [CrossRef]
- De Kesel, P.M.M.; Devreese, K.M.J. The Effect of Unfractionated Heparin, Enoxaparin, and Danaparoid on Lupus Anticoagulant Testing: Can Activated Carbon Eliminate False-positive Results? Res. Pract. Thromb. Haemost. 2020, 4, 161–168. [Google Scholar] [CrossRef]
- Moore, G.W.; Savidge, G.F. The Dilution Effect of Equal Volume Mixing Studies Compromises Confirmation of Inhibition by Lupus Anticoagulants Even When Mixture Specific Reference Ranges Are Applied. Thromb. Res. 2006, 118, 523–528. [Google Scholar] [CrossRef]
- Pennings, M.; de Groot, P.; Meijers, J.; Huisman, A.; Derksen, R.; Urbanus, R. Optimisation of Lupus Anticoagulant Tests: Should Test Samples Always Be Mixed with Normal Plasma? Thromb. Haemost. 2014, 112, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Mohammed, S.; Curnow, J.; Pasalic, L. Laboratory Testing for Lupus Anticoagulant (LA) in Patients Taking Direct Oral Anticoagulants (DOACs): Potential for False Positives and False Negatives. Pathology 2019, 51, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Reda, S.; Brügelmann, A.; Müller, J.; Oldenburg, J.; Pötzsch, B.; Rühl, H. Functional Lupus Anticoagulant Testing in a Large Retrospective Cohort of Thrombosis Patients with Direct Oral Anticoagulants. Sci. Rep. 2020, 10, 12221. [Google Scholar] [CrossRef]
- Hillarp, A.; Strandberg, K.; Gustafsson, K.M.; Lindahl, T.L. Unveiling the Complex Effects of Direct Oral Anticoagulants on Dilute Russell’s Viper Venom Time Assays. J. Thromb. Haemost. 2020, 18, 1866–1873. [Google Scholar] [CrossRef]
- Martinuzzo, M.E.; Forastiero, R.; Duboscq, C.; Barrera, L.H.; López, M.S.; Ceresetto, J.; Penchasky, D.; Oyhamburu, J. False-Positive Lupus Anticoagulant Results by DRVVT in the Presence of Rivaroxaban Even at Low Plasma Concentrations. Int. J. Lab. Hematol. 2018, 40, e99–e101. [Google Scholar] [CrossRef] [PubMed]
- Gay, J.; Duchemin, J.; Imarazene, M.; Fontenay, M.; Jourdi, G. Lupus Anticoagulant Diagnosis in Patients Receiving Direct Oral FXa Inhibitors at Trough Levels: A Real-life Study. Int. J. Lab. Hematol. 2019, 41, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Antovic, A.; Norberg, E.-M.; Berndtsson, M.; Rasmuson, A.; Malmström, R.E.; Skeppholm, M.; Antovic, J. Effects of Direct Oral Anticoagulants on Lupus Anticoagulant Assays in a Real-Life Setting. Thromb. Haemost. 2017, 117, 1700–1704. [Google Scholar] [CrossRef]
- Frans, G.; Meeus, P.; Bailleul, E. Resolving DOAC Interference on APTT, PT, and Lupus Anticoagulant Testing by the Use of Activated Carbon. J. Thromb. Haemost. 2019, 17, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyk, M.; Kopytek, M.; Natorska, J.; Undas, A. The Effect of DOAC-Stop on Lupus Anticoagulant Testing in Plasma Samples of Venous Thromboembolism Patients Receiving Direct Oral Anticoagulants. Clin. Chem. Lab. Med. CCLM 2019, 57, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Scalambrino, E.; Chantarangkul, V.; Paoletti, O.; Clerici, M.; Novembrino, C.; Boscolo-Anzoletti, M.; Peyvandi, F.; Testa, S. Impact of a Commercially Available DOAC Absorbent on Two Integrated Procedures for Lupus Anticoagulant Detection. Thromb. Res. 2021, 204, 32–39. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Devreese, K.M.J. Direct Oral Anticoagulant Adsorption: Impact on Lupus Anticoagulant Testing—Review of the Literature and Evaluation on Spiked and Patient Samples. J. Thromb. Haemost. 2020, 18, 2003–2017. [Google Scholar] [CrossRef]
- Baker, S.A.; Jin, J.; Pfaffroth, C.; Vu, T.; Zehnder, J.L. DOAC-Stop in Lupus Anticoagulant Testing: Direct Oral Anticoagulant Interference Removed in Most Samples. Res. Pract. Thromb. Haemost. 2021, 5, 314–325. [Google Scholar] [CrossRef]
- Linskens, E.A.; De Kesel, P.; Devreese, K.M.J. Direct Oral Anticoagulant Removal by a DOAC Filter: Impact on Lupus Anticoagulant Testing-Evaluation on Spiked and Patient Samples. Res. Pract. Thromb. Haemost. 2022, 6, e12633. [Google Scholar] [CrossRef]
- Sevenet, P.; Cucini, V.; Hervé, T.; Depasse, F.; Carlo, A.; Contant, G.; Mathieu, O. Evaluation of DOAC Filter, a New Device to Remove Direct Oral Anticoagulants from Plasma Samples. Int. J. Lab. Hematol. 2020, 42, 636–642. [Google Scholar] [CrossRef]
- Farkh, C.; Ellouze, S.; Gounelle, L.; Sad Houari, M.; Duchemin, J.; Proulle, V.; Fontenay, M.; Delavenne, X.; Jourdi, G. A Diagnostic Solution for Lupus Anticoagulant Testing in Patients Taking Direct Oral FXa Inhibitors Using DOAC Filter. Front. Med. 2021, 8, 683357. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V. Additional Laboratory Tests to Improve on the Diagnosis of Antiphospholipid Syndrome: Response from Pengo. J. Thromb. Haemost. 2020, 18, 3118–3119. [Google Scholar] [CrossRef]
- Pengo, V.; Del Ross, T.; Ruffatti, A.; Bison, E.; Cattini, M.G.; Pontara, E.; Testa, S.; Legnani, C.; Pozzi, N.; Peterle, D.; et al. Lupus Anticoagulant Identifies Two Distinct Groups of Patients with Different Antibody Patterns. Thromb. Res. 2018, 172, 172–178. [Google Scholar] [CrossRef]
- Cattini, M.G.; Bison, E.; Pontara, E.; Cheng, C.; Denas, G.; Pengo, V. Tetra Positive Thrombotic Antiphospholipid Syndrome: Major Contribution of Anti-phosphatidyl-serine/Prothrombin Antibodies to Lupus Anticoagulant Activity. J. Thromb. Haemost. 2020, 18, 1124–1132. [Google Scholar] [CrossRef]
- Castellone, D.; Adcock, D. Factor VIII Activity and Inhibitor Assays in the Diagnosis and Treatment of Hemophilia A. Semin. Thromb. Hemost. 2016, 43, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.N.; Alcira Peirano, A.; Grosso, S.H.; Gennari, L.C.; Pérez Bianco, R.; Lazzari, M.A. A Chromogenic Substrate Method for Detecting and Titrating Anti-Factor VIII Antibodies in the Presence of Lupus Anticoagulant. Haematologica 2002, 87, 271–278. [Google Scholar]
- de Maistre, E.; Wahl, D.; Perret-Guillaume, C.; Regnault, V.; Clarac, S.; Briquel, M.E.; Andre, E.; Lecompte, T. A Chromogenic Assay Allows Reliable Measurement of Factor VIII Levels in the Presence of Strong Lupus Anticoagulants. Thromb. Haemost. 1998, 79, 237–238. [Google Scholar] [PubMed]
- Blanco, A.N.; Peirano, A.A.; Grosso, S.H.; Gennari, L.C.; Bianco, R.P.; Lazzari, M.A. An ELISA System to Detect Anti-Factor VIII Antibodies without Interference by Lupus Anticoagulants. Preliminary Data in Hemophilia A Patients. Haematologica 2000, 85, 1045–1050. [Google Scholar]
- Shetty, S.; Ghosh, K.; Mohanty, D. An ELISA Assay for the Detection of Factor VIII Antibodies-Comparison with the Conventional Bethesda Assay in a Large Cohort of Haemophilia Samples. Acta Haematol. 2003, 109, 18–22. [Google Scholar] [CrossRef]
- Kazmi, M.A.; Pickering, W.; Smith, M.P.; Holland, L.J.; Savidge, G.F. Acquired Haemophilia A: Errors in the Diagnosis. Blood Coagul. Fibrinolysis 1998, 9, 623–628. [Google Scholar] [CrossRef]
- Chandler, M.W.L.; Ferrell, M.C.; Lee, M.J.; Tun, M.T.; Kha, M.H. Comparison of Three Methods for Measuring Factor VIII Levels in Plasma. Am. J. Clin. Pathol. 2003, 120, 34–39. [Google Scholar] [CrossRef]
- Kitchen, S.; Olson, J.; Preston, F.E. Quality in Laboratory Hemostasis and Thrombosis; John Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Armitage, J.; Ashcraft, J.; Kim, A.; Kaplan, H. An Approach to Factor Assays in Patients with Strong Lupus Anticoagulants. Clin. Appl. Thromb. Hemost. 1995, 1, 125–130. [Google Scholar] [CrossRef]
- Penmetsa, G.K.; Rodgers, G.M.; Smock, K.J. Avoiding Errors in the Laboratory Evaluation of Potent Lupus Anticoagulants. Am. J. Hematol. 2010, 85, 272–274. [Google Scholar] [CrossRef]
- Tripodi, A.; Mancuso, M.E.; Chantarangkul, V.; Clerici, M.; Bader, R.; Meroni, P.L.; Santagostino, E.; Mannucci, P.M. Lupus Anticoagulants and Their Relationship with the Inhibitors against Coagulation Factor VIII: Considerations on the Differentiation between the 2 Circulating Anticoagulants. Clin. Chem. 2005, 51, 1883–1885. [Google Scholar] [CrossRef]
- Coppola, A.; Franchini, M.; Tripodi, A.; Santoro, R.C.; Castaman, G.; Marino, R.; Zanon, E.; Santoro, C.; Rivolta, G.F.; Contino, L.; et al. Acquired Haemophilia A: Italian Consensus Recommendations on Diagnosis, General Management and Treatment of Bleeding. Blood Transfus. 2022, 20, 245–262. [Google Scholar] [CrossRef]
- Collins, W.P.; Chalmers, E.; Hart, D.; Jennings, I.; Liesner, R.; Rangarajan, S.; Talks, K.; Williams, M.; Hay, R.M.C. Diagnosis and Management of Acquired Coagulation Inhibitors: A Guideline from UKHCDO. Br. J. Haematol. 2013, 162, 758–773. [Google Scholar] [CrossRef] [PubMed]
- Tiede, A.; Collins, P.; Knoebl, P.; Teitel, J.; Kessler, C.; Shima, M.; Di Minno, G.; d’Oiron, R.; Salaj, P.; Jiménez-Yuste, V.; et al. International Recommendations on the Diagnosis and Treatment of Acquired Hemophilia A. Haematologica 2020, 105, 1791–1801. [Google Scholar] [CrossRef]
- Moore, G.W. Mixing Studies for Lupus Anticoagulant: Mostly No, Sometimes Yes. Clin. Chem. Lab. Med. 2020, 58, 492–495. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J. Interpretation of Normal Plasma Mixing Studies in the Laboratory Diagnosis of Lupus Anticoagulants. Thromb. Res. 2007, 119, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Maloney, J.C.; de Jager, N.; Dunsmore, C.L.; Gorman, D.K.; Polgrean, R.F.; Bertolaccini, M.L. Application of Different Lupus Anticoagulant Diagnostic Algorithms to the Same Assay Data Leads to Interpretive Discrepancies in Some Samples. Res. Pract. Thromb. Haemost. 2017, 1, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W. Reference Interval Mean Clotting Times Should Not Be Used to Calculate Lupus Anticoagulant Mixing Test Ratios Unless They Match the Normal Pooled Plasma Clotting Time. Thromb. Res. 2017, 159, 16–18. [Google Scholar] [CrossRef]
- Giordano, P.; Tesse, R.; Lassandro, G.; Fracchiolla, D.; Ranieri, P.; Lotito, A.; De Mattia, D.; Del Vecchio, G.C. Clinical and Laboratory Characteristics of Children Positive for Antiphospholipid Antibodies. Blood Transfus. 2012, 10, 296–301. [Google Scholar] [CrossRef]
- Mahmud, S.A.; Bullock, D.R.; Correll, C.K.; Hobday, P.M.; Riskalla, M.M.; Vehe, R.K.; Binstadt, B.A. Non-Criteria Antiphospholipid Antibodies and Pediatric Rheumatic Disease: A Case Series. Pediatr. Rheumatol. 2022, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Wincup, C.; Ioannou, Y. The Differences Between Childhood and Adult Onset Antiphospholipid Syndrome. Front. Pediatr. 2018, 6, 362. [Google Scholar] [CrossRef] [PubMed]
Drug Category | Specific Drug |
---|---|
Antiarrhythmics |
|
Antibiotics |
|
Anticonvulsants |
|
Antidepressants |
|
Antihypertensives |
|
Antipsychotics |
|
Immunosuppressants |
|
Immunotherapy |
|
Situations in Which LA Testing Should Be Performed [9] | Situations in Which LA Testing Could Be Considered [9] | Timing of LA Testing [9,14] |
---|---|---|
|
|
|
Test | Rationale | Pros/Cons | Uses/Recommendations |
---|---|---|---|
Dilute Prothrombin Time (dPT) | Activation of factor VII by thromboplastin; high dilution of thromboplastin in screening, low in confirmatory | Good sensitivity to LA; considerable variability in reagents | Alternative to aPTT for BSH, second-line test for CLSI |
Kaolin Clotting Time (KCT) | Activation of intrinsic pathway by kaolin as contact activator; does not contain exogenous phospholipids | Lack of standardization; incompatibility with some analyzers using optical clot detection method | Largely used in the past, has been abandoned |
Taipan Snake Venom Time (TSVT) | Activation of prothrombin by Taipan snake venom (Oscutarin C) in a phospholipid- and calcium-dependent way but independently from factor V | Good sensitivity to LA of the TSVT/ET combination, with less interference from anticoagulants (DOACs) | The TSVT/ET combination may be an option for LA testing in anticoagulated patients |
Ecarin Time (ET) | Indian saw-scaled viper venom containing ecarin activates prothrombin independently from any cofactor, such as phosholipids |
Anticoagulant | aPTT | SCT | dRVVT |
---|---|---|---|
UFH | ↑/↑↑↑ (concentration dependent) | =(if neutralizers) ↑ (if exceeds or no neutralizers) | |
LMWH | ↑ | =(if neutralizers) ↑ (if exceeds or no neutralizers) | |
VKA | ↑ | ↑ | ↑↑ |
Dabigatran | ↑↑ | ↑ | ↑↑ |
Rivaroxaban | ↑ | ↑↑ | ↑↑↑ |
Apixaban | =/↑ (assay dependent) | ↑ | ↑ |
Edoxaban | =/↑ (assay dependent) | ↑ | ↑ |
Guidelines | UFH | LMWH | VKA | DOACs |
---|---|---|---|---|
ISTH 2020 [9] |
|
|
| |
| ||||
ISTH SSC 2020 [14] |
|
|
|
|
CLSI 2014 [15] |
|
|
|
|
BSH 2012 [36] |
|
| Not mentioned | |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinari, A.C.; Martini, T.; Banov, L.; Ierardi, A.; Leotta, M.; Strangio, A.; Santoro, R.C. Lupus Anticoagulant Detection under the Magnifying Glass. J. Clin. Med. 2023, 12, 6654. https://doi.org/10.3390/jcm12206654
Molinari AC, Martini T, Banov L, Ierardi A, Leotta M, Strangio A, Santoro RC. Lupus Anticoagulant Detection under the Magnifying Glass. Journal of Clinical Medicine. 2023; 12(20):6654. https://doi.org/10.3390/jcm12206654
Chicago/Turabian StyleMolinari, Angelo Claudio, Tiziano Martini, Laura Banov, Antonella Ierardi, Marzia Leotta, Alessandra Strangio, and Rita Carlotta Santoro. 2023. "Lupus Anticoagulant Detection under the Magnifying Glass" Journal of Clinical Medicine 12, no. 20: 6654. https://doi.org/10.3390/jcm12206654
APA StyleMolinari, A. C., Martini, T., Banov, L., Ierardi, A., Leotta, M., Strangio, A., & Santoro, R. C. (2023). Lupus Anticoagulant Detection under the Magnifying Glass. Journal of Clinical Medicine, 12(20), 6654. https://doi.org/10.3390/jcm12206654