The Effect of Dexmedetomidine Sedation on Lower Gastrointestinal Motility in Children—Is It Suitable for Anorectal Manometry?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Populations
- Established sedation criteria are not met;
- Patients who require sedation prior to their anal manometry evaluation (with the exception of pre-med midazolam);
- History of allergy, intolerance, or reaction to dexmedetomidine;
- Current, repaired or risk of Moya-Moya disease;
- Recent stroke (cerebrovascular accident) within the past 6 months;
- Uncontrolled hypertension;
- Concomitant use of opioids, beta antagonist, alpha 2 agonist or calcium channel blocker;
- BMI above 30 or weight above the 110th percentile;
- Refusal of IV insertion while awake;
- Currently taking pharmacologic agents for hypertension or cardiac disease;
- Currently taking or has taken digoxin within the past 3 months;
- Active, uncontrolled gastroesophageal reflux (concern for aspiration), requiring endotracheal intubation;
- Current or recent (within the past 3 months) history of apnea requiring an apnea monitor;
- Unstable cardiac status (life threatening arrhythmias, abnormal cardiac anatomy, significant cardiac dysfunction);
- Craniofacial anomaly, which could make it difficult to effectively establish a mask airway for positive pressure ventilation, if required;
- Active, current respiratory concerns that are different from the patient’s baseline status (including pneumonia, exacerbation of asthma, bronchiolitis, respiratory syncytial virus).
2.2. Anorectal Manometry Study Protocol
2.3. Anorectal Manometry Parameters
2.4. Dexmedetomidine Protocol
2.5. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Intra-Anal Resting Pressure
3.3. Recto-Anal Inhibitory Reflex Presence
3.4. Recto-Anal Inhibitory Reflex Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baaleman, D.F.; Malamisura, M.; Benninga, M.A.; Bali, N.; Vaz, K.H.; Yacob, D.; Di Lorenzo, C.; Lu, P.L. The not-so-rare absent RAIR: Internal anal sphincter achalasia in a review of 1072 children with constipation undergoing high-resolution anorectal manometry. Neurogastroenterol. Motil. 2020, 33, e14028. [Google Scholar] [CrossRef] [PubMed]
- Strisciuglio, C.; Banasiuk, M.; Salvatore, S.; Borrelli, O.; Staiano, A.; Van Wijk, M.; Vandenplas, Y.; Benninga, M.A.; Thapar, N. Anorectal Manometry in Children: The Update on the Indications and the Protocol of the Procedure. JPGN 2022, 74, 440–445. [Google Scholar] [CrossRef] [PubMed]
- De Lorijn, F.; Kremer, L.C.; Reitsma, J.B.; Benninga, M.A. Diagnostic tests in Hirschsprung disease: A systematic review. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Sood, M.; Di Lorenzo, C.; Saps, M. An ANMS-NASPGHAN consensus document on anorectal and colonic manometry in children. Neurogastroenterol. Motil. 2017, 29, e12944. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, S.; Xiao, X. Preliminary evaluation of anorectal manometry in diagnosing Hirschsprung’s disease in neonates. Pediatr. Surg. Int. 2009, 25, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Jarvi, K.; Koivusalo, A.; Rintala, R.J.; Pakarinen, M.P. Anorectal manometry with reference to operative rectal biopsy for the diagnosis/exclusion of Hirschprung’s disease in children under 1 year of age. Int. J. Color. Dis. 2009, 24, 451–454. [Google Scholar] [CrossRef]
- Doodnath, R.; Puri, P. Internal anal sphincter achalasia. Semin. Pediatr. Surg. 2009, 18, 246–248. [Google Scholar] [CrossRef]
- Pfefferkorn, M.D.; Croffie, J.M.; Corkins, M.R.; Gupta, S.K.; Fitzgerald, J.F. Impact of Sedation and Anesthesia on the Rectoanal Inhibitory Reflex in Children. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 324–327. [Google Scholar] [CrossRef]
- Arbizu, R.A.; Amicangelo, M.; Rodriguez, L.; Nurko, S. Can propofol be used to assess the presence of the rectoanal inhibitory reflex during anorectal manometry studies? J. Pediatr. Gastroenterol. Nutr. 2022, 74, 33–37. [Google Scholar] [CrossRef]
- Heid, F.; Kauff, D.W.; Lang, H.; Kneist, W. Impact of inhalation vs. intravenous anaesthesia on autonomic nerves and internal anal sphincter tone. Acta Anaesthesiol. Scand. 2015, 59, 1119–1125. [Google Scholar] [CrossRef]
- Baaleman, D.F.; Mishra, S.; Koppen, I.J.; Oors, J.M.; Benninga, M.A.; Bali, N.; Vaz, K.H.; Yacob, D.; Di Lorenzo, C.; Lu, P.L. Accuracy of Anorectal Manometry to Detect the Rectoanal Inhibitory Reflex in Children: Awake Versus under General Anesthesia. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Keating, G.M. Dexmedetomidine: A Review of Its Use for Sedation in the Intensive Care Setting. Drugs 2015, 75, 1119–1130. [Google Scholar] [CrossRef]
- Mahmoud, M.; Mason, K.P. Dexmedetomidine: Review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br. J. Anaesth. 2015, 115, 171–182. [Google Scholar] [CrossRef]
- Bharucha, A. Pelvic floor: Anatomy and function. Neurogastroenterol. Motil. 2006, 18, 507–519. [Google Scholar] [CrossRef]
- Rayment, S.J.; Simpson, J.A.; Eames, T.; Acheson, A.G.; Dashwood, M.R.; Henry, Y.; Gruss, H.; Scholefield, J.H.; Wilson, V.G. Dual effects of α2-adrenoceptors in modulating myogenic tone in sheep isolated internal anal sphincter. Neurogastroenterol. Motil. 2014, 26, 1095–1103. [Google Scholar] [CrossRef]
- Dalal, P.G.; Taylor, D.; Somerville, N.; Seth, N. Adverse events and behavioral reactions related to ketamine based anesthesia for anorectal manometry in children. Pediatr. Anesthesia 2008, 18, 260–267. [Google Scholar] [CrossRef]
- Rayment, S.J.; Eames, T.; Simpson, J.A.; Dashwood, M.R.; Henry, Y.; Gruss, H.; Acheson, A.G.; Scholefield, J.H.; Wilson, V.G. Investigation of thedistribution and function ofa-adrenoceptors in thesheep isolated internal analsphincter. Br. J. Pharmacol. 2010, 160, 1727–1740. [Google Scholar] [CrossRef]
- Anttila, M.; Penttilä, J.; Helminen, A.; Vuorilehto, L.; Scheinin, H. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br. J. Clin. Pharmacol. 2003, 56, 691–693. [Google Scholar] [CrossRef]
- Iirola, T.; Vilo, S.; Manner, T.; Aantaa, R.; Lahtinen, M.; Scheinin, M.; Olkkola, K.T. Bioavailability of dexmedetomidine after intranasal administration. Eur. J. Clin. Pharmacol. 2011, 67, 825–831. [Google Scholar] [CrossRef]
- Mason, K.P.; Lubisch, N.; Robinson, F.; Roskos, R.; Epstein, M.A. Intramuscular Dexmedetomidine: An Effective Route of Sedation Preserves Background Activity for Pediatric Electroencephalograms. J. Pediatr. 2012, 161, 927–932. [Google Scholar] [CrossRef]
- Guldenmund, P.; Vanhaudenhuyse, A.; Sanders, R.; Sleigh, J.; Bruno, M.; Demertzi, A.; Bahri, M.; Jaquet, O.; Sanfilippo, J.; Baquero, K.; et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 2017, 119, 674–684. [Google Scholar] [CrossRef]
- Song, A.H.; Kucyi, A.; Napadow, V.; Brown, E.N.; Loggia, M.L.; Akeju, O. Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J. Neurosci. 2017, 37, 6938–6945. [Google Scholar] [CrossRef]
- Mahmoud, M.; Ishman, S.L.; McConnell, K.; Fleck, R.; Shott, S.; Mylavarapu, G.; Gutmark, E.; Zou, Y.; Szczesniak, R.; Amin, R.S. Upper Airway Reflexes are Preserved during Dexmedetomidine Sedation in Children with down Syndrome and Obstructive Sleep Apnea. Sleep Med. 2017, 13, 721–727. [Google Scholar] [CrossRef]
- Colin, P.J.; Hannivoort, L.N.; Eleveld, D.J.; Reyntjens, K.M.E.M.; Absalom, A.R.; Vereecke, H.E.M.; Struys, M.M.R.F. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br. J. Anaesth. 2017, 119, 211–220. [Google Scholar] [CrossRef]
- Cajander, P.; Omari, T.; Magnuson, A.; Scheinin, H.; Scheinin, M.; Savilampi, J. Effects of dexmedetomidine on pharyngeal swallowing and esophageal motility—A double-blind randomized cross-over study in healthy volunteers. Neurogastroenterol. Motil. 2022, 35, e14501. [Google Scholar] [CrossRef]
- Abass, M.; Ibrahim, H.; Salci, H.; Hamed, M.A. Evaluation of the effect of different sedative doses of dexmedetomidine on the intestinal motility in clinically healthy donkeys (Equus asinus). BMC Veter. Res. 2022, 18, 274. [Google Scholar] [CrossRef]
- Ou, C.; Kang, S.; Xue, R.; Lai, J.; Zhang, Y. Effect of Dexmedetomidine-Assisted Intravenous Anesthesia on Gastrointestinal Motility in Colon Cancer Patients after Open Colectomy. Front. Surg. 2022, 9, 842776. [Google Scholar] [CrossRef]
- Sánchez, J.; Costa, G.; Benedito, S.; Rivera, L.; García-Sacristán, A.; Orensanz, L.M. Alpha 2-mediated effect of dopamine on the motility of the chicken esophagus. Life Sci. 1990, 46, 121–126. [Google Scholar] [CrossRef]
- Koivusalo, A.I.; Pakarinen, M.P.; Rintala, R.J. Botox injection treatment for anal outlet obstruction in patients with internal anal sphincter achalasia and Hirschsprung’s disease. Pediatr. Surg. Int. 2009, 25, 873–876. [Google Scholar] [CrossRef]
- Faticato, M.G.; Mazzola, C.; Arrigo, S.; Mattioli, G.; Arnoldi, R.; Mosconi, M. Intrasphincteric BoTox injections in Hirschsprung’s disease: Indications and outcome in procedures over a ten-year period. Minerva Pediatr. 2018, 75, 482–489. [Google Scholar]
- Chumpitazi, B.P.; Fishman, S.J.; Nurko, S. Long-Term Clinical Outcome after Botulinum Toxin Injection in Children with Nonrelaxing Internal Anal Sphincter. Am. J. Gastroenterol. 2009, 104, 976–983. [Google Scholar] [CrossRef]
Latency Time | Relaxation Time | |||||||
---|---|---|---|---|---|---|---|---|
Balloon Volume (mL) | Baseline | 1 min after DEX Administration | 5 min after DEX Administration | p Value | Baseline | 1 min after DEX Administration | 5 min after DEX Administration | p Value |
10 | 2.72 ± 0.78 | 2.54 ± 1.73 | 2.13 ± 1.39 | 0.4 | 6.98 ± 5.07 | 8.61 ± 2.30 | 6.07 ± 0.9 | 0.3 |
20 | 2.4 ± 1.14 | 3.75 ± 3.01 | 2.6 ± 3.11 | 0.3 | 9.4 ± 5.66 | 8.18 ± 3.82 | 6.47 ± 2.28 | 0.2 |
30 | 3.36 ± 0.7 | 3.43 ± 1.20 | 2.24 ± 1.7 | 0.09 | 11.51 ± 6.17 | 9.38 ± 4.87 | 9.74 ± 7.15 | 0.6 |
40 | 3.55 ± 0.8 | 3.08 ± 1.34 | 3.61 ± 1.68 | 0.1 | 13.73 ± 7.77 | 10.79 ± 7.29 | 10.47 ± 6.52 | 0.3 |
50 | 3.67 ± 1.5 | 3.44 ± 1.62 | 2.66 ± 1.51 | 0.08 | 14.61 ± 7.93 | 16.04 ± 10.26 | 17.75 ± 14.9 | 0.5 |
60 | 3.45 ± 1.6 | 3.25 ± 1.12 | 3.02 ± 1.28 | 0.2 | 16.62 ± 14.5 | 14.37 ± 6.75 | 12.19 ± 5.25 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, T.D.; Lukovits, K.; Cavanaugh, D.; Nurko, S.; Mason, K. The Effect of Dexmedetomidine Sedation on Lower Gastrointestinal Motility in Children—Is It Suitable for Anorectal Manometry? J. Clin. Med. 2023, 12, 7494. https://doi.org/10.3390/jcm12237494
Berger TD, Lukovits K, Cavanaugh D, Nurko S, Mason K. The Effect of Dexmedetomidine Sedation on Lower Gastrointestinal Motility in Children—Is It Suitable for Anorectal Manometry? Journal of Clinical Medicine. 2023; 12(23):7494. https://doi.org/10.3390/jcm12237494
Chicago/Turabian StyleBerger, Tal David, Karina Lukovits, David Cavanaugh, Samuel Nurko, and Keira Mason. 2023. "The Effect of Dexmedetomidine Sedation on Lower Gastrointestinal Motility in Children—Is It Suitable for Anorectal Manometry?" Journal of Clinical Medicine 12, no. 23: 7494. https://doi.org/10.3390/jcm12237494
APA StyleBerger, T. D., Lukovits, K., Cavanaugh, D., Nurko, S., & Mason, K. (2023). The Effect of Dexmedetomidine Sedation on Lower Gastrointestinal Motility in Children—Is It Suitable for Anorectal Manometry? Journal of Clinical Medicine, 12(23), 7494. https://doi.org/10.3390/jcm12237494