Coronary Revascularization after Transcatheter and Surgical Aortic Valve Replacement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Source and Data Collection
2.2. Preoperative Variables
2.3. Statistical Analysis
3. Results
3.1. Preoperative Variables
3.2. Intraoperative Variables
3.3. Postoperative Variables
3.4. Mortality
3.5. All-Cause Mortality
3.6. PCI
4. Discussion
PCI
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Rogers, T.; Thourani, V.H.; Waksman, R. Transcatheter aortic valve replacement in intermediate- and low-risk patients. J. Am. Heart Assoc. 2018, 7, e007147. [Google Scholar] [CrossRef]
- Walther, T.; Hamm, C.W.; Schuler, G.; Berkowitsch, A.; Kötting, J.; Mangner, N.; Mudra, H.; Beckmann, A.; Cremer, J.; Welz, A.; et al. Perioperative results and complications in 15,964 transcatheter aortic valve replacements: Prospective data from the GARY registry. J. Am. Coll. Cardiol. 2015, 65, 2173–2180. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Søndergaard, L.; Ihlemann, N.; Capodanno, D.; Jørgensen, T.H.; Nissen, H.; Kjeldsen, B.J.; Chang, Y.; Steinbrüchel, D.A.; Olsen, P.S.; Petronio, A.S.; et al. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. J. Am. Coll. Cardiol. 2019, 73, 546–553. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Yudi, M.B.; Sharma, S.K.; Tang, G.H.L.; Kini, A. Coronary angiography and percutaneous coronary intervention after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2018, 71, 1360–1378. [Google Scholar] [CrossRef]
- Tarantini, G.; Dvir, D.; Tang, G.H.L. Transcatheter aortic valve implantation in degenerated surgical aortic valves. EuroIntervention 2021, 17, 709–719. [Google Scholar] [CrossRef]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document (VARC-2). Eur. J. Cardiothorac. Surg. 2012, 42, S45–S60. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Wang, D.; Huang, L.; Zhang, Y.; Cheng, Z.; Zhang, X.; Ren, P.; Hong, Q.; Kang, D. Transcatheter aortic valve implantation versus surgical aortic valve replacement for treatment of severe aortic stenosis: Comparison of results from randomized controlled trials and real-world data. Braz. J. Cardiovasc. Surg. 2020, 35, 346–367. [Google Scholar] [CrossRef]
- Beckmann, A.; Meyer, R.; Lewandowski, J.; Markewitz, A.; Gummert, J. German Heart Surgery Report 2020: The Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac. Cardiovasc. Surg. 2021, 69, 294–307. [Google Scholar] [CrossRef]
- Freno, D.R.; Shipe, M.E.; Levack, M.M.; Shah, A.S.; Deppen, S.A.; O’Leary, J.M.; Grogan, E.L. Modeling the impact of delaying transcatheter aortic valve replacement for the treatment of aortic stenosis in the era of COVID-19. JTCVS Open 2021, 7, 63–71. [Google Scholar] [CrossRef]
- Adlam, D.; Chan, N.; Baron, J.; Kovac, J. Aortic stenosis in the time of COVID-19: Development and outcomes of a rapid turnaround TAVI service. Catheter. Cardiovasc. Interv. 2021, 98, E478–E482. [Google Scholar] [CrossRef]
- Hamm, C.W.; Arsalan, M.; Mack, M.J. The future of transcatheter aortic valve implantation. Eur. Heart J. 2016, 37, 803–810. [Google Scholar] [CrossRef]
- Overtchouk, P.; Modine, T. Alternate Access for TAVI: Stay Clear of the Chest. Interv. Cardiol. 2018, 13, 145–150. [Google Scholar] [CrossRef]
- Perrin, N.; Bonnet, G.; Leroux, L.; Ibrahim, R.; Modine, T.; Ben Ali, W. Transcatheter Aortic Valve Implantation: All Transfemoral? Update on Peripheral Vascular Access and Closure. Front. Cardiovasc. Med. 2021, 8, 747583. [Google Scholar] [CrossRef]
- Saad, A.M.; Kassis, N.; Isogai, T.; Gad, M.M.; Ahuja, K.R.; Abdelfattah, O.; Shekhar, S.; Farwati, M.; Yun, J.J.; Krishnaswamy, A.; et al. Trends in Outcomes of Transcatheter and Surgical Aortic Valve Replacement in the United States (2012–2017). Am. J. Cardiol. 2021, 141, 79–85. [Google Scholar] [CrossRef]
- Di Eusanio, M.; Fortuna, D.; De Palma, R.; Dell’Amore, A.; Lamarra, M.; Contini, G.A.; Gherli, T.; Gabbieri, D.; Ghidoni, I.; Cristell, D.; et al. Aortic valve replacement: Results and predictors of mortality from a contemporary series of 2256 patients. J. Thorac. Cardiovasc. Surg. 2011, 141, 940–947. [Google Scholar] [CrossRef]
- Jahangiri, M.; Bilkhu, R.; Embleton-Thirsk, A.; Dehbi, H.M.; Mani, K.; Anderson, J.; Avlonitis, V.; Baghai, M.; Birdi, I.; Booth, K.; et al. Surgical aortic valve replacement in the era of transcatheter aortic valve implantation: A review of the UK national database. BMJ Open 2021, 11, e046491. [Google Scholar] [CrossRef]
- Takeji, Y.; Taniguchi, T.; Morimoto, T.; Saito, N.; Ando, K.; Shirai, S.; Sakaguchi, G.; Arai, Y.; Fuku, Y.; Kawase, Y.; et al. Transcatheter aortic valve implantation versus conservative management for severe aortic stenosis in real clinical practice. PLoS ONE 2019, 14, e0222979. [Google Scholar] [CrossRef]
- Ludman, P.F. UK TAVI registry. Heart 2019, 105 (Suppl. S2), s2–s5. [Google Scholar] [CrossRef]
- Krittanawong, C.; Kumar, A.; Wang, Z.; Johnson, K.W.; Rastogi, U.; Narasimhan, B.; Kaplin, S.; Virk, H.U.H.; Baber, U.; Tang, W.; et al. Predictors of In-Hospital Mortality after Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 125, 251–257. [Google Scholar] [CrossRef]
- Attinger-Toller, A.; Ferrari, E.; Tueller, D.; Templin, C.; Muller, O.; Nietlispach, F.; Toggweiler, S.; Noble, S.; Roffi, M.; Jeger, R.; et al. Age-Related Outcomes after Transcatheter Aortic Valve Replacement: Insights from the SwissTAVI Registry. JACC Cardiovasc. Interv. 2021, 14, 952–960. [Google Scholar] [CrossRef]
- Mok, M.; Nombela-Franco, L.; Dumont, E.; Urena, M.; DeLarochellière, R.; Doyle, D.; Villeneuve, J.; Côté, M.; Ribeiro, H.B.; Allende, R.; et al. Chronic obstructive pulmonary disease in patients undergoing transcatheter aortic valve implantation: Insights on clinical outcomes, prognostic markers, and functional status changes. JACC Cardiovasc. Interv. 2013, 6, 1072–1084. [Google Scholar] [CrossRef]
- Eftychiou, C.; Eteocleous, N.; Zittis, I.; Simamonian, K.; Ioannou, A.; Loukaidou, P.; Ntaka, A.; Hadjigregoriou, A.; Vasiliades, V.; Adamou, M.; et al. Outcomes of transfemoral transcatheter aortic valve implantation (TAVI) and predictors of thirty-day major adverse cardiovascular events (MACE) and one-year mortality. Hell. J. Cardiol. 2021, 62, 57–64. [Google Scholar] [CrossRef]
- Farag, M.; Kiberu, Y.; Ashwin Reddy, S.; Shoaib, A.; Egred, M.; Krishnan, U.; Fares, M.; Peverelli, M.; Gorog, D.A.; Elmahdy, W.; et al. Preoperative Atrial Fibrillation is associated with long-term morTality in patients undergoing suRgical AortiC valvE Replacement. J. Card. Surg. 2021, 36, 3561–3566. [Google Scholar] [CrossRef]
- Puls, M.; Korte, K.P.; Bleckmann, A.; Huenlich, M.; Danner, B.C.; Schoendube, F.; Hasenfuß, G.; Jacobshagen, C.; Schillinger, W. Long-term outcomes after TAVI in patients with different types of aortic stenosis: The conundrum of low flow, low gradient and low ejection fraction. EuroIntervention 2017, 13, 286–293. [Google Scholar] [CrossRef]
- Nuis, R.J.; Dager, A.E.; van der Boon, R.M.; Jaimes, M.C.; Caicedo, B.; Fonseca, J.; Van Mieghem, N.M.; Benitez, L.M.; Umana, J.P.; O’Neill, W.W.; et al. Patients with aortic stenosis referred for TAVI: Treatment decision, in-hospital outcome and determinants of survival. Neth. Heart J. 2012, 20, 16–23. [Google Scholar] [CrossRef]
- Vlot, E.A.; Verwijmeren, L.; van de Garde, E.M.W.; Kloppenburg, G.T.L.; van Dongen, E.P.A.; Noordzij, P.G. Intra-operative red blood cell transfusion and mortality after cardiac surgery. BMC Anesthesiol. 2019, 19, 65. [Google Scholar] [CrossRef]
- Kodali, S.K.; Williams, M.R.; Smith, C.R.; Svensson, L.G.; Webb, J.G.; Makkar, R.R.; Fontana, G.P.; Dewey, T.M.; Thourani, V.H.; Pichard, A.D.; et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 2012, 366, 1686–1695. [Google Scholar] [CrossRef]
- Holmgren, A.; Enger, T.B.; Näslund, U.; Videm, V.; Valle, S.; Evjemo, K.J.D.; Friberg, Ö.; Wahba, A. Long-term results after aortic valve replacement for bicuspid or tricuspid valve morphology in a Swedish population. Eur. J. Cardiothorac. Surg. 2021, 59, 570–576. [Google Scholar] [CrossRef]
- Makkar, R.R.; Yoon, S.H.; Chakravarty, T.; Kapadia, S.R.; Krishnaswamy, A.; Shah, P.B.; Kaneko, T.; Skipper, E.R.; Rinaldi, M.; Babaliaros, V.; et al. Association between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke among Patients at Low Surgical Risk. JAMA 2021, 326, 1034–1044. [Google Scholar] [CrossRef]
- Zhou, D.; Yidilisi, A.; Fan, J.; Zhang, Y.; Dai, H.; Zhu, G.; Guo, Y.; He, Y.; Zhu, Q.; Lin, X.; et al. Three-year outcomes of transcatheter aortic valve implantation for bicuspid versus tricuspid aortic stenosis. EuroIntervention 2022, 18, 193–202. [Google Scholar] [CrossRef]
- Bruschi, G.; Morici, N. Mortality in the PARTNER trials: Transfemoral is better. J. Am. Coll. Cardiol. 2014, 64, 169–171. [Google Scholar] [CrossRef]
- Fröhlich, G.M.; Baxter, P.D.; Malkin, C.J.; Scott, D.J.; Moat, N.E.; Hildick-Smith, D.; Cunningham, D.; MacCarthy, P.A.; Trivedi, U.; de Belder, M.A.; et al. Comparative survival after transapical, direct aortic, and subclavian transcatheter aortic valve implantation (data from the UK TAVI registry). Am. J. Cardiol. 2015, 116, 1555–1559. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef]
- Kaihara, T.; Higuma, T.; Izumo, M.; Kotoku, N.; Suzuki, T.; Kameshima, H.; Sato, Y.; Kuwata, S.; Koga, M.; Mitarai, T.; et al. Influence of coronary artery disease and percutaneous coronary intervention on mid-term outcomes in patients with aortic valve stenosis treated with transcatheter aortic valve implantation. Clin. Cardiol. 2021, 44, 1089–1097. [Google Scholar] [CrossRef]
- Dewey, T.M.; Brown, D.L.; Herbert, M.A.; Culica, D.; Smith, C.R.; Leon, M.B.; Svensson, L.G.; Tuzcu, M.; Webb, J.G.; Cribier, A.; et al. Effect of concomitant coronary artery disease on procedural and late outcomes of transcatheter aortic valve implantation. Ann. Thorac. Surg. 2010, 89, 758–767; discussion 767. [Google Scholar] [CrossRef]
- Beach, J.M.; Mihaljevic, T.; Svensson, L.G.; Rajeswaran, J.; Marwick, T.; Griffin, B.; Johnston, D.R.; Sabik JF 3rd Blackstone, E.H. Coronary artery disease and outcomes of aortic valve replacement for severe aortic stenosis. J. Am. Coll. Cardiol. 2013, 61, 837–848. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744; discussion 744–745. [Google Scholar] [CrossRef]
- Shahian, D.M.; Jacobs, J.P.; Badhwar, V.; Kurlansky, P.A.; Furnary, A.P.; Cleveland, J.C., Jr.; Lobdell, K.W.; Vassileva, C.; Wyler von Ballmoos, M.C.; Thourani, V.H.; et al. The Society of Thoracic Surgeons 2018 Adult Cardiac Surgery Risk Models: Part 1—Background, Design Considerations, and Model Development. Ann. Thorac. Surg. 2018, 105, 1411–1418. [Google Scholar] [CrossRef]
- de Waard, G.A.; Jansen, E.K.; de Mulder, M.; Vonk, A.B.; Umans, V.A. Long-term outcomes of isolated aortic valve replacement and concomitant SAVR and coronary artery bypass grafting. Neth. Heart J. 2012, 20, 110–117. [Google Scholar] [CrossRef]
- Çelik, M.; Durko, A.P.; Head, S.J.; Mahtab, E.A.F.; van Mieghem, N.M.; Cummins, P.A.; Kappetein, A.P.; Bogers, A.J.J.C. Coronary revascularization after surgical aortic valve replacement. JTCVS Open 2020, 3, 91–101. [Google Scholar] [CrossRef]
- Goel, S.S.; Ige, M.; Tuzcu, E.M.; Ellis, S.G.; Stewart, W.J.; Svensson, L.G.; Lytle, B.W.; Kapadia, S.R. Severe aortic stenosis and coronary artery disease—Implications for management in the transcatheter aortic valve replacement era: A comprehensive review. J. Am. Coll. Cardiol. 2013, 62, 1–10. [Google Scholar] [CrossRef]
- Khawaja, M.Z.; Redwood, S.R.; Thomas, M. Coronary artery disease in patients undergoing TAVI--why not to treat. EuroIntervention 2014, 10 (Suppl. U), U76–U83. [Google Scholar] [CrossRef]
- Witberg, G.; Zusman, O.; Codner, P.; Assali, A.; Kornowski, R. Impact of Coronary Artery Revascularization Completeness on Outcomes of Patients with Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement: A Meta-Analysis of Studies Using the Residual SYNTAX Score (Synergy Between PCI with Taxus and Cardiac Surgery). Circ. Cardiovasc. Interv. 2018, 11, e006000. [Google Scholar]
- Ramee, S.; Anwaruddin, S.; Kumar, G.; Piana, R.N.; Babaliaros, V.; Rab, T.; Klein, L.W.; Aortic Stenosis AUC Writing Group; Interventional Section of the Leadership Council of the American College of Cardiology. The Rationale for Performance of Coronary Angiography and Stenting Before Transcatheter Aortic Valve Replacement: From the Interventional Section Leadership Council of the American College of Cardiology. JACC Cardiovasc. Interv. 2016, 9, 2371–2375. [Google Scholar] [CrossRef]
- Kotronias, R.A.; Kwok, C.S.; George, S.; Capodanno, D.; Ludman, P.F.; Townend, J.N.; Doshi, S.N.; Khogali, S.S.; Généreux, P.; Herrmann, H.C.; et al. Transcatheter Aortic Valve Implantation with or Without Percutaneous Coronary Artery Revascularization Strategy: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e005960. [Google Scholar] [CrossRef]
- Patterson, T.; Clayton, T.; Dodd, M.; Khawaja, Z.; Morice, M.C.; Wilson, K.; Kim, W.K.; Meneveau, N.; Hambrecht, R.; Byrne, J.; et al. ACTIVATION (PercutAneous Coronary inTervention prIor to transcatheter aortic VAlve implantaTION): A Randomized Clinical Trial. JACC Cardiovasc. Interv. 2021, 14, 1965–1974. [Google Scholar] [CrossRef]
- Weferling, M.; Hamm, C.W.; Kim, W.K. Percutaneous Coronary Intervention in Transcatheter Aortic Valve Implantation Patients: Overview and Practical Management. Front. Cardiovasc. Med. 2021, 8, 653768. [Google Scholar] [CrossRef]
- Nai Fovino, L.; Scotti, A.; Massussi, M.; Fabris, T.; Cardaioli, F.; Rodinò, G.; Matsuda, Y.; Frigo, F.; Fraccaro, C.; Tarantini, G. Incidence and feasibility of coronary access after transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2020, 96, E535–E541. [Google Scholar] [CrossRef]
- Tarantini, G.; Nai Fovino, L.; Le Prince, P.; Darremont, O.; Urena, M.; Bartorelli, A.L.; Vincent, F.; Hovorka, T.; Alcalá Navarro, Y.; Dumonteil, N.; et al. Coronary Access and Percutaneous Coronary Intervention Up to 3 Years after Transcatheter Aortic Valve Implantation with a Balloon-Expandable Valve. Circ. Cardiovasc. Interv. 2020, 13, e008972. [Google Scholar] [CrossRef]
- Ochiai, T.; Chakravarty, T.; Yoon, S.H.; Kaewkes, D.; Flint, N.; Patel, V.; Mahani, S.; Tiwana, R.; Sekhon, N.; Nakamura, M.; et al. Coronary Access after TSAVR. JACC Cardiovasc. Interv. 2020, 13, 693–705. [Google Scholar] [CrossRef]
- Staerk, L.; Sherer, J.A.; Ko, D.; Benjamin, E.J.; Helm, R.H. Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circ. Res. 2017, 120, 1501–1517. [Google Scholar] [CrossRef]
- Faroux, L.; Guimaraes, L.; Wintzer-Wehekind, J.; Junquera, L.; Ferreira-Neto, A.N.; Del Val, D.; Muntané-Carol, G.; Mohammadi, S.; Paradis, J.M.; Rodés-Cabau, J. Coronary Artery Disease and Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 362–372. [Google Scholar] [CrossRef]
- Tarantini, G.; Fabris, T.; Nai Fovino, L. TSAVR-in-TSAVR and coronary access: Importance of preprocedural planning. EuroIntervention 2020, 16, e129–e132. [Google Scholar] [CrossRef]
- Tarantini, G.; Tang, G.; Nai Fovino, L.; Blackman, D.; Van Mieghem, N.M.; Kim, W.K.; Karam, N.; Carrilho-Ferreira, P.; Fournier, S.; Pręgowski, J.; et al. Management of coronary artery disease in patients undergoing transcatheter aortic valve implantation. A clinical consensus statement from the European Association of Percutaneous Cardiovascular Interventions in collaboration with the ESC Working Group on Cardiovascular Surgery. EuroIntervention 2023, 19, 37–52. [Google Scholar]
- Roques, F.; Nashef, S.A.; Michel, P.; Gauducheau, E.; de Vincentiis, C.; Baudet, E.; Cortina, J.; David, M.; Faichney, A.; Gabrielle, F.; et al. Risk factors and outcome in European cardiac surgery: Analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 1999, 15, 816–822; discussion 822–823. [Google Scholar] [CrossRef]
- Mukherjee, D.; Eagle, K.A.; Smith, D.E.; Kline-Rogers, E.M.; Chetcuti, S.; Grossman, P.M.; Nallamothu, B.; O’Donnell, M.; DeFranco, A.; Maxwell-Eward, A.; et al. Impact of extracardiac vascular disease on acute prognosis in patients who undergo percutaneous coronary interventions (data from the Blue Cross & Blue Shield of Michigan Cardiovascular Consortium [BMC2]). Am. J. Cardiol. 2003, 92, 972–974. [Google Scholar]
- Rihal, C.S.; Sutton-Tyrrell, K.; Guo, P.; Keller, N.M.; Jandova, R.; Sellers, M.A.; Schaff, H.V.; Holmes, D.R., Jr. Increased incidence of periprocedural complications among patients with peripheral vascular disease undergoing myocardial revascularization in the bypass angioplasty revascularization investigation. Circulation 1999, 100, 171–177. [Google Scholar] [CrossRef]
- Sutton-Tyrrell, K.; Rihal, C.; Sellers, M.A.; Burek, K.; Trudel, J.; Roubin, G.; Brooks, M.M.; Grogan, M.; Sopko, G.; Keller, N.; et al. Long-term prognostic value of clinically evident noncoronary vascular disease in patients undergoing coronary revascularization in the bypass angioplasty revascularization investigation (BARI). Am. J. Cardiol. 1998, 81, 375–381. [Google Scholar] [CrossRef]
Preoperative Variables | SAVR | TAVI | p Value |
---|---|---|---|
EuroSCORE 1 (Logistic) | 7.0 ± 4.9 | 15.9 ± 9.4 | <0.001 |
EuroSCORE 2 | 2.0 ± 1.7 | 5.2 ± 4.0 | <0.001 |
STS SCORE | 2.0 ± 1.2 | 4.5 ± 2.8 | <0.001 |
Age (mean) | 72.7 ± 9.7 | 82.2 ± 6.2 | <0.001 |
Age (median) | 75.0 | 83.2 | <0.001 |
Female | 498 (47.5%) | 235 (53.8%) | 0.027 |
BMI | 27.5 ± 5.0 | 27.3 ± 5.0 | 0.4292 |
BSA | 1.8 ± 0.2 | 1.7 ± 0.2 | <0.001 |
Diabetes | 194 (18.5%) | 101 (23.1%) | 0.042 |
Hypertension | 993 (94.7%) | 433 (99.1%) | <0.001 |
Hypercolesterolemia | 659 (62.8%) | 296 (67.7%) | 0.072 |
Dialysis | 8 (0.8%) | 6 (1.4%) | 0.267 |
Preoperative creatinine | 1.1 ± 3.6 | 1.5 ± 7.5 | 0.145 |
Stroke | 21 (2%) | 19 (4.4%) | |
TIA | 32 (3.1%) | 23 (5.3%) | 0.004 |
Smoking habits | 544 (51.9%) | 167 (38.2%) | <0.001 |
COPD | 60 (5.7%) | 76 (17.4%) | <0.001 |
Extracardiac arteriopathy | 152 (14.5%) | 118 (27.0%) | <0.001 |
Bicuspid anatomy of aortic valve | 182 (17.4%) | 7 (1.6%) | <0.001 |
Previous cardiac surgery | 29 (2.8%) | 61 (14.0%) | <0.001 |
Previous CABG | 6 (0.6%) | 49 (11.2%) | <0.001 |
Previous surgery of cardiac valves | 18 (1.7%) | 14 (3.2%) | 0.072 |
Previous PCI | 111 (10.6%) | 216 (49.4%) | <0.001 |
Previous myocardial injury | 37 (3.5%) | 63 (14.4%) | <0.001 |
Recent myocardial injury (EuroSCORE) | 18 (1.7%) | 14 (3.2%) | 0.072 |
CAD | 150 (14.3%) | 260 (59.5%) | <0.001 |
Preoperative AF | 100 (9.5%) | 83 (19.0%) | <0.001 |
NYHA III/IV class | 304 (29.0%) | 383 (87.6%) | <0.001 |
EF < 30% | 185 (17.6%) | 113 (25.9%) | <0.001 |
Aortic regurgitation | 119 (11.3%) | 82 (18.8%) | <0.001 |
Mitral regurgitation | 52 (5.0%) | 76 (17.4%) | <0.001 |
Tricuspid regurgitation | 27 (2.6%) | 69 (15.8%) | <0.001 |
Pulmonary hypertension | 11 (1.1%) | 22 (5.0%) | <0.001 |
PM dependency | 13 (1.2%) | 30 (6.9%) | <0.001 |
Liver cirrhosis | 5 (0.5%) | 3 (0.7%) | 0.700 |
Active cancer | 11 (1.1%) | 5 (1.1%) | 0.871 |
Senile degeneration | 1009 (96.2%) | 431 (98.6%) | 0.019 |
Degeneration of tricuspid valve | 33 (3.1%) | 3 (0.7%) | <0.001 |
Degeneration of bicuspid valve | 7 (0.7%) | 3 (0.7%) | <0.001 |
Aortic valve area | 0.7 cm2 | 0.7 cm2 | ns |
Mean aortic transvalvular gradient | 48.5 mmHg | 49 mmHg | ns |
Procedural Variables | SAVR | TAVI |
---|---|---|
Mechanical valve | 62 (5.9%) | |
Cross-clamp time | 60.3 ± 17.9 | |
ECC time | 83.0 ± 21.8 | |
Edwards SAPIEN® | 9 (2.1%) | |
Edwards SAPIEN XT® | 123 (28.2%) | |
Edwards SAPIEN 3® | 213 (48.7%) | |
Edwards SAPIEN 3 ULTRA® | 92 (21.1%) | |
Transfemoral approach | 266 (60.9%) | |
Transapical approach | 105 (24%) | |
Transaortic approach | 60 (13.7%) | |
Transaxillary approach | 6 (1.4%) | |
20 mm THV | 6 (1.4%) | |
23 mm THV | 173 (39.6%) | |
26 mm THV | 187 (42.8%) | |
29 mm THV | 71 (16.2%) |
Postoperative Variables | SAVR | TAVI | p Value |
---|---|---|---|
Blood transfusion | 529 (50.4%) | 166 (38.0%) | <0.001 |
Mechanical ventilation time (hours) | 14 ± 62.4 | 13.1 ± 58.8 | <0.001 |
ICU length of stay (days) | 2.2 ± 6.6 | 1.7 ± 3.5 | 0.129 |
Acute renal failure stage 1 | 25 (2.4%) | 9 (2.1%) | 0.751 |
Acute renal failure stage 2 | 5 (0.5%) | 2 (0.5%) | |
Acute renal failure stage 3 | 11 (1.1%) | 2 (0.5%) | |
Minor bleeding | 5 (0.5%) | 4 (0.9%) | 0.017 |
Major bleeding | 17 (1.6%) | 17 (3.9%) | |
Minor vascular complications | 0 (0%) | 31 (7.1%) | <0.001 |
Major vascular complications | 0 (0%) | 9 (2.1%) | |
Percutaneous vascular complications | 0 (0%) | 13 (3.0%) | |
Stroke | 8 (0.8%) | 2 (0.5%) | 0.732 |
TIA | 4 (0.4%) | 1 (0.2%) | 0.999 |
Postoperative AF | 332 (31.7%) | 12 (2.8%) | <0.001 |
PM implantation | 24 (2.3%) | 10 (2.3%) | 0.999 |
In-hospital length of stay (mean) | 11.6 ± 11.9 | 9.6 ± 12.0 | 0.004 |
In-hospital length of stay (median) | 9 | 7 | <0.001 |
Embolization | 1 (0.23%) | ||
Annular injury | 2 (0.46%) | ||
Coronary obstruction | 3 (0.69%) | ||
Perivalvular leak more than moderate | 9 (2.1%) |
Patient | Type of Device | Time Lapse Between TAVI and PCI (Years) | Type of Risk Plane in CT Scan | Coronary Access |
---|---|---|---|---|
1 | SAPIEN XT® | 5 | 1 | Above the frame |
2 | SAPIEN XT® | 4 | 1 | Above the frame |
3 | SAPIEN XT® | 1.8 | 1 | Above the frame |
4 | SAPIEN 3® | 0.4 | 2b | Through the open cells |
5 | SAPIEN 3 ULTRA® | 1.6 | 1 | Above the frame |
6 | SAPIEN 3® | 0.7 | 2b | Through the open cells |
7 | SAPIEN XT® | 3.6 | 1 | Above the frame |
8 | SAPIEN XT® | 6 | 1 | Above the frame |
9 | SAPIEN 3® | 0.5 | 2b | Through the open cells |
Independent Predictors | Our Experience | SAVR | TAVI |
---|---|---|---|
Age | HR 1.07, 95% CI 1.05–1.09 | HR 1.03, 95% CI 1.02–1.04 | HR 1.15, 95% CI 1.01–1.30 |
Jahangiri et al. [25] | Attinger-Toller et al. [29] | ||
COPD | HR 2.01, 95% CI 1.55–2.61 | OR = 2.6, 95% CI 1.6–15.7 | HR 1.84, 95% CI 1.08–3.13 |
Di Eusanio et al. [24] | Mok et al. [30] | ||
Permanent AF | HR 2.32, 95% CI 1.85–2.93 | HR 2.24, 95% CI 1.79–2.79 | HR 3.1, 95% CI 1.05–9.19 |
Farag et al. [32] | Eftychiou et al. [31] | ||
EF < 30% | HR 1.53, 95% CI 1.25–1.87 | HR 1.7, 95% CI 1.2–2.5 | HR 2.86, 95% CI 1.4–5.8 |
Di Eusanio et al. [24] | Puls et al. [33] | ||
ESKD on dialysis | HR 5.92, 95% CI 3.25–10.77 | HR 9.8, 95% CI 2.4–47.5 | HR 1.18, 95% CI 1.06–1.33 |
Di Eusanio et al. [24] | Nuis et al. [34] | ||
Blood transfusion | HR 1.75, 95% CI 1.46–2.11 | HR 1.19, 95% CI 1.05–1.33 | HR 3.1, 95% CI 1.5–6.7 |
Vlot et al. [35] | Nuis et al. [34] | ||
Intraoperative TIA or stroke (All-stroke VARC-2) | HR 2.36, 95% CI 1.11–5.01 | HR 5.2, 95% CI 3.07–8.80 Kodali et al. [36] | HR 2.47, 95% CI 1.42–4.30 Kodali et al. [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbieri, D.; Giorgi, F.; Mascheroni, G.; Chiarabelli, M.; D’Anniballe, G.; Meli, M.; Labia, C.; Ghidoni, I. Coronary Revascularization after Transcatheter and Surgical Aortic Valve Replacement. J. Clin. Med. 2023, 12, 7257. https://doi.org/10.3390/jcm12237257
Gabbieri D, Giorgi F, Mascheroni G, Chiarabelli M, D’Anniballe G, Meli M, Labia C, Ghidoni I. Coronary Revascularization after Transcatheter and Surgical Aortic Valve Replacement. Journal of Clinical Medicine. 2023; 12(23):7257. https://doi.org/10.3390/jcm12237257
Chicago/Turabian StyleGabbieri, Davide, Federico Giorgi, Greta Mascheroni, Matteo Chiarabelli, Giuseppe D’Anniballe, Marco Meli, Clorinda Labia, and Italo Ghidoni. 2023. "Coronary Revascularization after Transcatheter and Surgical Aortic Valve Replacement" Journal of Clinical Medicine 12, no. 23: 7257. https://doi.org/10.3390/jcm12237257
APA StyleGabbieri, D., Giorgi, F., Mascheroni, G., Chiarabelli, M., D’Anniballe, G., Meli, M., Labia, C., & Ghidoni, I. (2023). Coronary Revascularization after Transcatheter and Surgical Aortic Valve Replacement. Journal of Clinical Medicine, 12(23), 7257. https://doi.org/10.3390/jcm12237257