Differential Diagnosis: Hepatic Complications in Inborn Errors of Immunity
Abstract
:1. Introduction
2. Nodular Regenerative Hyperplasia
2.1. Pathophysiology
2.2. Histological Features
2.3. Presentation and Diagnosis
2.4. Treatment
3. Hepatic Infections in IEI
3.1. Viral Infections
3.2. Bacterial Infections
3.3. Mycobacterial Infections
3.4. Parasites
3.5. Fungi
4. Immune Dysregulation
4.1. Pathophysiology of Immune Dysregulation in IEI
4.2. Granulomas
4.3. Autoimmune Hepatitis
4.4. Primary Biliary Cholangitis
4.5. Primary Sclerosing Cholangitis
5. Iatrogenic
5.1. Drug-Induced Liver Injury (DILI) in IEI
5.2. Post-HSCT Complications
5.2.1. VOD/SOS
5.2.2. Infection
5.2.3. GvHD
6. Hepatic Malignancy in IEI
7. Other Hepatic Complications Associated with IEIs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C.; et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 42, 1473–1507. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.E.; Heimall, J.R. A Review of Chronic Granulomatous Disease. Adv. Ther. 2017, 34, 2543–2557. [Google Scholar] [CrossRef] [PubMed]
- Leven, E.A.; Maffucci, P.; Ochs, H.D.; Scholl, P.R.; Buckley, R.H.; Fuleihan, R.L.; Geha, R.S.; Cunningham, C.K.; Bonilla, F.A.; Conley, M.E.; et al. Hyper IgM Syndrome: A Report from the USIDNET Registry. J. Clin. Immunol. 2016, 36, 490–501. [Google Scholar] [CrossRef]
- Arnold, D.E.; Pai, S.Y. Progress in the field of hematopoietic stem cell-based therapies for inborn errors of immunity. Curr. Opin. Pediatr. 2023, 35, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Chetty, K.; Booth, C. Gene therapy for primary immunodeficiencies: Up-to-date. Expert. Opin. Biol. Ther. 2021, 21, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Currier, R.; Puck, J.M. SCID newborn screening: What we’ve learned. J. Allergy Clin. Immunol. 2021, 147, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Albert, M.H.; Hauck, F.; Hönig, M.; Schütz, C.; Schulz, A.; Speckmann, C. Newborn screening for severe combined immunodeficiencies (SCID) in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023, 66, 1222–1231. [Google Scholar] [CrossRef]
- Azzu, V.; Fonseca, M.; Duckworth, A.; Kennard, L.; Moini, N.; Qurashi, M.; Brais, R.; Davies, S.; Manson, A.; Staples, E.; et al. Liver disease is common in patients with common variable immunodeficiency and predicts mortality in the presence of cirrhosis or portal hypertension. J. Allergy Clin. Immunol. Pr. 2019, 7, 2484–2486.e3. [Google Scholar] [CrossRef]
- Resnick, E.S.; Moshier, E.L.; Godbold, J.H.; Cunningham-Rundles, C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 2012, 119, 1650–1657. [Google Scholar] [CrossRef]
- Ward, C.; Lucas, M.; Piris, J.; Collier, J.; Chapel, H. Abnormal liver function in common variable immunodeficiency disorders due to nodular regenerative hyperplasia. Clin. Exp. Immunol. 2008, 153, 331–337. [Google Scholar] [CrossRef]
- Belaiche, J.; Vesin, P.; Fischer, D.; Wechsler, J.; Franco, D.; Bismuth, H.; Cattan, D. Nodular regenerative hyperplasia of the liver with portal hypertension associated with Felty’s syndrome. Report of a case (author’s transl). Gastroenterol. Clin. Biol. 1978, 2, 63–70. [Google Scholar]
- Perez Ruiz, F.; Orte Martinez, F.J.; Zea Mendoza, A.C.; Ruiz del Arbol, L.; Moreno Caparros, A. Nodular regenerative hyperplasia of the liver in rheumatic diseases: Report of seven cases and review of the literature. Semin. Arthritis Rheum. 1991, 21, 47–54. [Google Scholar] [CrossRef]
- Jain, P.; Patel, S.; Simpson, H.N.; Silver, R.M.; Lewin, D.N.; Campbell, R.C.; Guimaraes, M.; Silver, K.C. Nodular Regenerative Hyperplasia of the Liver in Rheumatic Disease: Cases and Review of the Literature. J. Investig. Med. High. Impact Case Rep. 2021, 9, 23247096211044617. [Google Scholar] [CrossRef]
- Mallet, V.; Blanchard, P.; Verkarre, V.; Vallet-Pichard, A.; Fontaine, H.; Lascoux-Combe, C.; Pol, S. Nodular regenerative hyperplasia is a new cause of chronic liver disease in HIV-infected patients. AIDS 2007, 21, 187–192. [Google Scholar] [CrossRef]
- Mendizabal, M.; Craviotto, S.; Chen, T.; Silva, M.O.; Reddy, K.R. Noncirrhotic portal hypertension: Another cause of liver disease in HIV patients. Ann. Hepatol. 2009, 8, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.R.; Tsukamoto, Y.; Kanazawa, N.; Izumi, T.; Awata, N.; Nishizawa, Y.; Ohsawa, M.; Ishiguro, S. Concomitant hepatocellular carcinoma and non-Hodgkin’s lymphoma in a patient with nodular regenerative hyperplasia. Pathol. Int. 2006, 56, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Musumba, C.O. Review article: The association between nodular regenerative hyperplasia, inflammatory bowel disease and thiopurine therapy. Aliment. Pharmacol. Ther. 2013, 38, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Biecker, E.; Trebicka, J.; Fischer, H.P.; Sauerbruch, T.; Lammert, F. Portal hypertension and nodular regenerative hyperplasia in a patient with celiac disease. Z. Gastroenterol. 2006, 44, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Cancado, E.L.; Medeiros, D.M.; Deguti, M.M.; Dos Santos, M.S.; de Mello, E.S.; Vendramini, M.B.; Carrilho, F.J. Celiac disease associated with nodular regenerative hyperplasia, pulmonary abnormalities, and IgA anticardiolipin antibodies. J. Clin. Gastroenterol. 2006, 40, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Buffet, C.; Cantarovitch, M.; Pelletier, G.; Fabre, M.; Martin, E.; Charpentier, B.; Etienne, J.P.; Fries, D. Three cases of nodular regenerative hyperplasia of the liver following renal transplantation. Nephrol. Dial. Transpl. 1988, 3, 327–330. [Google Scholar]
- Sebagh, M.; Farges, O.; Samuel, D.; Bismuth, H.; Reynès, M. Nodular regenerative hyperplasia of the liver following orthotopic liver transplantation. Transpl. Proc. 1995, 27, 2510–2511. [Google Scholar]
- Pezzullo, L.; Muretto, P.; De Rosa, G.; Picardi, M.; Lucania, A.; Rotoli, B. Liver nodular regenerative hyperplasia after bone marrow transplant. Haematologica 2000, 85, 669–670. [Google Scholar] [PubMed]
- Hartleb, M.; Gutkowski, K.; Milkiewicz, P. Nodular regenerative hyperplasia: Evolving concepts on underdiagnosed cause of portal hypertension. World J. Gastroenterol. 2011, 17, 1400–1409. [Google Scholar] [CrossRef]
- Ghabril, M.; Vuppalanchi, R. Drug-induced nodular regenerative hyperplasia. Semin. Liver Dis. 2014, 34, 240–245. [Google Scholar] [CrossRef]
- Nunes-Santos, C.J.; Koh, C.; Rai, A.; Sacco, K.; Marciano, B.E.; Kleiner, D.E.; Marko, J.; Bergerson, J.R.E.; Stack, M.; Rivera, M.M.; et al. Nodular regenerative hyperplasia in X-linked agammaglobulinemia: An underestimated and severe complication. J. Allergy Clin. Immunol. 2022, 149, 400–409.e3. [Google Scholar] [CrossRef] [PubMed]
- Milligan, K.L.; Schirm, K.; Leonard, S.; Hussey, A.A.; Agharahimi, A.; Kleiner, D.E.; Fuss, I.; Lingala, S.; Heller, T.; Rosenzweig, S.D. Ataxia telangiectasia associated with nodular regenerative hyperplasia. J. Clin. Immunol. 2016, 36, 739–742. [Google Scholar] [CrossRef]
- Schröder, C.; Sogkas, G.; Fliegauf, M.; Dörk, T.; Liu, D.; Hanitsch, L.G.; Steiner, S.; Scheibenbogen, C.; Jacobs, R.; Grimbacher, B.; et al. Late-Onset Antibody Deficiency Due to Monoallelic Alterations in. Front. Immunol. 2019, 10, 2618. [Google Scholar] [CrossRef]
- Springer, J.M.; Gierer, S.A.; Jiang, H.; Kleiner, D.; Deuitch, N.; Ombrello, A.K.; Grayson, P.C.; Aksentijevich, I. Deficiency of Adenosine Deaminase 2 in Adult Siblings: Many Years of a Misdiagnosed Disease with Severe Consequences. Front. Immunol. 2018, 9, 1361. [Google Scholar] [CrossRef]
- Malamut, G.; Ziol, M.; Suarez, F.; Beaugrand, M.; Viallard, J.F.; Lascaux, A.S.; Verkarre, V.; Bechade, D.; Poynard, T.; Hermine, O.; et al. Nodular regenerative hyperplasia: The main liver disease in patients with primary hypogammaglobulinemia and hepatic abnormalities. J. Hepatol. 2008, 48, 74–82. [Google Scholar] [CrossRef]
- Oh, J.; Garabedian, E.; Fuleihan, R.; Cunningham-Rundles, C. Clinical Manifestations and Outcomes of Activated Phosphoinositide 3-Kinase δ Syndrome from the USIDNET Cohort. J. Allergy Clin. Immunol. Pr. 2021, 9, 4095–4102. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.G.; Toth, K.A.; Risma, S.I.; Kolicheski, A.; Saucier, N.; Berríos, R.J.F.; Greenberg, Z.J.; Leiding, J.W.; Bleesing, J.J.; Thatayatikom, A.; et al. A human STAT3 gain-of-function variant confers T cell dysregulation without predominant Treg dysfunction in mice. JCI Insight 2022, 7, e162695. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.J.; Hussain, N.; Wright, E.C.; Kleiner, D.E.; Hoofnagle, J.H.; Ahlawat, S.; Anderson, V.; Hilligoss, D.; Gallin, J.I.; Liang, T.J.; et al. Hepatic involvement and portal hypertension predict mortality in chronic granulomatous disease. Gastroenterology 2008, 134, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.E.; Cunningham-Rundles, C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front. Immunol. 2020, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Fuss, I.J.; Friend, J.; Yang, Z.; He, J.P.; Hooda, L.; Boyer, J.; Xi, L.; Raffeld, M.; Kleiner, D.E.; Heller, T.; et al. Nodular regenerative hyperplasia in common variable immunodeficiency. J. Clin. Immunol. 2013, 33, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.M.S.; Toledo-Barros, M.; Alves, V.A.F.; Duarte, M.I.S.; Takakura, C.; Bernardes-Silva, C.F.; Marinho, A.K.B.B.; Grecco, O.; Kalil, J.; Kokron, C.M. Liver disease accompanied by enteropathy in common variable immunodeficiency: Common pathophysiological mechanisms. Front. Immunol. 2022, 13, 933463. [Google Scholar] [CrossRef] [PubMed]
- Crescenzi, L.; Pecoraro, A.; Fiorentino, A.; Poto, R.; Varricchi, G.; Rispo, A.; Morisco, F.; Spadaro, G. Liver stiffness assessment by transient elastography suggests high prevalence of liver involvement in common variable immunodeficiency. Dig. Liver Dis. 2019, 51, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Nakanuma, Y.; Hoso, M.; Sasaki, M.; Terada, T.; Katayanagi, K.; Nonomura, A.; Kurumaya, H.; Harada, A.; Obata, H. Histopathology of the liver in non-cirrhotic portal hypertension of unknown aetiology. Histopathology 1996, 28, 195–204. [Google Scholar] [CrossRef]
- Wanless, I.R. Micronodular transformation (nodular regenerative hyperplasia) of the liver: A report of 64 cases among 2500 autopsies and a new classification of benign hepatocellular nodules. Hepatology 1990, 11, 787–797. [Google Scholar] [CrossRef]
- Kathayat, R.; Pandey, G.K.; Malhotra, V.; Omanwar, S.; Sharma, B.K.; Sarin, S.K. Rabbit model of non-cirrhotic portal fibrosis with repeated immunosensitization by rabbit splenic extract. J. Gastroenterol. Hepatol. 2002, 17, 1312–1316. [Google Scholar] [CrossRef]
- Kono, K.; Ohnishi, K.; Omata, M.; Saito, M.; Nakayama, T.; Hatano, H.; Nakajima, Y.; Sugita, S.; Okuda, K. Experimental portal fibrosis produced by intraportal injection of killed nonpathogenic Escherichia coli in rabbits. Gastroenterology 1988, 94, 787–796. [Google Scholar] [CrossRef]
- Silva, H.; Brito, C.G.X.; Hall, A.; Eden, N.; Somers, H.; Burke, N.; Burns, S.O.; Lowe, D.; Thorburn, D.; Halliday, N.; et al. Common variable immunodeficiency disorder (CVID)-related liver disease: Assessment of the main histological aspects using novel semiquantitative scoring systems, image analysis and correlation with clinical parameters of liver stiffness and portal hypertension. J. Clin. Pathol. 2023. [Google Scholar] [CrossRef]
- Crotty, R.; Taylor, M.S.; Farmer, J.R.; Kakar, S.; Yilmaz, F.; Ardeniz, Ö.; Patil, D.T.; Deshpande, V. Spectrum of Hepatic Manifestations of Common Variable Immunodeficiency. Am. J. Surg. Pathol. 2020, 44, 617–625. [Google Scholar] [CrossRef]
- Ziol, M.; Poirel, H.; Kountchou, G.N.; Boyer, O.; Mohand, D.; Mouthon, L.; Tepper, M.; Guillet, J.G.; Guettier, C.; Raphael, M.; et al. Intrasinusoidal cytotoxic CD8+ T cells in nodular regenerative hyperplasia of the liver. Hum. Pathol. 2004, 35, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Perreau, M.; Vigano, S.; Bellanger, F.; Pellaton, C.; Buss, G.; Comte, D.; Roger, T.; Lacabaratz, C.; Bart, P.A.; Levy, Y.; et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J. Exp. Med. 2014, 211, 2033–2045. [Google Scholar] [CrossRef]
- Barbosa, R.R.; Silva, S.P.; Silva, S.L.; Tendeiro, R.; Melo, A.C.; Pedro, E.; Barbosa, M.P.; Santos, M.C.; Victorino, R.M.; Sousa, A.E. Monocyte activation is a feature of common variable immunodeficiency irrespective of plasma lipopolysaccharide levels. Clin. Exp. Immunol. 2012, 169, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Hel, Z.; Huijbregts, R.P.; Xu, J.; Nechvatalova, J.; Vlkova, M.; Litzman, J. Altered serum cytokine signature in common variable immunodeficiency. J. Clin. Immunol. 2014, 34, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, N.; Gulati, N.; Rastogi, A.; Chougule, A.; Bihari, C.; Jindal, A. Nodular regenerative hyperplasia—An under-recognized vascular disorder of liver. Pathol. Res. Pr. 2020, 216, 152833. [Google Scholar] [CrossRef]
- Reshamwala, P.A.; Kleiner, D.E.; Heller, T. Nodular regenerative hyperplasia: Not all nodules are created equal. Hepatology 2006, 44, 7–14. [Google Scholar] [CrossRef]
- Sousa eSilva, R.; Pereira da Silva, S.; Luís, R.; Baldaia, C.; Lopes da Silva, S. Nodular regenerative hyperplasia in CVID patients: Could low-dose oral glucocorticoids be part of the solution? Eur. Ann. Allergy Clin. Immunol. 2022, 55, 313. [Google Scholar] [CrossRef]
- Roosens, W.; Staels, F.; Van Loo, S.; Humblet-Baron, S.; Meyts, I.; De Samblanx, H.; Verslype, C.; van Malenstein, H.; van der Merwe, S.; Laleman, W.; et al. Rituximab and improved nodular regenerative hyperplasia-associated non-cirrhotic liver disease in common variable immunodeficiency: A case report and literature study. Front. Immunol. 2023, 14, 1264482. [Google Scholar] [CrossRef]
- Azzu, V.; Elias, J.E.; Duckworth, A.; Davies, S.; Brais, R.; Kumararatne, D.S.; Gimson, A.E.S.; Griffiths, W.J.H. Liver transplantation in adults with liver disease due to common variable immunodeficiency leads to early recurrent disease and poor outcome. Liver Transplant. 2018, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.F.; Macpherson, M.E.; Bjøro, K.; Karlsen, T.H.; Reims, H.M.; Grzyb, K.; Fosby, B.; Fevang, B.; Aukrust, P.; Nordøy, I. Liver transplantation in patients with primary antibody deficiency. J. Allergy Clin. Immunol. 2017, 139, 1708–1710.e2. [Google Scholar] [CrossRef]
- Hernandez-Trujillo, V.; Zhou, C.; Scalchunes, C.; Ochs, H.D.; Sullivan, K.E.; Cunningham-Rundles, C.; Fuleihan, R.L.; Bonilla, F.A.; Petrovic, A.; Rawlings, D.J.; et al. A Registry Study of 240 Patients with X-Linked Agammaglobulinemia Living in the USA. J. Clin. Immunol. 2023, 43, 1468–1477. [Google Scholar] [CrossRef]
- Wehr, C.; Gennery, A.R.; Lindemans, C.; Schulz, A.; Hoenig, M.; Marks, R.; Recher, M.; Gruhn, B.; Holbro, A.; Heijnen, I.; et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J. Allergy Clin. Immunol. 2015, 135, 988–997.e6. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Sasaki, S.; Yasumi, T.; Imai, K.; Kusunoki, T.; Morio, T.; Kanegane, H. Helicobacter cinaedi-Associated Refractory Cellulitis in Patients with X-Linked Agammaglobulinemia. J. Clin. Immunol. 2020, 40, 1132–1137. [Google Scholar] [CrossRef]
- Stephan, J.L.; Vlekova, V.; Le Deist, F.; Blanche, S.; Donadieu, J.; De Saint-Basile, G.; Durandy, A.; Griscelli, C.; Fischer, A. Severe combined immunodeficiency: A retrospective single-center study of clinical presentation and outcome in 117 patients. J. Pediatr. 1993, 123, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Alsum, Z.; Hawwari, A.; Alsmadi, O.; Al-Hissi, S.; Borrero, E.; Abu-Staiteh, A.; Khalak, H.G.; Wakil, S.; Eldali, A.M.; Arnaout, R.; et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-like deficient patients: Single center experience of twenty-five patients. J. Clin. Immunol. 2013, 33, 55–67. [Google Scholar] [CrossRef]
- Villard, J.; Masternak, K.; Lisowska-Grospierre, B.; Fischer, A.; Reith, W. MHC class II deficiency: A disease of gene regulation. Medicine 2001, 80, 405–418. [Google Scholar] [CrossRef]
- Halliday, E.; Winkelstein, J.; Webster, A.D. Enteroviral infections in primary immunodeficiency (PID): A survey of morbidity and mortality. J. Infect. 2003, 46, 1–8. [Google Scholar] [CrossRef]
- Yap, P.L.; McOmish, F.; Webster, A.D.; Hammarstrom, L.; Smith, C.I.; Bjorkander, J.; Ochs, H.D.; Fischer, S.H.; Quinti, I.; Simmonds, P. Hepatitis C virus transmission by intravenous immunoglobulin. J. Hepatol. 1994, 21, 455–460. [Google Scholar] [CrossRef]
- Dropulic, L.K.; Cohen, J.I. Severe viral infections and primary immunodeficiencies. Clin. Infect. Dis. 2011, 53, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Winkelstein, J.A.; Marino, M.C.; Johnston, R.B.; Boyle, J.; Curnutte, J.; Gallin, J.I.; Malech, H.L.; Holland, S.M.; Ochs, H.; Quie, P.; et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 2000, 79, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.L.; Moussa, S.L.; Villar, R.G.; Hulett, R.L. Gastrointestinal complications of chronic granulomatous disease: Case report and literature review. Clin. Pediatr. 1998, 37, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Carrabba, M.; Dellepiane, R.M.; Cortesi, M.; Baselli, L.A.; Soresina, A.; Cirillo, E.; Giardino, G.; Conti, F.; Dotta, L.; Finocchi, A.; et al. Long term longitudinal follow-up of an AD-HIES cohort: The impact of early diagnosis and enrollment to IPINet centers on the natural history of Job’s syndrome. Allergy Asthma Clin. Immunol. 2023, 19, 32. [Google Scholar] [CrossRef]
- Schöndorf, D.; von Bernuth, H.; Simon, A.; Schneider, G.; Kölsch, U.; Schwarz, K.; Meier, C.M.; Groe-Onnebrink, J.; Gortner, L.; Rohrer, T.R. Liver abscess complicated by diaphragm perforation and pleural empyema leads to the discovery of interleukin-1 receptor-associated kinase 4 deficiency. Pediatr. Infect. Dis. J. 2014, 33, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Comeau, J.L.; Lin, T.J.; Macken, M.B.; Li, B.; Ku, C.L.; von Bernuth, H.; Casanova, J.L.; Issekutz, A.C. Staphylococcal pericarditis, and liver and paratracheal abscesses as presentations in two new cases of interleukin-1 receptor associated kinase 4 deficiency. Pediatr. Infect. Dis. J. 2008, 27, 170–174. [Google Scholar] [CrossRef]
- Marciano, B.E.; Huang, C.Y.; Joshi, G.; Rezaei, N.; Carvalho, B.C.; Allwood, Z.; Ikinciogullari, A.; Reda, S.M.; Gennery, A.; Thon, V.; et al. BCG vaccination in patients with severe combined immunodeficiency: Complications, risks, and vaccination policies. J. Allergy Clin. Immunol. 2014, 133, 1134–1141. [Google Scholar] [CrossRef]
- Peñafiel Vicuña, A.K.; Yamazaki Nakashimada, M.; León Lara, X.; Mendieta Flores, E.; Nuñez Núñez, M.E.; Lona-Reyes, J.C.; Hernández Nieto, L.; Ramírez Vázquez, M.G.; Barroso Santos, J.; López Iñiguez, Á.; et al. Mendelian Susceptibility to Mycobacterial Disease: Retrospective Clinical and Genetic Study in Mexico. J. Clin. Immunol. 2023, 43, 123–135. [Google Scholar] [CrossRef]
- Boisson-Dupuis, S.; Bustamante, J. Mycobacterial diseases in patients with inborn errors of immunity. Curr. Opin. Immunol. 2021, 72, 262–271. [Google Scholar] [CrossRef]
- Levy, J.; Espanol-Boren, T.; Thomas, C.; Fischer, A.; Tovo, P.; Bordigoni, P.; Resnick, I.; Fasth, A.; Baer, M.; Gomez, L.; et al. Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr. 1997, 131, 47–54. [Google Scholar] [CrossRef]
- Coulter, T.I.; Chandra, A.; Bacon, C.M.; Babar, J.; Curtis, J.; Screaton, N.; Goodlad, J.R.; Farmer, G.; Steele, C.L.; Leahy, T.R.; et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J. Allergy Clin. Immunol. 2017, 139, 597–606.e4. [Google Scholar] [CrossRef]
- Kotlarz, D.; Ziętara, N.; Uzel, G.; Weidemann, T.; Braun, C.J.; Diestelhorst, J.; Krawitz, P.M.; Robinson, P.N.; Hecht, J.; Puchałka, J.; et al. Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome. J. Exp. Med. 2013, 210, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Wolska-Kusnierz, B.; Bajer, A.; Caccio, S.; Heropolitanska-Pliszka, E.; Bernatowska, E.; Socha, P.; van Dongen, J.; Bednarska, M.; Paziewska, A.; Sinski, E. Cryptosporidium infection in patients with primary immunodeficiencies. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 458–464. [Google Scholar] [CrossRef]
- Al-Herz, W.; Chu, J.I.; van der Spek, J.; Raghupathy, R.; Massaad, M.J.; Keles, S.; Biggs, C.M.; Cockerton, L.; Chou, J.; Dbaibo, G.; et al. Hematopoietic stem cell transplantation outcomes for 11 patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 2016, 138, 852–859.e3. [Google Scholar] [CrossRef] [PubMed]
- Uzzan, M.; Ko, H.M.; Mehandru, S.; Cunningham-Rundles, C. Gastrointestinal Disorders Associated with Common Variable Immune Deficiency (CVID) and Chronic Granulomatous Disease (CGD). Curr. Gastroenterol. Rep. 2016, 18, 17. [Google Scholar] [CrossRef]
- Mamishi, S.; Parvaneh, N.; Salavati, A.; Abdollahzadeh, S.; Yeganeh, M. Invasive aspergillosis in chronic granulomatous disease: Report of 7 cases. Eur. J. Pediatr. 2007, 166, 83–84. [Google Scholar] [CrossRef]
- Mamishi, S.; Zomorodian, K.; Saadat, F.; Gerami-Shoar, M.; Tarazooie, B.; Siadati, S.A. A case of invasive aspergillosis in CGD patient successfully treated with Amphotericin B and INF-gamma. Ann. Clin. Microbiol. Antimicrob. 2005, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Hepatitis, C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 21 October 2023).
- Chapel, H.M.; Christie, J.M.; Peach, V.; Chapman, R.W. Five-year follow-up of patients with primary antibody deficiencies following an outbreak of acute hepatitis C. Clin. Immunol. 2001, 99, 320–324. [Google Scholar] [CrossRef]
- Ankcorn, M.; Moreira, F.; Ijaz, S.; Symes, A.; Buckland, M.S.; Workman, S.; Warburton, F.; Tedder, R.S.; Lowe, D.M. Absence of Persistent Hepatitis E Virus Infection in Antibody-Deficient Patients Is Associated with Transfer of Antigen-Neutralizing Antibodies From Immunoglobulin Products. J. Infect. Dis. 2019, 219, 245–253. [Google Scholar] [CrossRef]
- Grümme, L.; Schulze-Koops, H. Management of a patient with common variable immunodeficiency and hepatopathy. Allergy Asthma Clin. Immunol. 2023, 19, 50. [Google Scholar] [CrossRef]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C.; et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Feld, J.J.; Kleiner, D.E.; Hoofnagle, J.H.; Garcia-Eulate, R.; Ahlawat, S.; Koziel, D.E.; Anderson, V.; Hilligoss, D.; Choyke, P.; et al. Hepatic abnormalities in patients with chronic granulomatous disease. Hepatology 2007, 45, 675–683. [Google Scholar] [CrossRef]
- Straughan, D.M.; McLoughlin, K.C.; Mullinax, J.E.; Marciano, B.E.; Freeman, A.F.; Anderson, V.L.; Uzel, G.; Azoury, S.C.; Sorber, R.; Quadri, H.S.; et al. The Changing Paradigm of Management of Liver Abscesses in Chronic Granulomatous Disease. Clin. Infect. Dis. 2018, 66, 1427–1434. [Google Scholar] [CrossRef]
- Sharma, D.; Ben Yakov, G.; Kapuria, D.; Viana Rodriguez, G.; Gewirtz, M.; Haddad, J.; Kleiner, D.E.; Koh, C.; Bergerson, J.R.E.; Freeman, A.F.; et al. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022, 76, 1845–1861. [Google Scholar] [CrossRef]
- Al-Saud, B.K.; Al-Sum, Z.; Alassiri, H.; Al-Ghonaium, A.; Al-Muhsen, S.; Al-Dhekri, H.; Arnaout, R.; Alsmadi, O.; Borrero, E.; Abu-Staiteh, A.; et al. Clinical, immunological, and molecular characterization of hyper-IgM syndrome due to CD40 deficiency in eleven patients. J. Clin. Immunol. 2013, 33, 1325–1335. [Google Scholar] [CrossRef]
- Kutukculer, N.; Moratto, D.; Aydinok, Y.; Lougaris, V.; Aksoylar, S.; Plebani, A.; Genel, F.; Notarangelo, L.D. Disseminated cryptosporidium infection in an infant with hyper-IgM syndrome caused by CD40 deficiency. J. Pediatr. 2003, 142, 194–196. [Google Scholar] [CrossRef]
- Haskologlu, S.; Dogu, F.; Gollu Bahadır, G.; Akyuzluer, S.; Ciftci, E.; Altun, D.; Keles, S.; Kologlu, M.; Ikinciogullari, A. An Unexpected Infection in Loss-of-Function Mutations in STAT3: Malignant Alveolar Echinococcosis in Liver. Iran. J. Allergy Asthma Immunol. 2020, 19, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Antachopoulos, C.; Walsh, T.J.; Roilides, E. Fungal infections in primary immunodeficiencies. Eur. J. Pediatr. 2007, 166, 1099–1117. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Provot, J.; Jais, J.-P.; Alcais, A.; Mahlaoui, N.; Adoue, D.; Aladjidi, N.; Amoura, Z.; Arlet, P.; Armari-Alla, C.; et al. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J. Allergy Clin. Immunol. 2017, 140, 1388–1393.e8. [Google Scholar] [CrossRef] [PubMed]
- Myneedu, K.; Chavez, L.O.; Sussman, N.L.; Michael, M.; Padilla, A.; Zuckerman, M.J. Autoimmune Hepatitis in a Patient with Common Variable Immunodeficiency. ACG Case Rep. J. 2021, 8, e00547. [Google Scholar] [CrossRef] [PubMed]
- Parlar, Y.E.; Ayar, S.N.; Cagdas, D.; Balaban, Y.H. Liver immunity, autoimmunity, and inborn errors of immunity. World J. Hepatol. 2023, 15, 52–67. [Google Scholar] [CrossRef]
- Azizi, G.; Ziaee, V.; Tavakol, M.; Alinia, T.; Yazdai, R.; Mohammadi, H.; Abolhassani, H.; Aghamohammadi, A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand. J. Immunol. 2017, 85, 13–29. [Google Scholar] [CrossRef]
- Perez, E. Future of Therapy for Inborn Errors of Immunity. Clin. Rev. Allergy Immunol. 2022, 63, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lleo, A.; Yang, G.X.; Zhang, W.; Bowlus, C.L.; Gershwin, M.E.; Leung, P.S.C. Common Variable Immunodeficiency and Liver Involvement. Clin. Rev. Allergy Immunol. 2018, 55, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Wu, E.; Rao, V.K.; Tarrant, T.K. Autoimmune lymphoproliferative syndrome: An update and review of the literature. Curr. Allergy Asthma Rep. 2014, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, P.; Yang, Y.; Hao, M.; Peng, H.; Li, F. Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS). Clin. Rev. Allergy Immunol. 2016, 50, 55–63. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; Capalbo, D.; Improda, N.; D’Elia, F.; Di Mase, R.; D’Assante, R.; D’Acunzo, I.; Pignata, C.; Salerno, M. APECED: A Paradigm of Complex Interactions between Genetic Background and Susceptibility Factors. Front. Immunol. 2013, 4, 331. [Google Scholar] [CrossRef]
- Kucuk, Z.Y.; Charbonnier, L.-M.; McMasters, R.L.; Chatila, T.; Bleesing, J.J. CTLA-4 haploinsufficiency in a patient with an autoimmune lymphoproliferative disorder. J. Allergy Clin. Immunol. 2017, 140, 862–864.e4. [Google Scholar] [CrossRef]
- Hadjadj, J.; Frémond, M.L.; Neven, B. Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Front. Immunol. 2021, 12, 717388. [Google Scholar] [CrossRef]
- Woods, J.; Pemberton, S.E.; Largent, A.D.; Chiang, K.; Liggitt, D.; Oukka, M.; Rawlings, D.J.; Jackson, S.W. Cutting Edge: Systemic Autoimmunity in Murine STAT3 Gain-of-Function Syndrome Is Characterized by Effector T Cell Expansion in the Absence of Overt Regulatory T Cell Dysfunction. J. Immunol. 2022, 209, 1033–1038. [Google Scholar] [CrossRef]
- Hou, T.Z.; Verma, N.; Wanders, J.; Kennedy, A.; Soskic, B.; Janman, D.; Halliday, N.; Rowshanravan, B.; Worth, A.; Qasim, W.; et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood 2017, 129, 1458–1468. [Google Scholar] [CrossRef]
- Leung, J.; Sullivan, K.E.; Perelygina, L.; Icenogle, J.P.; Fuleihan, R.L.; Lanzieri, T.M. Prevalence of Granulomas in Patients with Primary Immunodeficiency Disorders, United States: Data From National Health Care Claims and the US Immunodeficiency Network Registry. J. Clin. Immunol. 2018, 38, 717–726. [Google Scholar] [CrossRef]
- Magnani, A.; Brosselin, P.; Beauté, J.; de Vergnes, N.; Mouy, R.; Debré, M.; Suarez, F.; Hermine, O.; Lortholary, O.; Blanche, S.; et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J. Allergy Clin. Immunol. 2014, 134, 655–662.e8. [Google Scholar] [CrossRef]
- Ardeniz, O.; Cunningham-Rundles, C. Granulomatous disease in common variable immunodeficiency. Clin. Immunol. 2009, 133, 198–207. [Google Scholar] [CrossRef]
- van Stigt, A.C.; Dik, W.A.; Kamphuis, L.S.J.; Smits, B.M.; van Montfrans, J.M.; van Hagen, P.M.; Dalm, V.A.S.H.; Ijspeert, H. What Works When Treating Granulomatous Disease in Genetically Undefined CVID? A Systematic Review. Front. Immunol. 2020, 11, 606389. [Google Scholar] [CrossRef]
- Farmer, J.R.; Ong, M.S.; Barmettler, S.; Yonker, L.M.; Fuleihan, R.; Sullivan, K.E.; Cunningham-Rundles, C.; Walter, J.E.; Consortium, U. Common Variable Immunodeficiency Non-Infectious Disease Endotypes Redefined Using Unbiased Network Clustering in Large Electronic Datasets. Front. Immunol. 2017, 8, 1740. [Google Scholar] [CrossRef]
- Culver, E.L.; Watkins, J.; Westbrook, R.H. Granulomas of the liver. Clin. Liver Dis. 2016, 7, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Ameratunga, R.; Ahn, Y.; Tse, D.; Woon, S.-T.; Pereira, J.; McCarthy, S.; Blacklock, H. The critical role of histology in distinguishing sarcoidosis from common variable immunodeficiency disorder (CVID) in a patient with hypogammaglobulinemia. Allergy Asthma Clin. Immunol. 2019, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Chascsa, D.M.; Ferré, E.M.N.; Hadjiyannis, Y.; Alao, H.; Natarajan, M.; Quinones, M.; Kleiner, D.E.; Simcox, T.L.; Chitsaz, E.; Rose, S.R.; et al. APECED-Associated Hepatitis: Clinical, Biochemical, Histological and Treatment Data from a Large, Predominantly American Cohort. Hepatology 2021, 73, 1088–1104. [Google Scholar] [CrossRef]
- Pecoraro, A.; Crescenzi, L.; Varricchi, G.; Marone, G.; Spadaro, G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front. Immunol. 2020, 11, 338. [Google Scholar] [CrossRef]
- Covelli, C.; Sacchi, D.; Sarcognato, S.; Cazzagon, N.; Grillo, F.; Baciorri, F.; Fanni, D.; Cacciatore, M.; Maffeis, V.; Guido, M. Pathology of autoimmune hepatitis. Pathologica 2021, 113, 185–193. [Google Scholar] [CrossRef]
- Terziroli Beretta-Piccoli, B.; Mieli-Vergani, G.; Vergani, D. Autoimmmune hepatitis. Cell. Mol. Immunol. 2022, 19, 158–176. [Google Scholar] [CrossRef]
- Forbes, L.R.; Vogel, T.P.; Cooper, M.A.; Castro-Wagner, J.; Schussler, E.; Weinacht, K.G.; Plant, A.S.; Su, H.C.; Allenspach, E.J.; Slatter, M.; et al. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J. Allergy Clin. Immunol. 2018, 142, 1665–1669. [Google Scholar] [CrossRef] [PubMed]
- Aoki, C.A.; Roifman, C.M.; Lian, Z.-X.; Bowlus, C.L.; Norman, G.L.; Shoenfeld, Y.; Mackay, I.R.; Eric Gershwin, M. IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. J. Autoimmun. 2006, 27, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Pollheimer, M.J.; Halilbasic, E.; Fickert, P.; Trauner, M. Pathogenesis of primary sclerosing cholangitis. Best. Pract. Res. Clin. Gastroenterol. 2011, 25, 727–739. [Google Scholar] [CrossRef]
- Mahdavinia, M.; Mirsaeidi, M.; Bishehsari, F.; McGrath, K. Primary sclerosing cholangitis in common variable immune deficiency. Allergol. Int. 2015, 64, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Leise, M.D.; Poterucha, J.J.; Talwalkar, J.A. Drug-induced liver injury. Mayo Clin. Proc. 2014, 89, 95–106. [Google Scholar] [CrossRef]
- Katarey, D.; Verma, S. Drug-induced liver injury. Clin. Med. 2016, 16, s104–s109. [Google Scholar] [CrossRef]
- Edmond, A.; Guruprasad, P.A. Drug-induced Liver Injury; The British Society of Gastroenterology: London, UK, 2022; Available online: https://www.bsg.org.uk/web-education-articles-list/drug-induced-liver-injury/ (accessed on 21 October 2023).
- Björnsson, E.S. Hepatotoxicity by Drugs: The Most Common Implicated Agents. Int. J. Mol. Sci. 2016, 17, 224. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury: Beta Interferon; National Library of Medicine: Bethesda, MD, USA, 2012.
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury: Albendazole; National Library of Medicine: Bethesda, MD, USA, 2012.
- Zhao, X.; Zhang, C.; An, Y.; Zhang, Z.; Zhao, J.; Zhang, X.; Yang, Y.; Cao, W. Research on Liver Damage Caused by the Treatment of Rheumatoid Arthritis with Novel Biological Agents or Targeted Agents. J. Inflamm. Res. 2023, 16, 443–452. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury: Sirolimus; National Library of Medicine: Bethesda, MD, USA, 2012.
- Tuncer, H.H.; Rana, N.; Milani, C.; Darko, A.; Al-Homsi, S.A. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation. World J. Gastroenterol. 2012, 18, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tian, X.; Wang, X.; Xiao, Z. Adverse Effects of Immunoglobulin Therapy. Front. Immunol. 2018, 9, 1299. [Google Scholar] [CrossRef]
- Bork, K.; Schneiders, V. Danazol-induced hepatocellular adenoma in patients with hereditary angio-oedema. J. Hepatol. 2002, 36, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Farkas, H.; Czaller, I.; Csuka, D.; Vas, A.; Valentin, S.; Varga, L.; Széplaki, G.; Jakab, L.; Füst, G.; Prohászka, Z.; et al. The effect of long-term danazol prophylaxis on liver function in hereditary angioedema-a longitudinal study. Eur. J. Clin. Pharmacol. 2010, 66, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Laurie, D.D. Liver Toxicity and Hematopoietic Stem Cell Transplantation. In Holland-Frei Cancer Medicine, 6th ed.; BC Decker Inc.: Hamilton, ON, Canada, 2003. [Google Scholar]
- Dalle, J.H.; Giralt, S.A. Hepatic Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation: Risk Factors and Stratification, Prophylaxis, and Treatment. Biol. Blood Marrow Transpl. 2016, 22, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Ouachée-Chardin, M.; Elie, C.; Basile, G.d.S.; Le Deist, F.; Mahlaoui, N.; Picard, C.; Neven, B.; Casanova, J.-L.; Tardieu, M.; Cavazzana-Calvo, M.; et al. Hematopoietic stem cell transplantation in hemophagocytic lymphohistiocytosis: A single-center report of 48 patients. Pediatrics 2006, 117, e743–e750. [Google Scholar] [CrossRef] [PubMed]
- Lankester, A.C.; Albert, M.H.; Booth, C.; Gennery, A.R.; Güngör, T.; Hönig, M.; Morris, E.C.; Moshous, D.; Neven, B.; Schulz, A.; et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant. 2021, 56, 2052–2062. [Google Scholar] [CrossRef]
- Li, S.S.; Zhang, N.; Jia, M.; Su, M. Association Between Cytomegalovirus and Epstein-Barr Virus Co-Reactivation and Hematopoietic Stem Cell Transplantation. Front. Cell Infect. Microbiol. 2022, 12, 818167. [Google Scholar] [CrossRef]
- Justiz Vaillant, A.A.; Modi, P.; Mohammadi, O. Graft-Versus-Host Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538235/ (accessed on 14 October 2023).
- Modi, D.; Ye, J.C.; Surapaneni, M.; Singh, V.; Chen, W.; Jang, H.; Deol, A.; Ayash, L.; Alavi, A.; Ratanatharathorn, V.; et al. Liver Graft-Versus-Host Disease is associated with poor survival among allogeneic hematopoietic stem cell transplant recipients. Am. J. Hematol. 2019, 94, 1072–1080. [Google Scholar] [CrossRef]
- Jacobsohn, D.A.; Vogelsang, G.B. Acute graft versus host disease. Orphanet J. Rare Dis. 2007, 2, 35. [Google Scholar] [CrossRef]
- Mayor, P.C.; Eng, K.H.; Singel, K.L.; Abrams, S.I.; Odunsi, K.; Moysich, K.B.; Fuleihan, R.; Garabedian, E.; Lugar, P.; Ochs, H.D.; et al. Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 2018, 141, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.P.; Resnick, E.; Lucas, M.; Lortan, J.; Patel, S.; Cunningham-Rundles, C.; Gatter, K.; Liu, Q.; Jaffe, E.S.; Chapel, H. Lymphoid proliferations of indeterminate malignant potential arising in adults with common variable immunodeficiency disorders: Unusual case studies and immunohistological review in the light of possible causative events. J. Clin. Immunol. 2011, 31, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, L.J.; Webster, A.D.; Bird, A.G.; Haile, R.; Peto, J.; Soothill, J.F.; Thompson, R.A. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet 1985, 1, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Abdul Majeed, N.; Kleiner, D.E.; Uzel, G.; Koh, C.; Heller, T. Angiosarcoma in Long-Standing Nodular Regenerative Hyperplasia. ACG Case Rep. J. 2022, 9, e00863. [Google Scholar] [CrossRef]
- Hayward, A.R.; Levy, J.; Facchetti, F.; Notarangelo, L.; Ochs, H.D.; Etzioni, A.; Bonnefoy, J.Y.; Cosyns, M.; Weinberg, A. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J. Immunol. 1997, 158, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Merlini, L.; Hanquinet, S.; Gungor, T.; Ozsahin, H. Spontaneous thrombosis of hepatic aneurysms in an infant with Wiskott-Aldrich syndrome. Pediatr. Hematol. Oncol. 2009, 26, 261–266. [Google Scholar] [CrossRef]
- McCluggage, W.G.; Armstrong, D.J.; Maxwell, R.J.; Ellis, P.K.; McCluskey, D.R. Systemic vasculitis and aneurysm formation in the Wiskott-Aldrich syndrome. J. Clin. Pathol. 1999, 52, 390–392. [Google Scholar] [CrossRef]
- Loan, W.; McCune, K.; Kelly, B.; Maxwell, R. Wiskott-Aldrich syndrome: Life-threatening haemorrhage from aneurysms within the liver, small bowel mesentery and kidney, requiring both surgical and radiological intervention. J. R. Coll. Surg. Edinb. 2000, 45, 326–328. [Google Scholar]
- Meyts, I.; Aksentijevich, I. Deficiency of Adenosine Deaminase 2 (DADA2): Updates on the Phenotype, Genetics, Pathogenesis, and Treatment. J. Clin. Immunol. 2018, 38, 569–578. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, D.; Ombrello, A.K.; Zavialov, A.V.; Toro, C.; Stone, D.L.; Chae, J.J.; Rosenzweig, S.D.; Bishop, K.; Barron, K.S.; et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 2014, 370, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Roscioli, T.; Cliffe, S.T.; Bloch, D.B.; Bell, C.G.; Mullan, G.; Taylor, P.J.; Sarris, M.; Wang, J.; Donald, J.A.; Kirk, E.P.; et al. Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nat. Genet. 2006, 38, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Cliffe, S.T.; Bloch, D.B.; Suryani, S.; Kamsteeg, E.J.; Avery, D.T.; Palendira, U.; Church, J.A.; Wainstein, B.K.; Trizzino, A.; Lefranc, G.; et al. Clinical, molecular, and cellular immunologic findings in patients with SP110-associated veno-occlusive disease with immunodeficiency syndrome. J. Allergy Clin. Immunol. 2012, 130, 735–742.e6. [Google Scholar] [CrossRef]
- Savage, S.A.; Alter, B.P. Dyskeratosis congenita. Hematol. Oncol. Clin. N. Am. 2009, 23, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Putra, J.; Agarwal, S.; Al-Ibraheemi, A.; Alomari, A.I.; Perez-Atayde, A.R. Spectrum of Liver Pathology in Dyskeratosis Congenita. Am. J. Surg. Pathol. 2023, 47, 869–877. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Niu, X.; Zhu, L.; Xu, Y.; Zhang, M.; Hao, Y.; Ma, L.; Li, Y.; Xing, H. Correction: Global prevalence, incidence, and outcomes of alcohol related liver diseases: A systematic review and meta-analysis. BMC Public Health 2023, 23, 1380. [Google Scholar] [CrossRef]
Organism | Associated IEI | |
---|---|---|
Viruses | CMV | SCID, DOCK8 deficiency, MHC Class II deficiency [56,57,58] |
Adenovirus | SCID [56] | |
Enteroviruses (poliovirus, coxsackievirus, echovirus) | XLA [59] | |
Hepatitis C | Patients receiving historical immunoglobulin replacement therapy [60] | |
VZV | SCID [56] | |
EBV | Mutations in SH2D1A, XIAP, TNFRSF9, CD27, CD70, CTPS1, MAGT1, RASGRP1, PRKCD, TET2, CARMIL2, GATA2, ITK, STK4 [1,61] | |
Bacteria | Staphylococcus aureus | CGD, AD-HIES, IRAK4 deficiency [62,63,64,65,66] |
Pseudomonas aeruginosa | CGD, MHC Class II deficiency [58,62,63] | |
Burkholderia cepacia | CGD [62,63] | |
Enterococcus | MHC Class II deficiency [58] | |
Streptococcus | MHC Class II deficiency [58] | |
Mycobacteria | BCG | SCID, MSMD [67,68] |
NTM | SCID, CID, MSMD, GATA2 deficiency [69] | |
Parasites | Cryptosporidium | Mutations in CD40 ligand, CD40, DOCK8, MHC II, IL-21 receptor; PI3K disease [3,58,70,71,72,73,74] |
Giardia lamblia | CVID [75] | |
Fungi | Aspergillus sp. | CGD [76,77] |
Candida sp. | CGD [62] |
Inborn Error of Immunity | Pathophysiology for Autoimmunity |
---|---|
ALPS | Failure of FAS-mediated homeostasis and apoptosis of autoreactive lymphocytes. 2/3 of patients have underlying FAS mutations [92,96]. Other mutations are reported in FAS Ligand, Caspase 8 and 10, NRAS and KRAS [97]. |
APECED | Autoimmune regulator (AIRE) gene mutations resulting in failure of central T cell tolerance [98]. |
CTLA-4 Haploinsufficiency | CTLA-4 is an inhibitory receptor expressed by activated T cells and FOXP3+ regulatory T lymphocytes (Tregs). Mutation leads to dysregulated T cell activation, with loss of Treg function [99]. |
IPEX syndrome | Mutation in transcription factor forkhead box p3, critical for development and function of T regulatory cells |
STAT1 Gain of function | GOF mutations in STAT1 gene, with increased type 1 interferon signalling [100]. |
STAT3 GOF | Mechanism currently not fully understood, but postulated to increase Th17 differentiation, possibly with impaired Treg and Tfh development [101]. |
LRBA deficiency | Affects CTLA-4 trafficking, leading to low levels of CTLA-4 and subsequently dysregulated T cell activation, and loss of Treg function [102]. |
Wiskott-Aldrich syndrome | Loss of WAS protein, which has a key role in signalling from TCR to the cytoskeleton, resulting in quantitative and qualitative impairment of T regulatory lymphocytes [92]. |
Indication | Type of Drug | Drug Class | Hepatic Complication |
---|---|---|---|
Prophylaxis or treatment of infections | Antibiotics | Penicillins | Cholestatic, mixed [118,120,121] (mainly amoxicillin-clavulanate) |
Fluoroquinolones | Hepatocellular, cholestatic, mixed [118] | ||
Sulphonamides | Cholestatic [121] | ||
Nitrofurantoin | Hepatocellular [118] | ||
Anti-tuberculosis (Mainly isoniazid, rifampicin) | Hepatocellular [118,121] | ||
Macrolides | Cholestatic [121] | ||
Tetracyclines | Hepatocellular [118] | ||
Antivirals | Interferon | Hepatocellular (typically transient and mild) [122] | |
Antifungals | Azoles | Hepatocellular [123] | |
Anti-helminthic | Benzimidazoles | Hepatocellular (typically transient and mild) [121] | |
Immune dysregulation | Immunosuppressants | JAK inhibitors | Hepatocellular (usually transient) [124] |
TNF inhibitors | Hepatocellular, cholestatic, risk of reactivation of viral hepatitis [124] | ||
mTOR inhibitors | Hepatocellular (typically transient), cholestatic (rare) [125] | ||
Anti-CD20 | Hepatocellular [124] | ||
Calcineurin inhibitors | Cholestatic [126] | ||
Immunodeficiency | Blood products | Immunoglobulin replacement therapy | Risk of viral hepatitis. Although risk is now negligible due to adequate screening [127] |
Hereditary angioedema | Androgens | Danazol | Cholestatic, hepatocellular (usually transient). Rarely associated with hepatocellular adenoma [128] and carcinoma [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinser, E.; Tan, K.-L.; Kim, D.-I.S.; O’Brien, R.; Winstanley, A.; Yong, P.F.K. Differential Diagnosis: Hepatic Complications in Inborn Errors of Immunity. J. Clin. Med. 2023, 12, 7480. https://doi.org/10.3390/jcm12237480
Zinser E, Tan K-L, Kim D-IS, O’Brien R, Winstanley A, Yong PFK. Differential Diagnosis: Hepatic Complications in Inborn Errors of Immunity. Journal of Clinical Medicine. 2023; 12(23):7480. https://doi.org/10.3390/jcm12237480
Chicago/Turabian StyleZinser, Emily, Ky-Lyn Tan, Da-In S. Kim, Rachael O’Brien, Alison Winstanley, and Patrick F. K. Yong. 2023. "Differential Diagnosis: Hepatic Complications in Inborn Errors of Immunity" Journal of Clinical Medicine 12, no. 23: 7480. https://doi.org/10.3390/jcm12237480
APA StyleZinser, E., Tan, K. -L., Kim, D. -I. S., O’Brien, R., Winstanley, A., & Yong, P. F. K. (2023). Differential Diagnosis: Hepatic Complications in Inborn Errors of Immunity. Journal of Clinical Medicine, 12(23), 7480. https://doi.org/10.3390/jcm12237480