The Effect of Additional Whole-Body Vibration on Musculoskeletal System in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Databases and Search Strategy
2.4. Selection of Studies
2.5. Data Extraction
2.6. Risk of Bias
2.7. Statistical Analysis
3. Results
3.1. Qualitative Synthesis of Studies
3.2. Therapeutic Effect
3.2.1. Muscle Strength
3.2.2. Spasticity
3.2.3. Gross Motor Function
3.2.4. Walking Performance
3.2.5. Overall Stability
3.3. Secondary Outcomes
3.3.1. Muscle Thickness
3.3.2. Bone Density
3.4. Risk of Bias
4. Discussion
Limitations of the Review Process
5. Conclusions
5.1. Implications for Practice
5.2. Implications for Reasearch
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, C. Definition and Classification of Cerebral Palsy: A Historical Perspective. Dev. Med. Child Neurol. 2007, 49, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Vitrikas, K.; Dalton, H.; Breish, D. Cerebral Palsy: An Overview. Am. Fam. Physician 2020, 101, 213–220. [Google Scholar] [PubMed]
- Cans, C.; Guillem, P.; Arnaud, C.; Baille, F.; Chalmers, J.; McManus, V.; Cussen, G.; Parkes, J.; Dolk, H.; Hagberg, B.; et al. Prevalence and Characteristics of Children with Cerebral Palsy in Europe. Dev. Med. Child Neurol. 2002, 44, 633–640. [Google Scholar] [CrossRef]
- Colver, A.; Fairhurst, C.; Pharoah, P.O.D. Cerebral Palsy. Lancet 2014, 383, 1240–1249. [Google Scholar] [CrossRef]
- Piscitelli, D.; Ferrarello, F.; Ugolini, A.; Verola, S.; Pellicciari, L. Measurement Properties of the Gross Motor Function Classification System, Gross Motor Function Classification System-Expanded & Revised, Manual Ability Classification System, and Communication Function Classification System in Cerebral Palsy: A Systematic Review with Meta-Analysis. Dev. Med. Child Neurol. 2023, 65, e57. [Google Scholar] [CrossRef]
- Costa-cavalcanti, R.; Carvalho-lima, R.P.; Arno, A.; Bernardo, R.M.; Ronikeile-costa, P.; Kutter, C.; Giehl, P.M.; Asad, N.R.; Paiva, D.N.; Pereira, H.V.F.S.; et al. Systematic Review of Whole Body Vibration Exercises in the Treatment of Cerebral Palsy: Brief Report. Dev. Neurorehabilit. 2015, 19, 327–333. [Google Scholar] [CrossRef]
- Lee, B.K.; Chon, S.C. Effect of Whole Body Vibration Training on Mobility in Children with Cerebral Palsy: A Randomized Controlled Experimenter-Blinded Study. Clin. Rehabil. 2013, 27, 599–607. [Google Scholar] [CrossRef]
- El-Shamy, S.M. Effect of Whole-Body Vibration on Muscle Strength and Balance in Diplegic Cerebral Palsy: A Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2014, 93, 114–121. [Google Scholar] [CrossRef]
- Cardinale, M.; Bosco, C. The Use of Vibration as an Exercise Intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef]
- Minhaj, M.T.; Sharma, S.; Hayat, Z. Effects of Whole-Body Vibration on Sports Performance: A Systematic Review and Meta-Analysis. Sci. Sports 2022, 37, 231–243. [Google Scholar] [CrossRef]
- Saquetto, M.; Carvalho, V.; Silva, C.; Conceição, C.; Gomes-Neto, M. The Effects of Whole Body Vibration on Mobility and Balance in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. J. Musculoskelet. Neuronal Interact. 2015, 15, 137–144. [Google Scholar] [PubMed]
- Shaw, L.; O’Leary, K.; Stewart, S.; Poratt, D. Whole-Body Vibration Training Protocols for People with Cerebral Palsy: A Systematic Review of Randomised Controlled Trials. Adv. Neurodev. Disord. 2023. [Google Scholar] [CrossRef]
- Cai, X.; Qian, G.; Cai, S.; Wang, F.; Da, Y.; Ossowski, Z. The Effect of Whole-Body Vibration on Lower Extremity Function in Children with Cerebral Palsy: A Meta-Analysis. PLoS ONE 2023, 18, e0282604. [Google Scholar] [CrossRef] [PubMed]
- Duquette, S.A.; Guiliano, A.M.; Starmer, D.J. Whole Body Vibration and Cerebral Palsy: A Systematic Review. J. Can. Chiropr. Assoc. 2015, 59, 245–252. [Google Scholar]
- Ali, M.S.; Abd el-aziz, H.G. Effect of Whole-Body Vibration on Abdominal Thickness and Sitting Ability in Children with Spastic Diplegia. J. Taibah Univ. Med. Sci. 2021, 16, 379–386. [Google Scholar] [CrossRef]
- Gonçalves de Oliveira, R.; Coutinho, H.M.; Martins, M.N.; Bernardo-Filho, M.; de Sá-Caputo, D.D.; Campos de Oliveira, L.; Taiar, R. Impacts of Whole-Body Vibration on Muscle Strength, Power, and Endurance in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4467. [Google Scholar] [CrossRef]
- Peungsuwan, P.; Chatchawan, U.; Donpunha, W.; Malila, P.; Sriboonreung, T. Different Protocols for Low Whole-Body Vibration Frequency for Spasticity and Physical Performance in Children with Spastic Cerebral Palsy. Children 2023, 10, 458. [Google Scholar] [CrossRef]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Vibration Therapy Role in Neurological Diseases Rehabilitation: An Umbrella Review of Systematic Reviews. Disabil. Rehabil. 2022, 44, 5741–5749. [Google Scholar] [CrossRef]
- Bernardo-Filho, M.; de Sá-Caputo, D.d.C.; Seixas, A.; Taiar, R. Whole-Body Vibration Approaches in Neurological Disorders; IntechOpen: Rijeka, Croatia, 2021; Chapter 2. [Google Scholar] [CrossRef]
- Naro, A.; Leo, A.; Russo, M.; Casella, C.; Buda, A.; Crespantini, A.; Porcari, B.; Carioti, L.; Billeri, L.; Bramanti, A.; et al. Breakthroughs in the Spasticity Management: Are Non-Pharmacological Treatments the Future? J. Clin. Neurosci. 2017, 39, 16–27. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.B.; Frandsen, T.F. The Impact of Patient, Intervention, Comparison, Outcome (PICO) as a Search Strategy Tool on Literature Search Quality: A Systematic Review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019; Chapter 10. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide; Chapman & Hall: New York, NY, USA; CRC Press: Boca Raton, FL, USA, 2021; Chapter 4. [Google Scholar] [CrossRef]
- Ahmadizadeh, Z.; Khalili, M.A.; Ghalam, M.S.; Mokhlesin, M. Effect of Whole Body Vibration with Stretching Exercise on Active and Passive Range of Motion in Lower Extremities in Children with Cerebral Palsy: A Randomized Clinical Trial. Iran. J. Pediatr. 2019, 29, 4–10. [Google Scholar] [CrossRef]
- Aslam, F.; Baig, M. Effects of Whole-Body Vibration on Lower Extremity with Diplegic Spastic Cerebral Palsy. Pak. Pediatr. J. 2022, 46, 329–335. [Google Scholar]
- Cheng, H.Y.K.; Yu, Y.C.; Wong, A.M.K.; Tsai, Y.S.; Ju, Y.Y. Effects of an Eight-Week Whole Body Vibration on Lower Extremity Muscle Tone and Function in Children with Cerebral Palsy. Res. Dev. Disabil. 2015, 38, 256–261. [Google Scholar] [CrossRef]
- Dudoniene, V.; Lendraitiene, E.; Pozeriene, J. Effect of Vibration in the Treatment of Children with Spastic Diplegic Cerebral Palsy. J. Vibroeng. 2017, 19, 5520–5526. [Google Scholar] [CrossRef]
- Hegazy, R.G.; Abdel-aziem, A.A.; El Hadidy, E.I.; Ali, Y.M. Effects of Whole-Body Vibration on Quadriceps and Hamstring Muscle Strength, Endurance, and Power in Children with Hemiparetic Cerebral Palsy: A Randomized Controlled Study. Bull. Fac. Phys. Ther. 2021, 26, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Eid, M.A.; Moawd, S.A. Effect of Whole-Body Vibration on Muscle Strength, Spasticity, and Motor Performance in Spastic Diplegic Cerebral Palsy Children. Egypt. J. Med. Hum. Genet. 2014, 15, 173–179. [Google Scholar] [CrossRef]
- Ko, M.S.; Doo, J.H.; Kim, J.S.; Jeon, H.S. Effect of Whole Body Vibration Training on Gait Function and Activities of Daily Living in Children with Cerebral Palsy. Int. J. Ther. Rehabil. 2015, 22, 321–328. [Google Scholar] [CrossRef]
- Ruck, J.; Chabot, G.; Rauch, F. Vibration Treatment in Cerebral Palsy: A Randomized Controlled Pilot Study. J. Musculoskelet. Neuronal Interact. 2010, 10, 77–83. [Google Scholar]
- Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; et al. Early Vibration Assisted Physiotherapy in Toddlers with Cerebral Palsy—A Randomized Controlled Pilot Trial. J. Musculoskelet. Neuronal Interact. 2016, 16, 183–192. [Google Scholar] [PubMed]
- Tekin, F.; Kavlak, E. Short and Long-Term Effects of Whole-Body Vibration on Spasticity and Motor Performance in Children With Hemiparetic Cerebral Palsy. Percept. Mot. Skills 2021, 128, 1107–1129. [Google Scholar] [CrossRef] [PubMed]
- Tupimai, T.; Peungsuwan, P.; Prasertnoo, J.; Yamauchi, J. Effect of Combining Passive Muscle Stretching and Whole Body Vibration on Spasticity and Physical Performance of Children and Adolescents with Cerebral Palsy. J. Phys. Ther. Sci. 2016, 28, 7–13. [Google Scholar] [CrossRef]
- Unger, M.; Jelsma, J.; Stark, C. Effect of a Trunk-Targeted Intervention Using Vibration on Posture and Gait in Children with Spastic Type Cerebral Palsy: A Randomized Control Trial. Dev. Neurorehabil. 2013, 16, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.L.; Lee, D.C.; Hara, R.; Rethlefsen, S.A.; Kay, R.M.; Dorey, F.J.; Gilsanz, V. Effect of High-Frequency, Low-Magnitude Vibration on Bone and Muscle in Children with Cerebral Palsy. J. Pediatr. Orthop. 2010, 30, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.R. The Gross Motor Function Measure (GMFM). J. Physiother. 2017, 63, 187. [Google Scholar] [CrossRef]
- ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and Gender-Related Test Performance in Community-Dwelling Elderly People: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and Gait Speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef]
- Ko, M.S.; Sim, Y.J.; Kim, D.H.; Jeon, H.S. Effects of Three Weeks of Whole-Body Vibration Training on Joint-Position Sense, Balance, and Gait in Children with Cerebral Palsy: A Randomized Controlled Study. Physiother. Can. 2016, 68, 99–105. [Google Scholar] [CrossRef]
- Franjoine, M.R.; Gunther, J.S.; Taylor, M.J. Pediatric Balance Scale: A Modified Version of the Berg Balance Scale for the School-Age Child with Mild to Moderate Motor Impairment. Pediatr. Phys. Ther. 2003, 15, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Ahlborg, L.; Andersson, C.; Julin, P. Whole-Body Vibration Training Compared with Resistance Training: Effect on Spasticity, Muscle Strength and Motor Performance in Adults with Cerebral Palsy. J. Rehabil. Med. 2006, 38, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Yang, Y.H. Evaluating the Responsiveness of 2 Versions of the Gross Motor Function Measure for Children with Cerebral Palsy. Arch. Phys. Med. Rehabil. 2006, 87, 51–56. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristic | Groups | Outcome | Intervention Setup | |||||
---|---|---|---|---|---|---|---|---|
Study | Type of CP | GFFCS Level | n | Age | Treatment | Control | Outcome Measures | Frequency (Times/Week) Length (Week) Intensity |
Ahmadizadeh et al., 2019 [26] | S. Hemiplegia (n = 9) S. Diplegia (n = 10) Tetraplegia (n = 1) | I, II, III | 20 | 7.5 years SD ± 2.23 | Conventional Therapy + WBV | Conventional Therapy | Goniometry, spasticity, 6 MWT, ROM | 2 × 3 min 3 times/week 6 weeks 20–24 Hz |
Ali MS and Abd El-aziz HG 2020 [15] | S. Diplegia | I, II, III, IV | 30 | 5.23 years SD ± 0.96 | Conventional Therapy + WBV | Conventional Therapy | GMFM-88 sitting domain, abdominal muscle thickness ultrasonography | 2 × 5 min 3 times/week 12 weeks 30 Hz |
Aslam and Baig 2022 [27] | NR | II, III | 38 | 9.36 years SD ± 1.26 | Conventional Therapy + WBV | Conventional Therapy | MAS spasticity, manual muscle testing, pediatric balance scale, CPQOL | 1 × 3 min 3 times/week 4 weeks 40 Hz |
Cheng et al., 2015 [28] | S. Diplegia (n = 11) S. Quadriplegia (n = 5) | NR | 16 | 9.2 years SD ± 2.1 | Conventional Therapy + WBV | Conventional Therapy | AROM, PROM, RI, MAS spasticity, TUG, 6 MWT | 1 × 10 min 3 times/week 8 weeks 20 Hz |
Dudoniene et al., 2017 [29] | S. Diplegia | NR | 20 | 8.60 years SD ± 0.96 | Conventional Therapy + WBV | Conventional Therapy | Spasticity, range of motion, GMFM-88 | 5–10 min 5 times/week 3 weeks 15 Hz |
El-Shamy 2014 [8] | S. Diplegia | I, II | 30 | 9.79 years SD ± 1.13 | Conventional Therapy + WBV | Conventional Therapy | Knee extensor strength, stability index | 3 × 3 min 5 times/week 12 weeks Vibraflex Home Edition II. 12–18 Hz |
Hegazy et al., 2021 [30] | S. Hemiplegia | I, II | 40 | 6.95 years SD ± 1.46 | Conventional Therapy + WBV | Conventional Therapy | Quadriceps, hamstring muscle strength, endurance, 6 MWT and power | 3 × 3 min 3 times/week 8 weeks 10–25 Hz |
Ibrahim et al., 2014 [31] | S. Diplegia | NR | 30 | 9.93 years SD ± 1.41 | Conventional Therapy + WBV | Conventional Therapy | Knee extensor strength, walking speed, walking balance, gross motor function | 3 × 3 min 3 times/week 12 Week 12–18 Hz Power Plate |
Lee and Chon 2013 [7] | S. Diplegia S. Hemiplegia | NR | 30 | 9.83 years SD ± 2.39 | Conventional Therapy + WBV | Conventional Therapy | Gait analyses and ultrasonographic imaging of the leg muscles | 6 × 3 min 3 times/week 8 weeks 5–25 Hz |
Myung-Sook et al., 2015 [32] | S. Diplegia (n = 14) S. Hemiplegia (n = 10) | I, II, III | 24 | 9.52 years SD ± 2.38 | Conventional Therapy + WBV | Conventional Therapy | Gait analyses, TUG test, Functional Independence Measure for Children (WeeFIM) | 3 × 3 min 2 times/week 3 weeks 20–24 Hz Galileo |
Ruck et al., 2010 [33] | NR | II, III, IV | 20 | 6.2 to 12.3 years | Conventional Therapy + WBV | Conventional Therapy | Walking ability, bone densitometry, gross motor function | 3 × 3 min 5 times/week 24 weeks 12–18 Hz Galileo |
Stark et al., 2016 [34] | NR | II, III, IV | 24 | 19 months SD ± 3.1 | Conventional Therapy + WBV | Conventional Therapy | GMFM-66, PEDI, | 3 × 3 min 10 times/week 14 weeks 12–22 Hz |
Tekin and Kavlak 2021 [35] | S. Hemiplegia | NR | 22 | 11.82 years SD ± 3.55 | Conventional Therapy + WBV | Conventional Therapy | Gait analysis, standing, walking, balance, spasticity, gross motor function | 1 × 15 min 3 times/week 8 weeks 15 Hz Compex-Winplate |
Tupimai et al., 2016 [36] | NR: | I, II, III | 12 | 10.6 years SD ± 2.4 | Conventional Therapy + WBV | Conventional Therapy | MAS spasticity, PEDI, muscle strength | 10 × 1 min 5 times/week 6 weeks 20 Hz |
Unger et al., 2012 [37] | S. Diplegia S. Hemiplegia | I, II, III | 27 | 6–13 years | Conventional Therapy + WBV | Conventional Therapy | 1 MWT, 2D-posturography, ultrasound imaging and sit ups in one minute | 30–40 s 5 times/week 4 weeks 35–40 Hz |
Wren et al., 2010 [38] | S. Diplegia (n = 18) S. Hemiplegia (n = 4) S. Tetraplegia (n = 9) | I, II, III, IV | 31 | 9.4 years SD ± 1.4 | Conventional Therapy + WBV | Conventional Therapy | Bone density, plantar flexor strength | 1 × 10 min 10 min/day 6 months (at home) 30 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulay, M.Á.; Nagy, R.; Kói, T.; Harnos, A.; Zimonyi, N.; Garami, M.; Gasparics, Á.; Hegyi, P.; Túri, I.; Feketéné Szabó, É. The Effect of Additional Whole-Body Vibration on Musculoskeletal System in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Med. 2023, 12, 6759. https://doi.org/10.3390/jcm12216759
Pulay MÁ, Nagy R, Kói T, Harnos A, Zimonyi N, Garami M, Gasparics Á, Hegyi P, Túri I, Feketéné Szabó É. The Effect of Additional Whole-Body Vibration on Musculoskeletal System in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Clinical Medicine. 2023; 12(21):6759. https://doi.org/10.3390/jcm12216759
Chicago/Turabian StylePulay, Márk Ágoston, Rita Nagy, Tamás Kói, Andrea Harnos, Nóra Zimonyi, Miklós Garami, Ákos Gasparics, Péter Hegyi, Ibolya Túri, and Éva Feketéné Szabó. 2023. "The Effect of Additional Whole-Body Vibration on Musculoskeletal System in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials" Journal of Clinical Medicine 12, no. 21: 6759. https://doi.org/10.3390/jcm12216759
APA StylePulay, M. Á., Nagy, R., Kói, T., Harnos, A., Zimonyi, N., Garami, M., Gasparics, Á., Hegyi, P., Túri, I., & Feketéné Szabó, É. (2023). The Effect of Additional Whole-Body Vibration on Musculoskeletal System in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of Clinical Medicine, 12(21), 6759. https://doi.org/10.3390/jcm12216759