The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients—A Literature Review
Abstract
:1. Introduction
2. Methods
3. Classification of Hypothermia
4. Symptoms
5. In-Hospital Treatment of Accidental Hypothermia and the Role of ECMO
5.1. Diagnosis of Accidental Hypothermia
5.2. Initial Management and Qualification for ECMO Support
- Interview regarding the circumstances of cooling and appropriate Tc measuring.
- Blood samples from ultrasound-guided puncture of the femoral venous (mainly to assess the serum potassium concentration) [30].
- Estimation of the survival rate according to the HOPE score [29].
- Consideration of all possible complications and potential benefits of ECMO therapy.
- Cardiopulmonary resuscitation should be continued during ECMO cannulation.
- Further therapy is dependent on the patient’s condition and is the same as for normothermic cardiac arrest patients [10].
5.3. ECMO Cannulation Techniques and Complications
- Percutaneous modified Seldinger technique, which is associated with a lower risk of bleeding and infection. Rapid implementation is a benefit of this method, but it can be difficult to perform in hypothermic patients with prolonged cardiopulmonary resuscitation. This technique should be performed using ultrasound guidance.
- By using the surgical open cutdown technique, when percutaneously cannulation is not possible. This method is preferred in many centers.
- Combination of the surgical open cutdown and Seldinger techniques.
- During cannulation chest compressions should be continued with the best achievable quality until sufficient ECMO flow is achieved. Chest compressions can then be terminated [10].
5.4. ECMO Circuit and Patient-Related Management
5.4.1. Blood Flow, Oxygenation and Hemodynamics Support
5.4.2. Temperature Management
5.4.3. Anticoagulation and Hemostasis Disturbances
5.4.4. Ventilation
6. Effectiveness and Prognosis after ECMO Therapy in Accidental Hypothermia
- Age;
- Sex;
- Tc;
- Serum potassium;
- Presence of asphyxia;
- Duration of cardiopulmonary resuscitation.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tveita, T.; Sieck, G.C. Physiological Impact of Hypothermia: The Good, the Bad, and the Ugly. Physiology 2022, 37, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Paal, P.; Pasquier, M.; Darocha, T.; Lechner, R.; Kosinski, S.; Wallner, B.; Zafren, K.; Brugger, H. Accidental Hypothermia: 2021 Update. Int. J. Environ. Res. Public Health 2022, 19, 501. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; La Via, L.; Lanzafame, B.; Dezio, V.; Busalacchi, D.; Messina, A.; Ristagno, G.; Pelosi, P.; Astuto, M. Targeted Temperature Management after Cardiac Arrest: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. J. Clin. Med. 2021, 10, 3943. [Google Scholar] [CrossRef]
- Fernando, S.M.; Di Santo, P.; Sadeghirad, B.; Lascarrou, J.B.; Rochwerg, B.; Mathew, R.; Sekhon, M.S.; Munshi, L.; Fan, E.; Brodie, D.; et al. Targeted temperature management following out-of-hospital cardiac arrest: A systematic review and network meta-analysis of temperature targets. Intensive Care Med. 2021, 47, 1078–1088. [Google Scholar] [CrossRef]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. TTM Trial Investigators. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Dankiewicz, J.; Cronberg, T.; Lilja, G.; Jakobsen, J.C.; Levin, H.; Ullén, S.; Rylander, C.; Wise, M.P.; Oddo, M.; Cariou, A.; et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N. Engl. J. Med. 2021, 384, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Takauji, S.; Hayakawa, M. Intensive care with extracorporeal membrane oxygenation rewarming in accident severe hypothermia (ICE-CRASH) study: A protocol for a multicentre prospective, observational study in Japan. BMJ Open 2021, 11, e052200. [Google Scholar] [CrossRef]
- Lott, C.; Truhlář, A.; Alfonzo, A.; Barelli, A.; González-Salvado, V.; Hinkelbein, J.; Nolan, J.P.; Paal, P.; Perkins, G.D.; Thies, K.C.; et al. European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances. Resuscitation 2021, 161, 152–219. [Google Scholar] [CrossRef]
- Swol, J.; Brodie, D.; Napolitano, L.; Park, P.K.; Thiagarajan, R.; Barbaro, R.P.; Lorusso, R.; McMullan, D.; Cavarocchi, N.; Hssain, A.A.; et al. Indications and outcomes of extracorporeal life support in trauma patients. J. Trauma. Acute Care Surg. 2018, 84, 831–837. [Google Scholar] [CrossRef]
- Swol, J.; Darocha, T.; Paal, P.; Brugger, H.; Podsiadło, P.; Kosiński, S.; Puślecki, M.; Ligowski, M.; Pasquier, M. Extracorporeal Life Support in Accidental Hypothermia with Cardiac Arrest-A Narrative Review. ASAIO J. 2022, 68, 153–162. [Google Scholar] [CrossRef]
- Pellis, T.; Sanfilippo, F.; Roncarati, A.; Dibenedetto, F.; Franceschino, E.; Lovisa, D.; Magagnin, L.; Mercante, W.P.; Mione, V. A 4-year implementation strategy of aggressive post-resuscitation care and temperature management after cardiac arrest. Resuscitation 2014, 85, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, A.; Kosiński, S.; Darocha, T.; Paal, P.; Gałązkowski, R.; Hymczak, H.; Drwiła, R. Problems and Pitfalls of Qualification for Extracorporeal Rewarming in Severe Accidental Hypothermia. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1693–1697. [Google Scholar] [CrossRef] [PubMed]
- Podsiadło, P.; Smoleń, A.; Brožek, T.; Kosiński, S.; Balik, M.; Hymczak, H.; Cools, E.; Walpoth, B.; Nowak, E.; Dąbrowski, W.; et al. Extracorporeal Rewarming Is Associated With Increased Survival Rate in Severely Hypothermic Patients With Preserved Spontaneous Circulation. ASAIO J. 2023, 69, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Low, C.J.W.; Ramanathan, K.; Ling, R.R.; Ho, M.J.C.; Chen, Y.; Lorusso, R.; MacLaren, G.; Shekar, K.; Brodie, D. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with cardiac arrest: A comparative meta-analysis and trial sequential analysis. Lancet Respir. Med. 2023, 11, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Horák, J.; Mrazek, V.; Kovarnik, T.; Zemanek, D.; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2022, 327, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.R.; Berg, K.M.; Hirsch, K.G.; Kudenchuk, P.J.; Del Rios, M.; Cabañas, J.G.; Link, M.S.; Kurz, M.C.; Chan, P.S.; Morley, P.T.; et al. 2019 American Heart Association Focused Update on Advanced Cardiovascular Life Support: Use of Advanced Airways, Vasopressors, and Extracorporeal Cardiopulmonary Resuscitation during Cardiac Arrest: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2019, 140, e881–e894. [Google Scholar]
- Dow, J.; Giesbrecht, G.G.; Danzl, D.F.; Brugger, H.; Sagalyn, E.B.; Walpoth, B.; Auerbach, P.S.; McIntosh, S.E.; Némethy, M.; McDevitt, M.; et al. Wilderness Medical Society Clinical Practice Guidelines for the Out-of-Hospital Evaluation and Treatment of Accidental Hypothermia: 2019 Update. Wilderness Environ. Med. 2019, 30, S47–S69. [Google Scholar] [CrossRef]
- Strapazzon, G.; Procter, E.; Paal, P.; Brugger, H. Pre-hospital core temperature measurement in accidental and therapeutic hypothermia. High. Alt. Med. Biol. 2014, 15, 104–111. [Google Scholar] [CrossRef]
- Pasquier, M.; Strapazzon, G.; Kottmann, A.; Paal, P.; Zafren, K.; Oshiro, K.; Artoni, C.; Van Tilburg, C.; Sheets, A.; Ellerton, J.; et al. On-site treatment of avalanche victims: Scoping review and 2023 recommendations of the international commission for mountain emergency medicine (ICAR MedCom). Resuscitation 2023, 184, 109708. [Google Scholar] [CrossRef]
- Kempainen, R.R.; Brunette, D.D. The evaluation and management of accidental hypothermia. Respir. Care. 2004, 49, 192–205. [Google Scholar]
- Mallet, M.L. Pathophysiology of accidental hypothermia. QJM Int. J. Med. 2002, 95, 775–785. [Google Scholar] [CrossRef]
- Hymczak, H.; Gołąb, A.; Mendrala, K.; Plicner, D.; Darocha, T.; Podsiadło, P.; Hudziak, D.; Gocoł, R.; Kosiński, S. Core Temperature Measurement-Principles of Correct Measurement, Problems, and Complications. Int. J. Environ. Res. Public Health 2021, 18, 10606. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kim, J.; Song, K.; Kwak, Y. Core temperature measurement in therapeutic hypothermia according to different phases: Comparison of bladder, rectal, and tympanic versus pulmonary artery methods. Resuscitation 2013, 84, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Darocha, T.; Debaty, G.; Ageron, F.X.; Podsiadło, P.; Hutin, A.; Hymczak, H.; Blancher, M.; Kosiński, S.; Mendrala, K.; Carron, P.N.; et al. Hypothermia is associated with a low ETCO2 and low pH-stat PaCO2 in refractory cardiac arrest. Resuscitation 2022, 174, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.S.C.; Tonna, J.E.; Nanjayya, V.; Nixon, P.; Abrams, D.C.; Raman, L.; Bernard, S.; Finney, S.J.; Grunau, B.; Youngquist, S.T.; et al. Extracorporeal Cardiopulmonary Resuscitation in Adults. Interim Guideline Consensus Statement From the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 221–228. [Google Scholar] [CrossRef]
- Carlsen, A.W.; Winnerkvist, A.M.; Greiff, G. A 95 year-old suffering circulatory arrest after accidental hypothermia: A case report. BMC Geriatr. 2017, 17, 249. [Google Scholar] [CrossRef]
- Frei, C.; Darocha, T.; Debaty, G.; Dami, F.; Blancher, M.; Carron, P.N.; Oddo, M.; Pasquier, M. Clinical characteristics and outcomes of witnessed hypothermic cardiac arrest: A systematic review on rescue collapse. Resuscitation 2019, 137, 41–48. [Google Scholar] [CrossRef]
- Podsiadło, P.; Darocha, T.; Svendsen, Ø.S.; Kosiński, S.; Silfvast, T.; Blancher, M.; Sawamoto, K.; Pasquier, M. Outcomes of patients suffering unwitnessed hypothermic cardiac arrest rewarmed with extracorporeal life support: A systematic review. Artif. Organs 2021, 45, 222–229. [Google Scholar] [CrossRef]
- Pasquier, M.; Hugli, O.; Paal, P.; Darocha, T.; Blancher, M.; Husby, P.; Silfvast, T.; Carron, P.N.; Rousson, V. Hypothermia outcome prediction after extracorporeal life support for hypothermic cardiac arrest patients: The HOPE score. Resuscitation 2018, 126, 58–64. [Google Scholar] [CrossRef]
- Pasquier, M.; Blancher, M.; Buse, S.; Boussat, B.; Debaty, G.; Kirsch, M.; de Riedmatten, M.; Schoettker, P.; Annecke, T.; Bouzat, P. Intra-patient potassium variability after hypothermic cardiac arrest: A multicentre, prospective study. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 113. [Google Scholar] [CrossRef]
- Rao, P.; Khalpey, Z.; Smith, R.; Burkhoff, D.; Kociol, R.D. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ. Heart Fail. 2018, 11, e004905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1866 adult patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Takayama, H.; Landes, E.; Truby, L.; Fujita, K.; Kirtane, A.J.; Mongero, L.; Yuzefpolskaya, M.; Colombo, P.C.; Jorde, U.P.; Kurlansky, P.A.; et al. Feasibility of smaller arterial cannulas in venoarterial extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2015, 149, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Mohite, P.N.; Fatullayev, J.; Maunz, O.; Kaul, S.; Sabashnikov, A.; Weymann, A.; Saez, D.G.; Patil, N.P.; Zych, B.; Popov, A.F.; et al. Distal limb perfusion: Achilles’ heel in peripheral venoarterial extracorporeal membrane oxygenation. Artif. Organs 2014, 38, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Extracorporeal Life Support Organization: General Guidelines for All ECLS Cases. Available online: https://www.elso.org/portals/0/elso%20guidelines%20general%20all%20ecls%20version%201_4.pdf (accessed on 8 September 2023).
- Foggle, J.L. Accidental Hypothermia: ‘You’re Not Dead Until You’re Warm and Dead’. Rhode Isl. Med. J. 2019, 102, 28–32. [Google Scholar]
- Ortuno, S.; Delmas, C.; Diehl, J.L.; Bailleul, C.; Lancelot, A.; Naili, M.; Cholley, B.; Pirracchio, R.; Aissaoui, N. Weaning from veno-arterial extra-corporeal membrane oxygenation: Which strategy to use? Ann. Cardiothorac. Surg. 2019, 8, E1–E8. [Google Scholar] [CrossRef]
- Saczkowski, R.; Kuzak, N.; Grunau, B.; Schulze, C. Extracorporeal life support rewarming rate is associated with survival with good neurological outcome in accidental hypothermia. Eur. J. Cardiothorac. Surg. 2021, 59, 593–600. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef]
- Lorusso, R.; Whitman, G.; Milojevic, M.; Raffa, G.; McMullan, D.M.; Boeken, U.; Haft, J.; Bermudez, C.A.; Shah, A.S.; D’Alessandro, D.A. 2020 EACTS/ELSO/STS/AATS expert consensus on post-cardiotomy extracorporeal life support in adult patients. Eur. J. Cardiothorac. Surg. 2021, 59, 12–53. [Google Scholar] [CrossRef]
- Extracorporeal Life Support Organization: Anticoagulation Guideline. Available online: https://www.elso.org/portals/0/files/elsoanticoagulationguideline8-2014-table-contents.pdf (accessed on 8 September 2023).
- Kander, T.; Brokopp, J.; Friberg, H.; Schött, U. Wide temperature range testing with ROTEM coagulation analyses. Ther. Hypothermia Temp. Manag. 2014, 4, 125–130. [Google Scholar] [CrossRef]
- Seelhammer, T.G.; Bohman, J.K.; Schulte, P.J.; Hanson, A.C.; Aganga, D.O. Comparison of Bivalirudin Versus Heparin for Maintenance Systemic Anticoagulation During Adult and Pediatric Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021, 49, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; Currò, J.M.; La Via, L.; Dezio, V.; Martucci, G.; Brancati, S.; Murabito, P.; Pappalardo, F.; Astuto, M. Use of nafamostat mesilate for anticoagulation during extracorporeal membrane oxygenation: A systematic review. Artif. Organs 2022, 46, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Biderman, P.; Einav, S.; Fainblut, M.; Stein, M.; Singer, P.; Medalion, B. Extracorporeal life support in patients with multiple injuries and severe respiratory failure: A single-center experience? J. Trauma. Acute Care Surg. 2013, 75, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariëns, R.A. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef] [PubMed]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; Mccarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2021, 67, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.D.; Rishmawi, A.R.; Kamucheka, R.; Lafleur, C.; Batchinsky, A.I.; Mackman, N.; Cap, A.P. Effect of blood flow on platelets, leukocytes, and extracellular vesicles in thrombosis of simulated neonatal extracorporeal circulation. J. Thromb. Haemost. 2020, 18, 399–410. [Google Scholar] [CrossRef]
- Hoyler, M.M.; Flynn, B.; Iannacone, E.M.; Jones, M.M.; Ivascu, N.S. Clinical Management of Venoarterial Extracorporeal Membrane Oxygenation. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2776–2792. [Google Scholar] [CrossRef]
- Schmidt, M.; Pellegrino, V.; Combes, A.; Scheinkestel, C.; Cooper, D.J.; Hodgson, C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit. Care 2014, 18, 203. [Google Scholar] [CrossRef]
- Alba, A.C.; Foroutan, F.; Buchan, T.A.; Alvarez, J.; Kinsella, A.; Clark, K.; Zhu, A.; Lau, K.; McGuinty, C.; Aleksova, N.; et al. Mortality in patients with cardiogenic shock supported with VA ECMO: A systematic review and meta-analysis evaluating the impact of etiology on 29,289 patients. J. Heart Lung Transplant. 2021, 40, 260–268. [Google Scholar] [CrossRef]
- Saczkowski, R.S.; Brown, D.J.A.; Abu-Laban, R.B.; Fradet, G.; Schulze, C.J.; Kuzak, N.D. Prediction and risk stratification of survival in accidental hypothermia requiring extracorporeal life support: An individual patient data meta-analysis. Resuscitation 2018, 127, 51–57. [Google Scholar] [CrossRef]
- Takauji, S.; Hayakawa, M.; Yamada, D.; Tian, T.; Minowa, K.; Inoue, A.; Fujimoto, Y.; Isokawa, S.; Miura, N.; Endo, T.; et al. Outcome of extracorporeal membrane oxygenation use in severe accidental hypothermia with cardiac arrest and circulatory instability: A multicentre, prospective, observational study in Japan (ICE-CRASH study). Resuscitation 2023, 182, 109663. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, M.; Rousson, V.; Darocha, T.; Bouzat, P.; Kosiński, S.; Sawamoto, K.; Champigneulle, B.; Wiberg, S.; Wanscher, M.C.J.; Brodmann Maeder, M.; et al. Hypothermia outcome prediction after extracorporeal life support for hypothermic cardiac arrest patients: An external validation of the HOPE score. Resuscitation 2019, 139, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; McCanny, P.; D’Souza, M.; Forrest, P.; Burns, B.; Lowe, D.A.; Gattas, D.; Scott, S.; Bannon, P.; Granger, E.; et al. Sydney ECMO Research Interest Group. Extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest: A multicentre experience. Int. J. Cardiol. 2017, 231, 131–136. [Google Scholar] [CrossRef]
- Debaty, G.; Babaz, V.; Durand, M.; Gaide-Chevronnay, L.; Fournel, E.; Blancher, M.; Bouvaist, H.; Chavanon, O.; Maignan, M.; Bouzat, P.; et al. Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Resuscitation 2017, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, A.; Saint Leger, P. Therapeutic management of severe hypothermia with veno-arterial ECMO: Where do we stand? Case report and review of the current literature. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 30. [Google Scholar] [CrossRef] [PubMed]
- Hymczak, H.; Podsiadło, P.; Kosiński, S.; Pasquier, M.; Mendrala, K.; Hudziak, D.; Gocoł, R.; Plicner, D.; Darocha, T. Prognosis of Hypothermic Patients Undergoing ECLS Rewarming-Do Alterations in Biochemical Parameters Matter? Int. J. Environ. Res. Public Health 2021, 18, 9764. [Google Scholar] [CrossRef]
- Mégarbane, B.; Deye, N.; Aout, M.; Malissin, I.; Résière, D.; Haouache, H.; Brun, P.; Haik, W.; Leprince, P.; Vicaut, E.; et al. Usefulness of routine laboratory parameters in the decision to treat refractory cardiac arrest with extracorporeal life support. Resuscitation 2011, 82, 1154–1161. [Google Scholar] [CrossRef]
- Li, C.L.; Wang, H.; Jia, M.; Ma, N.; Meng, X.; Hou, X.T. The early dynamic behavior of lactate is linked to mortality in postcardiotomy patients with extracorporeal membrane oxygenation support: A retrospective observational study. J. Thorac. Cardiovasc. Surg. 2015, 149, 1445–1450. [Google Scholar] [CrossRef]
- Mochizuki, K.; Imamura, H.; Iwashita, T.; Okamoto, K. Neurological outcomes after extracorporeal cardiopulmonary resuscitation in patients with out-of-hospital cardiac arrest: A retrospective observational study in a rural tertiary care center. J. Intensive Care 2014, 2, 33. [Google Scholar] [CrossRef]
- Brugger, H.; Bouzat, P.; Pasquier, M.; Mair, P.; Fieler, J.; Darocha, T.; Blancher, M.; de Riedmatten, M.; Falk, M.; Paal, P.; et al. Cut-off values of serum potassium and core temperature at hospital admission for extracorporeal rewarming of avalanche victims in cardiac arrest: A retrospective multi-centre study. Resuscitation 2019, 139, 222–229. [Google Scholar] [CrossRef]
- Hashem, A.; Mohamed, M.S.; Alabdullah, K.; Elkhapery, A.; Khalouf, A.; Saadi, S.; Nayfeh, T.; Rai, D.; Alali, O.; Kinzelman-Vesely, E.A.; et al. Predictors of Mortality in Patients With Refractory Cardiac Arrest Supported With VA-ECMO: A Systematic Review and a Meta-Analysis. Curr. Probl. Cardiol. 2023, 48, 101658. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, D.L.; Gold, W.; Biever, P.M.; Bode, C.; Wengenmayer, T. Early fluid resuscitation and volume therapy in venoarterial extracorporeal membrane oxygenation. J. Crit. Care 2017, 37, 130–135. [Google Scholar] [CrossRef] [PubMed]
WMS | Revised Swiss System | ||||
---|---|---|---|---|---|
Category | Clinical Findings | Estimated Tc (°C) | Stage | AVPU Level of Consciousness | Risk of Hypothermic CA |
Mild | Normal mental status, shivering, but not functioning normally and unable to care for self | 35–32 | Stage 1 | “Alert” | Low |
Moderate | Abnormal mental status with shivering, or abnormal mental status without shivering, but conscious | 32–28 | Stage 2 | “Verbal” | Moderate |
Severe/profound | Unconscious | <28 | Stage 3 | “Painful’’ or “Unconscious” and vital signs present | High |
Stage 4 | “Unconscious” and no detectable vital signs | Hypothermic CA |
Physiological Changes and Clinical Symptoms | ||||
---|---|---|---|---|
Mild (35–32 °C) | Moderate (32–28 °C) | Severe (<28 °C) | ||
Metabolism and hormones | - ↑ secretion of catecholamines and thyroid hormones: Hyperglycemia Shivering ↑ oxygen consumption - ↓ cerebral metabolism (neuroprotection effect) | - ↓ metabolism rate - Hypoglycemia/hyperglycemia - Loss of shivering - ↓ oxygen consumption | - ↓ hormonal secretion and peripheral adrenaline activity < 20 °C | |
Cardiovascular system | - Tachycardia - Supraventricular arrythmias - ↑ CO and MAP - Prolonged PR and QT intervals | - Progressive bradycardia (resistant to atropine) - Supraventricular and ventricular arrythmias - ↓ CO - Elevation or depression of ST-segment and T wave - Osborn wave (80% cases < 30 °C of Tc) | - Progressive bradycardia (resistant to atropine) - Ventricular arrythmias - Asystole < 20 °C - ↓ CO and MAP | |
Central nervous system | - Confusion - Amnesia - Ataxia - Dysarthria | - Progressive ↓ of consciousness - Dilated pupils - Hallucinations - ↓ EEG activity | - Coma - Nonreactive pupils - Global loss of reflex - Isoelectric line in EEG | |
Respiratory system | - Tachypnoea - ↑ MV - Risk of respiratory alkalosis | - Progressive bradypnea - ↓ MV - ↑ physiological respiratory dead space due to bronchodilation | - Apnea < 24 °C - ARDS - Pulmonary edema - Stiff chest (chest compressions may be harder than normal) | |
Hemostasis | Coagulopathy, as a result of: - ↓ platelet count and their activity - ↓ activity of coagulation factors and thrombin - Massive activation of fibrinolysis < 20 °C - Total inhibition of the hemostasis < 16 °C | |||
Or hypercoagulability - ↑ risk of DIC - ↑ of hematocrit by 2% with every fall in 1 °C of Tc below 34 °C | ||||
Acid-base balance | Metabolic alkalosis | Lactic acidosis | ||
Electrolyte disturbances | Hyper- or hypokalemia |
CA Patients | |
---|---|
Normothermia [25] | Hypothermia |
Age < 70 years | No age limitations [26] |
Witnessed arrest | Witnessed and unwitnessed arrest [27] or Cardiocirculatory instability with Tc of ≤28 °C [13] |
Arrest to first CPR (“no-flow interval”) <5 min (i.e., bystander CPR) | Possible in patients with unwitnessed CA and long no-flow time with a good therapeutic effect [28] |
Initial cardiac rhythm of VF/pVT/PEA | Initial cardiac rhythm of VF/pVT/PEA or asystole [27] |
Arrest to ECMO flow <60 min “low flow interval” * | Usually longer than 60 min [10] |
ETCO2 > 10 mm Hg (1.3 kPa) during CPR before cannulation for ECMO | Low ETCO2 should not be used in hypothermic CA as exclusion criteria [24] |
Intermittent ROSC or recurrent VF | Possible no ROSC or persistent VF [10] |
“Signs of life” during conventional CPR may be a positive predictive factor for survival | Fixed and dilated pupils or no signs of life should not be used in hypothermic CA as exclusion criteria [10] |
The absence of previously known life-limiting comorbidities (e.g., end-stage heart failure/chronic obstructive pulmonary disease/end-stage renal failure/liver failure/terminal illness) and consistent with the patient’s goals of care | Compatible with normothermic CA |
No known aortic valve incompetence (>mild aortic valve incompetence should be excluded) | Compatible with normothermic CA |
Variable | Favorable Factors | Adverse Factors |
---|---|---|
Serum potassium concentration | Lower level; ≤8 mmol/L [29,57] | Severe hyperkalemia, frequently proceed by hypokalemia; the cut-off level at 12 mmol/L for accidental hypothermia and 7 mmol/L for hypothermia due to avalanche burial in-hospital triage [56] |
Sex | Female [29,52,57] | Male [57] |
Initial lactate | Lower concentration: <11.9 mmol/L was a predictor of a good prognosis [28,58] | Higher concentration: >16.3 mmol/L was associated with worse neurologic outcomes, >21 mmol/L resulted in premature end of ECMO therapy [58,59,60] |
Initial pH | Higher blood pH [56,58,61] | Lower blood pH; pH < 7.35 within 24 h during ECMO therapy [28,57] |
Initial Tc | Less drop of Tc [28] | The calculated cut-off value for Tc was 30 °C for in-hospital triage [62] |
Asphyxia | Non-asphyxia-related mechanism of cooling [28] | Asphyxia, especially with hyperkalemia [29,52] |
Time of resuscitation | Shorter time [28] | Longer time; CPR prior to ECMO > 40 min [63] |
Infusion fluids and diuresis | Fluid balance < 8500 mL after 24 h and higher total urine output [64] | Higher fluid balance; more common occurrence of anuric and oliguric patients in the non-survival group [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hymczak, H.; Gołąb, A.; Kosiński, S.; Podsiadło, P.; Sobczyk, D.; Drwiła, R.; Kapelak, B.; Darocha, T.; Plicner, D. The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients—A Literature Review. J. Clin. Med. 2023, 12, 6730. https://doi.org/10.3390/jcm12216730
Hymczak H, Gołąb A, Kosiński S, Podsiadło P, Sobczyk D, Drwiła R, Kapelak B, Darocha T, Plicner D. The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients—A Literature Review. Journal of Clinical Medicine. 2023; 12(21):6730. https://doi.org/10.3390/jcm12216730
Chicago/Turabian StyleHymczak, Hubert, Aleksandra Gołąb, Sylweriusz Kosiński, Paweł Podsiadło, Dorota Sobczyk, Rafał Drwiła, Bogusław Kapelak, Tomasz Darocha, and Dariusz Plicner. 2023. "The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients—A Literature Review" Journal of Clinical Medicine 12, no. 21: 6730. https://doi.org/10.3390/jcm12216730
APA StyleHymczak, H., Gołąb, A., Kosiński, S., Podsiadło, P., Sobczyk, D., Drwiła, R., Kapelak, B., Darocha, T., & Plicner, D. (2023). The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients—A Literature Review. Journal of Clinical Medicine, 12(21), 6730. https://doi.org/10.3390/jcm12216730