Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Selection of Papers
2.3. Data Extraction
2.4. Evaluation of the Qualitative Synthesis
- (a)
- Methodological quality evaluation was performed using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement [18] for observational studies.
- (b)
- Risk of bias evaluation was conducted using the Cochrane Collaboration tool [19] integrated into the REVMAN 5.4.2 software (Cochrane Collaboration, Copenhagen, Denmark). This analysis assessed risks related to selection, conduct, detection, attrition, and reporting.
- (c)
- Evaluating the evidence quality. Utilizing the Grade Pro tool (McMaster University and Evidence Prime), we constructed the evidence profile table, assigning specific levels as outlined [20]:
- High: Strong assurance in aligning the actual and estimated effect;
- Moderate: Reasonable confidence in the estimated effect. The actual effect may differ significantly;
- Low: Restricted confidence in the estimated effect. The actual effect may deviate substantially from the estimate;
- Very Low: Minimal confidence in the estimated effect. The actual effect is highly likely to vary extensively from the estimate.
2.5. Statistical Analysis (Evaluation of Quantitative Synthesis or Meta-Analysis)
3. Results
3.1. Characteristics of the Studies
3.2. Methodological Quality Assessment
3.3. Bias Risk Analysis
3.4. Quantitative Analysis and Meta-Analysis
3.5. Quality of Evidence
4. Discussion
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laaksonen, D.; Lakka, H.M.; Niskanen, L.; Kaplan, G.A.; Salonen, J.; Lakka, T. Metabolic syndrome and development of diabetes mellitus: Application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am. J. Epidemiol. 2002, 156, 1070–1077. [Google Scholar] [CrossRef]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E. Link between metabolic syndrome and insulin resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 39, 203–230. [Google Scholar] [CrossRef]
- Yang, H.; Fu, Y.-Q.; Yang, B.; Zheng, J.-S.; Zeng, X.-Y.; Zeng, W.; Fan, Z.-F.; Chen, M.; Wang, L.; Li, D. Positive association between the metabolic syndrome and white blood cell counts in Chinese. Asia Pac. J. Clin. Nutr. 2017, 26, 141–147. [Google Scholar] [CrossRef]
- Karaman, A.; Aydin, H.; Geckinli, B.; Cetinkaya, A.; Karaman, S. DNA damage is increased in lymphocytes of patients with metabolic syndrome. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 782, 30–35. [Google Scholar] [CrossRef]
- Fadini, G.; Marcuzzo, G.; Marescotti, M.C.; Kreutzenberg, S.; Avogaro, A. Elevated white blood cell count is associated with prevalence and development of the metabolic syndrome and its components in the general population. Acta Diabetol. 2012, 49, 445–451. [Google Scholar] [CrossRef]
- Lin, H.Y.; Zhang, X.J.; Liu, Y.M.; Geng, L.Y.; Guan, L.Y.; Li, X.H. Comparison of the triglyceride glucose index and blood leukocyte indices as predictors of metabolic syndrome in healthy Chinese population. Sci. Rep. 2021, 11, 10036. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, H.; Xiao, H.; Tang, H.; Xiang, Z.; Wang, X.; Wang, X.; Zou, H. Comparison of the Value of Neutrophil to High-Density Lipoprotein Cholesterol Ratio and Lymphocyte to High-Density Lipoprotein Cholesterol Ratio for Predicting Metabolic Syndrome Among a Population in the Southern Coast of China. Diabetes Metab. Syndr. Obes. 2020, 13, 597–605. [Google Scholar] [CrossRef]
- Horne, B.D.; Anderson, J.L.; John, J.M.; Weaver, A.; Bair, T.L.; Jensen, K.R.; Renlund, D.G.; Muhlestein, J.B. Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol. 2005, 45, 1638–1643. [Google Scholar] [CrossRef]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef]
- Shankar, A.; Klein, B.E.; Klein, R. Relationship between white blood cell count and incident hypertension. Am. J. Hypertens. 2004, 17, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, C.; Hanley, A.J.; Haffner, S.M. Differential white cell count and incident type 2 diabetes: The Insulin Resistance Atherosclerosis Study. Diabetologia 2014, 57, 83–92. [Google Scholar] [CrossRef]
- Abdel Moneim, A.; Mahmoud, B.; Sultan, E.A.; Mahmoud, R. Relationship of leukocytes, platelet indices and adipocytokines in metabolic syndrome patients. Diabetes Metab. Syndr. 2019, 13, 874–880. [Google Scholar] [CrossRef]
- Ter Horst, R.; Van den Munckhof, I.C.; Schraa, K.; Aguirre-Gamboa, R.; Jaeger, M.; Smeekens, S.P.; Brand, T.; Lemmers, H.; Dijkstra, H.; Galesloot, T.E.; et al. Sex-Specific Regulation of Inflammation and Metabolic Syndrome in Obesity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1787–1800. [Google Scholar] [CrossRef]
- Urrutia, G.; Bonfill, X. PRISMA statement: A proposal to improve the publication of systematic reviews and meta-analyses. Med. Clin. 2010, 135, 507–511. [Google Scholar] [CrossRef]
- Von, E.E.; Altman, D.G.; Egger, M.; Pocock Stuart, J.; Gøtzsche, C.; Vandenbroucke, P. STROBE (Strengthening the Reporting of Observational studies in Epidemiology) Initiative Statement: Guidelines for reporting observational studies. Gac. Sanit. 2008, 22, 144–150. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Ahmadzadeh, J.; Mansorian, B.; Attari, M.M.-A.; Mohebbi, I.; Naz-Avar, R.; Moghadam, K.; Ghareh-Bagh, S.A.K. The Association between Hematological Parameters and Metabolic Syndrome in Iranian Men: A Single Center Large-Scale Study. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 17–21. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, C.; Shao, X.; Ning, J.; Gao, P.; Xiao, H.; Chen, Y.; Zou, Z.; Hong, G.; Li, X.; et al. Lymphocyte To High-Density Lipoprotein Ratio As A New Indicator Of Inflammation And Metabolic Syndrome. Diabetes Metab. Syndr. Obes. 2019, 14, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.S.; Cho, S.H.; Kim, J.H. Relationship between rectus abdominis muscle thickness and metabolic syndrome in middle-aged men. PLoS ONE 2017, 12, e0185040. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, L.; Huang, Y.; Yang, P.; Xu, W. A Mechanism Exploration of Metabolic Syndrome Causing Nodular Thyroid Disease. Int. J. Endocrinol. 2019, 2019, 9376768. [Google Scholar] [CrossRef]
- Liu, C.-C.; Ko, H.-J.; Liu, W.-S.; Hung, C.-L.; Hu, K.-C.; Yu, L.-Y.; Shih, S.-C. Neutrophil-to-lymphocyte ratio as a predictive marker of metabolic syndrome. Medicine 2019, 98, e17537. [Google Scholar] [CrossRef]
- Mauss, D.; Herr, R.M.; Jarczok, M.N.; Motoc, I.; Fischer, J.E.; Bosch, J.A. The association of cortisol levels with leukocyte distribution is disrupted in the metabolic syndrome. Obes. Res. Clin. Pract. 2020, 15, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Zhu, Q.; Shao, J.; Zhang, Q.; Liu, L.; Wu, H.; Xia, Y.; Bao, X.; Gu, Y.; Wang, H.; et al. Comparing the diagnostic ability of inflammatory markers in metabolic syndrome. Clin. Chim. Acta 2017, 475, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Okada, H.; Hashimoto, Y.; Kumagai, M.; Nishimura, H.; Fukui, M. Combined effect of hemoglobin and mean corpuscular volume levels on incident metabolic syndrome: A population-based cohort study. Clin. Nutr. ESPEN 2020, 40, 314–319. [Google Scholar] [CrossRef]
- Uslu, A.U.; Sekin, Y.; Tarhan, G.; Canakcı, N.; Gunduz, M.; Karagulle, M. Evaluation of Monocyte to High-Density Lipoprotein Cholesterol Ratio in the Presence and Severity of Metabolic Syndrome. Clin. Appl. Thromb. Hemost. 2018, 24, 828–833. [Google Scholar] [CrossRef]
- Vahit, D.; Akboga, M.K.; Samet, Y.; Hüseyin, E. Assessment of monocyte to high density lipoprotein cholesterol ratio and lymphocyte-to-monocyte ratio in patients with metabolic syndrome. Biomark. Med. 2017, 11, 535–540. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Wang, M.W.; Hu, Z.Y.; Cao, C.J.; Wang, C.; Kang, J.Y.; Fu, X.-Y.; Zhang, X.-W.; Chu, Y.-M.; Feng, Z.-H.; et al. Screening the Influence of Biomarkers for Metabolic Syndrome in Occupational Population Based on the Lasso Algorithm. Front. Public Health 2021, 9, 743731. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Tian, S.; Ma, Q.H.; Sun, H.P.; Xu, Y.; Pan, C.W. Leukocyte-related parameters in older adults with metabolic syndrome. Endocrine 2020, 68, 312–319. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Alberti, G.; Zimmet, P.; Shaw, J. The metabolic syndrome a new worldwide definition. IDF epidemiology task force consensus group. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Chinese Medical Association. The Suggestion on Chinese Metabolic Syndrome; Chinese Medical Association: Shanghai, China, 2004. [Google Scholar]
- Mansyur, M.A.; Bakri, S.; Patellongi, I.J.; Rahman, I.A. The association between metabolic syndrome components, low-grade systemic inflammation and insulin resistance in non-diabetic Indonesian adolescent male. Clin. Nutr. ESPEN 2020, 35, 69–74. [Google Scholar] [CrossRef]
- Esser, N.; Legrand Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef]
- Kawanishi, N.; Yano, H.; Yokogawa, Y.; Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in highfat-diet-induced obese mice. Exerc. Immunol. Rev. 2010, 16, 105–118. [Google Scholar]
- Su, B.Y.; Tian, C.F.; Gao, B.L.; Tong, Y.H.; Zhao, X.H.; Zheng, Y. Correlation of the leucocyte count with traditional and non-traditional components of metabolic syndrome. Postgrad. Med. 2016, 128, 805–809. [Google Scholar] [CrossRef]
- Marques, P.; Collado, A.; Martinez-Hervás, S.; Domingo, E.; Benito, E.; Piqueras, L.; Real, J.T.; Ascaso, J.F.; Sanz, M.-J. Systemic Inflammation in Metabolic Syndrome: Increased Platelet and Leukocyte Activation, and Key Role of CX3CL1/CX3CR1 and CCL2/CCR2 Axes in Arterial Platelet-Proinflammatory Monocyte Adhesion. J. Clin. Med. 2019, 8, 708. [Google Scholar] [CrossRef]
- Corrado, M.; Pearce, E.L. Targeting memory T cell metabolism to improve immunity. J. Clin. Investig. 2022, 132, e148546. [Google Scholar] [CrossRef]
- Li, P.-F.; Chen, J.-S.; Chang, J.-B.; Chang, H.-W.; Wu, C.-Z.; Chuang, T.-J.; Huang, C.-L.; Pei, D.; Hsieh, C.-H.; Chen, Y.-L. Association of complete blood cell counts with metabolic syndrome in an elderly population. BMC Geriatr. 2016, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Ibarrola-Jurado, N.; Bulló, M.; Martínez-González, M.; Wärnberg, J.; Salaverría, I.; Ortega-Calvo, M.; Estruch, R.; Serra-Majem, L.; Covas, M.I.; et al. White blood cell counts as risk markers of developing metabolic syndrome and its components in the PREDIMED study. PLoS ONE 2013, 8, e58354. [Google Scholar] [CrossRef] [PubMed]
- Ryder, E.; Diez Ewald, M.; Mosquera, J.; Fernández, E.; Pedreañez, A.; Vargas, R.; Peña, C.; Fernández, N. Association of obesity with leukocyte count in obese individuals without metabolic syndrome. Diabetes Metab. Syndr. 2014, 8, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, Q.; Zhou, L.; Li, W.; Yuan, Y.; Lei, W.; Liu, K.; Xu, M.; Diao, T.; Gao, H.; et al. Associations of Baseline and Changes in Leukocyte Counts with Incident Cardiovascular Events: The Dongfeng-Tongji Cohort Study. J. Atheroscler. Thromb. 2022, 29, 1040–1058. [Google Scholar] [CrossRef] [PubMed]
- Lender, D.; Sysko, S.K. The metabolic syndrome and cardiometabolic risk: Scope of the problem and current standard of care. Pharmacotherapy 2006, 26, 3S–12S. [Google Scholar] [CrossRef]
- Ghafouri, A.; Estêvão, M.D.; Alibakhshi, P.; Pizarro, A.B.; Kashani, A.F.; Persad, E.; Heydari, H.; Hasani, M.; Heshmati, J.; Morvaridzadeh, M. Sumar fruit supplemetentation improve glycemic parameters in patients with metabolic syndrome and related disorders: A systematic review and meta-analysis. Phytomedicine 2021, 90, 153661. [Google Scholar] [CrossRef] [PubMed]
- Kasten-Jolly, J.; Lawrence, D.A. Differential blood leukocyte populations based on individual variances and age. Immunol. Res. 2022, 70, 114–128. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Author, Year, Country | Study Design | STROBE18 Reporting Guidelines | Age of Participants | No. of Subjects MetS+/MetS− | MetS Criteria | Results | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ahmadzadeh et al., 2017, Iran [21] | Cross-sectional study | 19 | Men MetS+ 41.4 ± 9.9 MetS− 36.4 ± 9.6 | Men 3203/7911 Total 11,114 | IDF | Increased WBC (p < 0.001) is related to a higher number of MetS criteria. Men MetS+ 7.2 ± 1.7 (WBC) MetS− 6.7 ± 1.7 (WBC) | |||||
Chen et al., 2019, China [22] | Cross-sectional study | 20 | MetS+ 56.5 ± 0.5 MetS− 47.6 ± 0.4 | 254/598 Total 852 | NCEP ATP III | Elevated WBC levels in MetS+ subjects. MetS+ 7.03 ± 0.1 (WBC) MetS− 6.4 ± 0.06 (WBC) | |||||
Chen et al., 2020, China [10] | Cross-sectional study | 19 | Women MetS+ 60.7 ± 10.0 MetS− 52.6 ± 12.7 Men MetS+ 57.2 ± 10.5 MetS− 54.8 ± 13.5 | Women 277/641 Total 918 Men 140/343 Total 483 | IDF | Haematological parameters, including WBC and subtypes, correlate with the occurrence of MetS. | |||||
Women MetS+ 6.69 ± 1.67 (WBC) MetS− 6.1 ± 1.53 (WBC) | Men MetS+ 7.24 ± 1.66 (WBC) MetS− 6.87 ± 1.59 (WBC) | ||||||||||
Hoi et al., 2017, Japan [23] | Cross-sectional study | 21 | Men MetS+ 49.5 ± 6.5 MetS− 48.8 ± 6.1 | Men 251/474 Total 725 | NCEP ATP III | Significantly higher white blood cell count in MetS+ subjects. Men MetS+ 6.57 ± 1.55 (WBC) MetS− 5.95 ± 1.44 (WBC) | |||||
Li et al., 2019, China [30] | Retrospective cohort study | 19 | MetS+ 52.5 ± 13.6 MetS− 41.1 ± 13.3 | 120/1948 Total 2068 | Chinese Diabetes Society | The MetS+ group had higher TSH and inflammation levels, indicated by higher WBC, LY, and Mo/HDL. | |||||
MetS+ 7.1 ± 2.11 (WBC) MetS− 6.4 ± 1.6 (WBC) MetS+ 2.57 ± 0.79 (Lymphocyte) MetS− 2.25 ± 0.61 (Lymphocyte) | MetS+ 3.89 ± 1.52 (Neutrophil) MetS− 3.57 ± 1.2 (Neutrophil) MetS+ 0.43 ± 0.15 (Monocyte) MetS− 0.39 ± 0.13 (Monocyte) | ||||||||||
Lin et al., 2021, China [9] | Cohort study | 20 | MetS+ 45 ± 11.6 MetS− 44.9 ± 13.18 | 179/1363 Total 1542 | Chinese Diabetes Society | Subjects with MetS+ have higher levels of leukocytes, neutrophils, and total lymphocytes. Elevated levels of leukocytes, neutrophils, and lymphocytes increased the incidence of MetS. | |||||
MetS+ 6.6 ± 1.4 (WBC) MetS− 6.21 ± 1.3 (WBC) | MetS+ 3.6 ± 1.03 (Neutrophil) MetS− 3.39 ± 0.94 (Neutrophil) | MetS+ 2.39 ± 0.68 (Lymphocyte) MetS− 2.25 ± 0.56 (Lymphocyte) | |||||||||
Liu C et al., 2019, Taiwan [24] | Cross-sectional study. | 19 | MetS+ 50.4 ± 11.1 MetS− 45.6 ± 11.1 | 10,475/23,538 Total 34,013 | NCEP ATP III | Inflammatory biomarkers (WBC, CRP, and Hs-CRP), lipid markers (total cholesterol, triglycerides, and LDL-cholesterol), and glycaemic markers (fasting glucose, HbA1c, insulin, HOMA-IR, and SUA) were on average higher in the MetS+ group than in MetS− (p < 0.001). MetS+ 6.83 ± 1.72 (WBC) MetS− 6.05 ± 1.45 (WBC) | |||||
Mauss et al., 2020, Germany [25] | Cross-sectional study | 19 | Men MetS+ 49.5 ± 8.1 MetS− 44.5 ± 9.9 | Men 137/552 Total 689 | Harmonised criteria | Total leukocyte count and CRP were higher in the MetS+ group, while leukocyte ratios showed no significant differences. Men MetS+ 7.1 ± 1.81 (WBC) MetS− 6.44 ± 1.68 (WBC) | |||||
Meng et al., 2017, China [26] | Cross-sectional study | 21 | MetS+ 52.7 ± 9.7 MetS− 48.9 ± 9.7 | 2292/4020 Total 6312 | Harmonised criteria | They observe that leukocyte, neutrophil, and lymphocyte concentrations are associated with MetS. | |||||
MetS+ 5.84 ± 1.46 (WBC) MetS− 5.32 ± 1.29 (WBC) | MetS+ 3.29 ± 0.97 (Neutrophil) MetS− 2.98 ± 0.97 (Neutrophil) | MetS+ 1.98 ± 0.49 (Lymphocyte) MetS− 1.77 ± 0.65 (Lymphocyte) | |||||||||
Tanaka et al., 2020, China [31] | Cohort study | 19 | Women MetS+ 55.2 ± 10.4 MetS− 44.8 ± 9.8 Men MetS+ 50.3 ± 9.4 MetS− 44.8 ± 9.7 | Women 401/8035 Total 8436 Men 1184/10,542 Total 11,726 | NCEP ATP III | Higher levels of WBC are observed in the MetS group. | |||||
Women MetS+ 6.0 ± 1.5 (WBC) MetS− 5.3 ± 1.4 (WBC) | Men MetS+ 6.6 ± 1.7 (WBC) MetS− 5.7 ± 1.5 (WBC) | ||||||||||
Uslu et al., 2018, Turkey [32] | Case–control study | 19 | MetS+ 47 ± 13.5 MetS− 44 ± 15.2 | 147/134 Total 281 | NCEP ATP III | MHR is a useful inflammatory marker to assess MetS and disease severity. | |||||
MetS+ 7.96 ± 2.63 (WBC) MetS− 6.69 ± 1.58 (WBC) | MetS+ 0.59 ± 0.26 (Monocyte) MetS− 0.48 ± 0.16 (Monocyte) | ||||||||||
Vahit et al., 2017, Turkey [27] | Cross-sectional study | 20 | MetS + 57.4 ± 8.8 MetS− 56.3 ± 9.1 | 371/391 Total 762 | NCEP ATP III | MRLs such as MHR may be novel and valuable indicators in MetS. | |||||
MetS+ 7.55 ± 1.66 (WBC) MetS− 7.49 ± 1.69 (WBC) | MetS + 4.32 ± 1.34 (Neutrophil) MetS− 4.51± 1.36 (Neutrophil) | ||||||||||
Xie et al., 2021, China. [28] | Cross-sectional study | 19 | MetS+ 26.1 MetS− 25.7 | 655/2189 Total 2844 | IDF | Lasso’s logistic regression algorithm helped to identify MetS with high accuracy in an occupational population. | |||||
MetS+ 7.37 ± 1.79 (WBC) MetS− 6.68 ± 1.65 (WBC) MetS+ 0.42 ± 0.15 (Monocyte) MetS− 0.39 ± 0.13 (Monocyte) MetS+ 0.17 ± 0.13 (Eosinophil) MetS− 0.18 ± 0.18 (Eosinophil) | MetS+ 2.45 ± 0.69 (Lymphocytes) MetS− 2.39 ± 0.71 (Lymphocytes) MetS+ 4.32 ± 1.42 (Neutrophil) MetS− 3.71 ± 1.25 (Neutrophil) MetS+ 0.07 ± 0.16 (Basophil) MetS− 0.05 ± 0.11 (Basophil) | ||||||||||
Yang et al., 2020, China. [29] | Cross-sectional study | 19 | ≥60 years | Women 608/1771 Total 2379 Men 311/1889 Total 2200 | NCEP ATP III | They observe interactions between leukocytes, monocytes, neutrophils, and sex in MetS. | |||||
Women MetS+ 5.68 ± 1.31 (WBC) MetS− 5.15 ± 1.28 (WBC) MetS+ 1.8 ± 0.57 (Lymphocytes) MetS− 1.61 ± 0.51 (Lymphocytes) MetS+ 0.3 ± 0.1 (Monocyte) MetS− 0.28 ± 0.1 (Monocyte) MetS+ 3.41 ± 0.99 (Neutrophil) MetS− 3.1 ± 1.01 (Neutrophil) MetS+ 0.13 ± 0.11 (Eosinophil) MetS− 0.13 ± 0.13 (Eosinophil) MetS+ 0.03 ± 0.02 (Basophil) MetS− 0.03 ± 0.02 (Basophil) | Men MetS+ 5.87 ± 1.43 (WBC) MetS− 5.48 ± 1.53 (WBC) MetS+ 1.75 ± 0.53 (Lymphocytes) MetS− 1.56 ± 0.62 (Lymphocytes) MetS+ 0.35 ± 0.16 (Monocyte) MetS− 0.34 ± 0.13 (Monocyte) MetS+ 3.56 ± 1.14 (Neutrophil) MetS− 3.4 ± 1.21 (Neutrophil) MetS+ 0.16 ± 0.15 (Eosinophil) MetS− 0.14 ± 0.14 (Eosinophil) MetS+ 0.04 ± 0.02 (Basophil) MetS− 0.03 ± 0.02 (Basophil) |
Certainty Assessment | No. of Subjects | Size of the Effect | Quality of Evidence | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No. of Studies | Study Design | Risk of Bias | Inconsistency | Indirect Evidence | Imprecision | Other Considerations | MetS+ | MetS− | Mean Difference (95% CI) | |
Meta-analysis White blood cells | ||||||||||
n = 14 | Observational studies | serious | Very serious | It is not serious | It is not serious | dose-response gradient | 21,005 | 66,339 | 0.64 (0.55–0.72) | ⨁◯◯◯ Very low |
Meta-analysis Neutrophils | ||||||||||
n = 7 | Observational studies | serious | Very serious | It is not serious | It is not serious | dose-response gradient | 4790 | 14,169 | 0.28 (0.2–0.36) | ⨁◯◯◯ Very low |
Meta-analysis Lymphocytes | ||||||||||
n = 6 | Observational studies | serious | Very serious | It is not serious | It is not serious | dose-response gradient | 4419 | 13,778 | 0.19 (0.14–0.23) | ⨁◯◯◯ Very low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raya-Cano, E.; Vaquero-Abellán, M.; Molina-Luque, R.; Molina-Recio, G.; Guzmán-García, J.M.; Jiménez-Mérida, R.; Romero-Saldaña, M. Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7044. https://doi.org/10.3390/jcm12227044
Raya-Cano E, Vaquero-Abellán M, Molina-Luque R, Molina-Recio G, Guzmán-García JM, Jiménez-Mérida R, Romero-Saldaña M. Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(22):7044. https://doi.org/10.3390/jcm12227044
Chicago/Turabian StyleRaya-Cano, Elena, Manuel Vaquero-Abellán, Rafael Molina-Luque, Guillermo Molina-Recio, José Miguel Guzmán-García, Rocío Jiménez-Mérida, and Manuel Romero-Saldaña. 2023. "Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 22: 7044. https://doi.org/10.3390/jcm12227044
APA StyleRaya-Cano, E., Vaquero-Abellán, M., Molina-Luque, R., Molina-Recio, G., Guzmán-García, J. M., Jiménez-Mérida, R., & Romero-Saldaña, M. (2023). Association between Metabolic Syndrome and Leukocytes: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(22), 7044. https://doi.org/10.3390/jcm12227044