Association of Physical Activity and Exercise with Physical Performance and Muscle Mass in Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Associations between Physical Activity Habits and Measures of Physical Performance and Anthropometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coelho-Junior, H.J.; Picca, A.; Calvani, R.; Uchida, M.C.; Marzetti, E. If my muscle could talk: Myokines as a biomarker of frailty. Exp. Gerontol. 2019, 127, 110715. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.T.; Sprott, R.L. Biomarkers of aging. Exp. Gerontol. 1988, 23, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Vasunilashorn, S.; Coppin, A.K.; Patel, K.V.; Lauretani, F.; Ferrucci, L.; Bandinelli, S.; Guralnik, J.M. Use of the short physical performance battery score to predict loss of ability to walk 400 meters: Analysis from the InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 223–229. [Google Scholar] [CrossRef]
- Pua, Y.-H.; Ong, P.-H.; Clark, R.A.; Matcher, D.B.; Lim, E.C.-W. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: Prospective cohort study. BMC Geriatr. 2017, 17, 291. [Google Scholar] [CrossRef]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: A systematic review and meta-analysis. J. Clin. Epidemiol. 2010, 63, 389–406. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short physical performance battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef]
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.-P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine, W.J.; Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine Position Stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Broccatelli, M.; Savera, G.; D’Elia, M.; Pahor, M.; et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 35–42. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Uchida, M.C.; Picca, A.; Bernabei, R.; Landi, F.; Calvani, R.; Cesari, M.; Marzetti, E. Evidence-based recommendations for resistance and power training to prevent frailty in community-dwellers. Aging Clin. Exp. Res. 2021, 33, 2069–2086. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Bernabei, R.; Landi, F.; Calvani, R.; Cesari, M.; Del Signore, S.; Anker, S.D.; Bejuit, R.; Bordes, P.; Cherubini, A.; Cruz-Jentoft, A.J.; et al. Multicomponent intervention to prevent mobility disability in frail older adults: Randomised controlled trial (SPRINTT project). BMJ 2022, 377, e068788. [Google Scholar] [CrossRef]
- Ramsey, K.A.; Rojer, A.G.M.; D’Andrea, L.; Otten, R.H.J.; Heymans, M.W.; Trappenburg, M.C.; Verlaan, S.; Whittaker, A.C.; Meskers, C.G.M.; Maier, A.B. The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 67, 101266. [Google Scholar] [CrossRef]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. (1985) 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Tosato, M.; Calvani, R.; Landi, F. Sex- and age-specific normative values of lower extremity muscle power in Italian community-dwellers. J. Cachexia Sarcopenia Muscle 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Simpkins, C.; Yang, F. Muscle power is more important than strength in preventing falls in community-dwelling older adults. J. Biomech. 2022, 134, 111018. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Izquierdo, M.; García-Hermoso, A.; Ordoñez-Mora, L.T.; Cano-Gutierrez, C.; Campo-Lucumí, F.; Pérez-Sousa, M.Á. Sit to stand muscle power reference values and their association with adverse events in Colombian older adults. Sci. Rep. 2022, 12, 11820. [Google Scholar] [CrossRef]
- Losa-Reyna, J.; Alcazar, J.; Carnicero, J.; Alfaro-Acha, A.; Castillo-Gallego, C.; Rosado-Artalejo, C.; Rodríguez-Mañas, L.; Ara, I.; García-García, F.J. Impact of relative muscle power on hospitalization and all-cause mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 781–789. [Google Scholar] [CrossRef]
- Hughes, D.C.; Ellefsen, S.; Baar, K. Adaptations to endurance and strength training. Cold Spring Harb. Perspect. Med. 2018, 8, a029769. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Engagement in aerobic exercise is associated with a reduced prevalence of sarcopenia and severe sarcopenia in Italian older adults. J. Pers. Med. 2023, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Klitgaard, H.; Mantoni, M.; Schiaffino, S.; Ausoni, S.; Gorza, L.; Laurent-Winter, C.; Schnohr, P.; Saltin, B. Function, morphology and protein expression of ageing skeletal muscle: A cross-sectional study of elderly men with different training backgrounds. Acta Physiol. Scand. 1990, 140, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative values of muscle strength across ages in a “real world” population: Results from the Longevity Check-up 7+ Project. J. Cachexia Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Salini, S.; Pafundi, T.; Savera, G.; Pantanelli, C.; et al. Cardiovascular health metrics, muscle mass and function among Italian community-dwellers: The Lookup 7+ project. Eur. J. Public Health 2018, 28, 766–772. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.P.; Gonzalez, M.C.; Orlandi, S.P.; Bielemann, R.M.; Barbosa-Silva, T.G.; Heymsfield, S.B. New prediction equations to estimate appendicular skeletal muscle mass using calf circumference: Results from NHANES 1999–2006. JPEN J. Parenter. Enteral Nutr. 2019, 43, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.R.; Shardell, M.D.; Alley, D.E.; Cawthon, P.M.; Fragala, M.S.; Harris, T.B.; Kenny, A.M.; Peters, K.W.; Ferrucci, L.; Guralnik, J.M.; et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: The foundation for the National Institutes of Health (FNIH) sarcopenia project. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Haines, M.S.; Leong, A.; Porneala, B.C.; Zhong, V.W.; Lewis, C.E.; Schreiner, P.J.; Miller, K.K.; Meigs, J.B.; Carnethon, M.R. More appendicular lean mass relative to body mass index is associated with lower incident diabetes in middle-aged adults in the CARDIA study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 105–111. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Nutrition—Data and Statistics. Available online: https://www.who.int/europe/news-room/photo-stories/item/data-and-statistics (accessed on 20 November 2023).
- Società Italiana di Nutrizione Umana (SINU). Available online: https://sinu.it/tabelle-larn-2014/ (accessed on 20 November 2023).
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Statistics notes: The normal distribution. BMJ 1995, 310, 298. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Pahor, M.; Blair, S.N.; Espeland, M.; Fielding, R.; Gill, T.M.; Guralnik, J.M.; Hadley, E.C.; King, A.C.; Kritchevsky, S.B.; Maraldi, C.; et al. Effects of a physical activity intervention on measures of physical performance: Results of the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, I.D.O.; Bandeira, A.N.; Coelho-Júnior, H.J.; Aguiar, S.D.S.; Camargo, S.M.; Asano, R.Y.; Batista Júnior, M.L. Multicomponent exercise on physical function, cognition and hemodynamic parameters of community-dwelling older adults: A quasi-experimental study. Int. J. Environ. Res. Public Health 2019, 16, 2184. [Google Scholar] [CrossRef] [PubMed]
- Coelho-Júnior, H.J.; Uchida, M.C. Effects of low-speed and high-speed resistance training programs on frailty status, physical performance, cognitive function, and blood pressure in prefrail and frail older adults. Front. Med. 2021, 8, 702436. [Google Scholar] [CrossRef]
- Liao, C.; Chen, H.; Kuo, Y.; Tsauo, J.; Huang, S.; Liou, T. Effects of muscle strength training on muscle mass gain and hypertrophy in older adults with osteoarthritis: A systematic review and meta-analysis. Arthritis Care Res. 2020, 72, 1703–1718. [Google Scholar] [CrossRef] [PubMed]
- Jadczak, A.D.; Makwana, N.; Luscombe-Marsh, N.; Visvanathan, R.; Schultz, T.J. Effectiveness of exercise interventions on physical function in community-dwelling frail older people: An umbrella review of systematic reviews. JBI Database System. Rev. Implement. Rep. 2018, 16, 752–775. [Google Scholar] [CrossRef]
- Aspenes, S.T.; Karlsen, T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012, 42, 527–543. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Knechtle, B. Force-velocity characteristics and maximal anaerobic power in male recreational marathon runners. Res. Sports Med. 2020, 28, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. Force-velocity characteristics, muscle strength, and flexibility in female recreational marathon runners. Front. Physiol. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed]
- Vandervoort, A.A. Aging of the human neuromuscular system. Muscle Nerve 2002, 25, 17–25. [Google Scholar] [CrossRef]
- Zhang, J.; Parsons, C.; Fuggle, N.; Ward, K.A.; Cooper, C.; Dennison, E. Is regular weight-bearing physical activity throughout the lifecourse associated with better bone health in late adulthood? Calcif. Tissue Int. 2022, 111, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Soldan, A.; Alfini, A.; Pettigrew, C.; Faria, A.; Hou, X.; Lim, C.; Lu, H.; Spira, A.P.; Zipunnikov, V.; Albert, M.; et al. Actigraphy-estimated physical activity is associated with functional and structural brain connectivity among older adults. Neurobiol. Aging 2022, 116, 32–40. [Google Scholar] [CrossRef]
- Kitano, N.; Kai, Y.; Jindo, T.; Fujii, Y.; Tsunoda, K.; Arao, T. Association of domain-specific physical activity and sedentary behavior with cardiometabolic health among office workers. Scand. J. Med. Sci. Sports 2022, 2, 1224–1235. [Google Scholar] [CrossRef]
- Theofilis, P.; Oikonomou, E.; Lazaros, G.; Vogiatzi, G.; Mystakidi, V.C.; Goliopoulou, A.; Anastasiou, M.; Christoforatou, E.; Tousoulis, D. The association of physical activity with arterial stiffness and inflammation: Insight from the “Corinthia” study. Angiology 2022, 73, 716–723. [Google Scholar] [CrossRef]
- Renner, S.W.; Qiao, Y.; Gmelin, T.; Santanasto, A.J.; Boudreau, R.M.; Walston, J.D.; Perls, T.T.; Christensen, K.; Newman, A.B.; Glynn, N.W.; et al. Association of fatigue, inflammation, and physical activity on gait speed: The Long Life Family Study. Aging Clin. Exp. Res. 2022, 34, 367–374. [Google Scholar] [CrossRef]
- Delpino, F.M.; de Lima, A.P.M.; da Silva, B.G.C.; Nunes, B.P.; Caputo, E.L.; Bielemann, R.M. Physical activity and multimorbidity among community-dwelling older adults: A systematic review with meta-analysis. Am. J. Health Promot. 2022, 36, 1371–1385. [Google Scholar] [CrossRef]
- Su, N.; Zhai, F.-F.; Zhou, L.-X.; Ni, J.; Yao, M.; Li, M.-L.; Jin, Z.-Y.; Gong, G.-L.; Zhang, S.-Y.; Cui, L.-Y.; et al. Cerebral small vessel disease burden is associated with motor performance of lower and upper extremities in community-dwelling populations. Front. Aging Neurosci. 2017, 9, 313. [Google Scholar] [CrossRef]
- Shibata, A.; Ishii, K.; Koohsari, M.J.; Sugiyama, T.; Dunstan, D.W.; Owen, N.; Oka, K. Linear and non-linear associations of device-measured sedentary time with older adults’ skeletal muscle mass. Exp. Gerontol. 2022, 166, 111870. [Google Scholar] [CrossRef] [PubMed]
- Consitt, L.A.; Clark, B.C. The vicious cycle of myostatin signaling in sarcopenic obesity: Myostatin role in skeletal muscle growth, insulin signaling and implications for clinical trials. J. Frailty Aging 2018, 7, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.S.; Costanza, M.C.; Morabia, A. Association of physical activity intensity levels with overweight and obesity in a population-based sample of adults. Prev. Med. 2004, 38, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Staland-Nyman, C.; Houkes, I.; de Rijk, A.; Verdonk, P.; Hensing, G. Gender equality in domestic work and sickness absence—A population-based study on women and men in Sweden. Women Health 2021, 61, 325–336. [Google Scholar] [CrossRef] [PubMed]
Men (n = 1897) | Women (n = 2222) | p | |
---|---|---|---|
Age, years | 72.8 ± 5.8 | 72.1 ± 5.4 | <0.001 |
BMI, kg/m² | 26.8 ± 3.5 | 26.1 ± 4.4 | <0.001 |
Healthy diet, n (%) | 450 (23.7) | 446 (20.1) | 0.006 |
Current smokers, n (%) | 253 (13.3) | 256 (11.5) | 0.100 |
Physically inactive, n (%) | 1001 (52.8) | 1390 (62.6) | <0.001 |
Light walking, n (%) | 506 (26.7) | 515 (23.2) | 0.011 |
Running/cycling/swimming, n (%) | 219 (11.5) | 171 (7.7) | <0.001 |
Strength training +/− stretching, n (%) | 32 (1.7) | 46 (2.1) | 0.430 |
Light walking + any type of exercise, n (%) | 139 (7.3) | 100 (4.5) | <0.001 |
Handgrip strength, kg | 35.2 ± 7.9 | 20.5 ± 5.4 | <0.001 |
Handgrip strength/BMI | 1.3 ± 0.34 | 0.80 ± 0.24 | <0.001 |
5STS, s | 8.8 ± 2.5 | 9.4 ± 2.9 | <0.001 |
Muscle power | |||
Absolute, W | 326.4 ± 95.7 | 220.6 ± 69.0 | <0.001 |
Relative, W/kg | 4.17 ± 1.07 | 3.43 ± 0.95 | <0.001 |
Allometric, W/m2 | 111.6 ± 30.9 | 88.5 ± 25.5 | <0.001 |
Specific, W/kg | 14.7 ± 4.1 | 16.7 ± 5.8 | <0.001 |
Calf circumference, cm | 35.8 ± 3.2 | 34.1 ± 3.3 | <0.001 |
Appendicular skeletal muscle mass, kg | 22.4 ± 2.5 | 13.8 ± 2.6 | <0.001 |
Appendicular skeletal muscle mass/BMI | 0.84 ± 0.10 | 0.53 ± 0.09 | <0.001 |
Inactive (n = 1001) | Walking (n = 506) | Running/Cycling/Swimming (n = 219) | Strength Training +/− Stretching (n = 32) | Walking + Any Exercise (n = 139) | |
---|---|---|---|---|---|
Age, years | 73.0 ± 6.0 | 73.1 ± 5.5 | 71.6 ± 5.9 ab | 72.5 ± 6.4 | 71.7 ± 5.6 |
BMI, kg/m² | 27.4 ± 3.7 | 26.3 ± 3.3 a | 26.1 ± 3.1 a | 27.2 ± 4.6 | 25.6 ± 3.2 a |
Healthy diet, n (%) | 264 (26.4) | 96 (19.0) | 51 (23.3) | 3 (9.4) | 36 (25.9) |
Current smokers, n (%) | 138 (13.8) | 64 (12.6) | 31 (14.2) | 5 (15.6) | 15 (10.8) |
Handgrip strength, kg | 34.5 ± 8.1 | 35.4 ± 7.5 | 36.6 ± 7.2 ab | 35.6 ± 8.4 | 36.6 ± 8.3 a |
Handgrip strength/BMI | 1.27 ± 0.32 | 1.35 ± 0.31 a | 1.41 ± 0.32 a | 1.32 ± 0.32 | 1.45 ± 0.48 ab |
5STS, s | 9.20 (2.80) | 8.78 (2.15) a | 8.15 (2.0) ab | 7.65 (1.45) a | 8.09 (2.02) ab |
Muscle power | |||||
Absolute, W | 318.5 ± 94.9 | 322.5 ± 93.0 | 354.2 ± 95.2 ab | 359.7 ± 90.9 | 330.8 ± 98.5 |
Relative, W/kg | 3.99 ± 1.01 | 4.24 ± 1.07 ab | 4.56 ± 1.11 ab | 4.64 ± 1.02 | 4.47 ± 1.19 |
Allometric, W/m2 | 109.3 ± 30.5 | 110.8 ± 31.4 | 119.3 ± 31.0 ab | 124.6 ± 30.5 | 112.7 ± 29.3 |
Specific, W/kg | 14.2 ± 4.0 | 14.5 ± 4.0 | 15.9 ± 4.2 ab | 16.7 ± 4.6 | 15.0 ± 4.2 |
Calf circumference, cm | 35.8 ± 3.3 | 35.8 ± 3.1 | 35.6 ± 2.8 | 35.5 ± 3.7 | 35.4 ± 3.3 |
Appendicular skeletal muscle mass, kg | 22.5 ± 2.5 | 22.4 ± 2.4 | 22.3 ± 2.2 | 22.2 ± 2.9 | 22.2 ± 2.6 |
Appendicular skeletal muscle mass/BMI | 0.82 ± 0.09 | 0.85 ± 0.09 a | 0.86 ± 0.10 a | 0.82 ± 0.09 a | 0.87 ± 0.14 a |
Inactive (n = 1390) | Walking (n = 515) | Running/Cycling/Swimming (n = 171) | Strength Training +/− Stretching (n = 46) | Walking + Any Exercise (n = 100) | |
---|---|---|---|---|---|
Age, years | 72.5 ± 5.6 | 71.6 ± 5.1 a | 71.4 ± 4.8 | 72.2 ± 5.6 | 70.2 ± 4.6 a |
BMI, kg/m² | 26.6 ± 4.7 | 25.2 ± 3.6 a | 25.7 ± 4.4 | 25.6 ± 4.0 | 24.5 ± 3.2 a |
Healthy diet, n (%) | 327 (23.5) * | 75 (14.6) | 26 (15.2) | 5 (10.9) | 13 (13.0) |
Current smokers, n (%) | 163 (11.7) | 51 (9.9) | 23 (13.5) | 3 (6.5) | 16 (16.0) |
Handgrip strength, kg | 20.2 ± 5.4 | 20.7 ± 5.1 | 21.0 ± 5.2 | 21.0 ± 6.5 | 22.1 ± 5.8 |
Handgrip strength/BMI | 0.77 ± 0.23 | 0.83 ± 0.23 a | 0.83 ± 0.24 a | 0.83 ± 0.25 | 0.91 ± 0.27 ab |
5STS, s | 9.9 (3.2) | 9.0 (2.2) a | 8.4 (2.4) a | 7.9 (1.7) a | 7.8 (1.7) ab |
Muscle power | |||||
Absolute, W | 214.7 ± 67.2 | 224.0 ± 64.9 | 242.0 ± 70.8 ab | 251.0 ± 97.6 | 246.8 ± 73.7 a |
Relative, W/kg | 3.28 ± 0.93 | 3.59 ± 0.85 ab | 3.87 ± 1.04 ab | 3.90 ± 1.05 | 4.04 ± 1.02 ab |
Allometric, W/m2 | 86.4 ± 25.3 | 89.4 ± 23.4 | 97.4 ± 27.0 ab | 96.2 ± 27.4 | 98.5 ± 23.8 a |
Specific, W/kg | 16.2 ± 5.5 | 17.1 ± 5.8 | 18.7 ± 7.8 a | 18.6 ± 5.6 | 18.4 ± 5.5 |
Calf circumference, cm | 34.1 ± 3.5 | 34.0 ± 3.0 | 33.9 ± 2.9 | 34.2 ± 2.70 | 34.0 ± 2.8 |
Appendicular skeletal muscle mass, kg | 13.8 ± 2.7 | 13.8 ± 2.3 a | 13.7 ± 2.3 | 13.9 ± 2.1 | 13.8 ± 2.2 a |
Appendicular skeletal muscle mass/BMI | 0.52 ± 0.08 | 0.55 ± 0.09 | 0.54 ± 0.09 | 0.55 ± 0.08 | 0.56 ± 0.07 |
Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Handgrip strength | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.0 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | 0.22 (−0.75, 1.34) | 0.58 (−0.36, 1.52) | Running/cycling/swimming | 2.00 (0.73, 3.27) | 0.93 (−0.26, 2.13) | Walking + exercise | 0.00 (−1.78, 1.78) | −0.03 (−1.17, 1.65) | Walking + exercise | 1.37 (−3.31, 6.04) | 0.76 (−3.61, 5.12) |
Running/cycling/swimming | 2.29 (1.06, 3.52) | 1.37 (0.24, 2.50) | Strength +/− stretching | 0.63 (−3.12, 4.38) | −0.32 (−3.74, 3.08) | ||||||
Strength +/− stretching | 0.925 (−3.33, 5.18) | 0.71 (−3.13, 4.55) | Walking + exercise | 2.00 (0.38, 3.62) | 1.31 (−0.17, 2.78) | ||||||
Walking + exercise | 2.29 (0.66, 3.93) | 1.31 (−0.17, 2.78) | |||||||||
5STS | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | 9.31 (9.13, 9.50) | −0.65 (−0.98, −0.30) | Running/cycling/swimming | −0.54 (−0.93, −0.16) | −0.36 (−0.74, 0.03) | Walking + exercise | −0.08 (−0.56, 0.39) | −0.06 (−0.52, 0.41) | Walking + exercise | 0.42 (−0.71, 1.56) | 0.46 (−0.66, 1.59) |
Running/cycling/swimming | −1.12 (−1.54, −0.70) | −0.938 (−1.34, −0.53) | Strength +/− stretching | −1.05 (−2.26, 0.17) | −0.91 (−2.10, 0.29) | ||||||
Strength +/− stretching | −1.63 (−3.14, −0.11) | −1.54 (−2.99, −0.08) | Walking + exercise | −0.63 (−1.11, −0.14) | −0.93 (−1.53, −0.46) | ||||||
Walking + exercise | −1.20 (−1.76, −0.65) | −0.99 (−1.53, −0.46) | |||||||||
Absolute muscle power | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.0 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | 4.08 (−8.433, 16.599) | 7.77 (−4.00, 19.54) | Running/cycling/swimming | 31.65 (14.93, 48.36) | 22.46 (5.90, 39.02) | Walking + exercise | −10.93 (−33.55, 11.69) | −11.01 (−33.32, 11.30) | Walking + exercise | −16.41 (−71.79, 38.97) | −15.83 (−69.68, 38.01) |
Running/cycling/swimming | 35.73 (21.15, 50.31) | 27.97 (14.09, 41.85) | Strength +/− stretching | 37.12 (−12.90, 87.14) | 27.29 (−20.68, 75.26) | ||||||
Strength +/− stretching | 41.21 (−8.98, 91.40) | 37.64 (−9.15, 84.44) | Walking + exercise | 20.71 (−0.18, 41.61) | 16.11 (−1.90, 34.13) | ||||||
Walking + exercise | 24.80 (5.60, 43.99) | 16.11 (−1.90, 34.13) | |||||||||
ASM | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | −0.15 (−0.48, 0.19) | −0.11 (−0.44, 0.27) | Running/cycling/swimming | 0.11 (−0.32, 0.54) | −0.16 (−0.57, 0.26) | Walking + exercise | −0.25 (−0.80, 0.30) | −0.24 (−0.76, 0.28) | Walking + exercise | 0.34 (−1.16, 1.83) | 0.14 (−1.27, 1.55) |
Running/cycling/swimming | −0.04 (−0.42, 0.35) | −0.20 (−0.58, 0.18) | Strength +/− stretching | −0.48 (−1.83, 0.86) | −0.69 (−1.95, 0.65) | ||||||
Strength +/− stretching | −0.63 (−1.97, 0.71) | −0.64 (−1.96, 0.69) | Walking + exercise | −0.14 (−0.70, 0.41) | −0.45 (−0.95, 0.06) | ||||||
Walking + exercise | −0.29 (−0.80, 0.22) | −0.45 (−0.95, 0.06) |
Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | Univariate β (95% CI) | Adjusted (95% CI) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Handgrip strength | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | 0.25 (−0.39, 0.89) | −0.00 (−0.62, 0.61) | Running/cycling/swimming | 0.41 (−0.50, 1.35) | 2.49 (1.23, 3.70) | Walking + exercise | 1.26 (−0.53, 3.05) | 1.11 (−0.66, 2.88) | Walking + exercise | 2.23 (−1.76, 6.22) | 1.60 (−2.35, 5.54) |
Running/cycling/swimming | 0.66 (−0.25, 1.57) | 0.22 (−0.65, 1.009) | Strength +/− stretching | 2.27 (−0.41, 4.95) | 1.60 (−1.82, 5.01) | ||||||
Strength +/− stretching | 2.52 (−0.27, 5.31) | 2.48 (−0.19, 5.15) | Walking + exercise | 2.51 (1.20, 3.82) | 3.70 (2.15, 5.25) | ||||||
Walking + exercise | 2.76 (1.48, 4.05) | 2.04 (0.79, 3.28) | |||||||||
5STS | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | −1.00 (−1.41, −0.65) | −0.86 (−1.22, −0.49) | Running/cycling/swimming | −0.59 (−1.01, −0.13) | −0.45 (−0.74, −0.16) | Walking + exercise | −0.24 (−0.62, 0.14) | −0.20 (−0.57, 0.17) | Walking + exercise | −0.01 (−0.75, 0.73) | 0.04 (−0.69, 0.78) |
Running/cycling/swimming | −1.621 (−2.186, −1.0056) | −1.320 (−1.857, −0.783) | Strength +/− stretching | −0.614 (−1.778, 0.551) | −0.776 (−1.596, 0.043) | ||||||
Strength +/− stretching | −1.65 (−3.29, 0.00) | −1.54 (−3.10, 0.03) | Walking + exercise | −1.005 (−1.67, −0.49) | −0.67 (−1.00, −0.31) | ||||||
Walking + exercise | −2.09 (−2.86, −1.31) | −1.66 (−2.40, −0.91) | |||||||||
Absolute muscle power | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | 9.27 (1.20, 17.34) | 5.41 (−2.28, 13.09) | Running/cycling/swimming | 17.99 (4.97, 31.00) | 33.83 (21.25, 46.41) | Walking + exercise | −2.11 (−20.41, 16.19) | −3.13 (−21.28, 15.02) | Walking + exercise | 3.702 (−36.19, 43.60) | 0.31 (−39.38, 40.00) |
Running/cycling/swimming | 27.26 (15.56, 38.95) | 20.48 (9.45, 31.48) | Strength +/− stretching | 27.01 (−6.55, 60.56) | 29.92 (−4.32, 64.15) | ||||||
Strength +/− stretching | 36.28 (2.82, 69.73) | 33.40 (2.08, 64.73) | Walking + exercise | 26.19 (9.20, 43.18) | 31.18 (15.45, 46.90) | ||||||
Walking + exercise | 35.46 (19.48, 51.44) | 25.289 (10.17, 40.40) | |||||||||
ASM | |||||||||||
Physically inactive | 1.00 (Reference) | 1.00 (Reference) | Walking | 1.00 (Reference) | 1.00 (Reference) | Running/cycling/swimming | 1.00 (Reference) | 1.00 (Reference) | Strength +/− stretching | 1.00 (Reference) | 1.00 (Reference) |
Walking | −0.17 (−0.49, 0.15) | −0.25 (−0.56, 0.07) | Running/cycling/swimming | 0.01 (−0.44, 0.46) | 1.001 (0.36, 1.66) | Walking + exercise | 0.20 (−0.67, 1.007) | 0.20 (−0.62, 1.006) | Walking + exercise | 1.33 (−0.55, 3.19) | 1.13 (−0.70, 2.95) |
Running/cycling/swimming | −0.16 (−0.62, 0.29) | −0.30 (−0.74, 0.15) | Strength +/− stretching | −0.04 (−1.26, 1.19) | −0.13 (−2.00, 1.69) | ||||||
Strength +/− stretching | 0.21 (−1.57, 1.16) | −0.25 (−1.59, 1.008) | Walking + exercise | 0.20 (−0.41, 0.80) | 1.28 (0.46, 2.10) | ||||||
Walking + exercise | 0.03 (−0.62, 0.67) | −0.15 (−0.79, 0.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Association of Physical Activity and Exercise with Physical Performance and Muscle Mass in Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. J. Clin. Med. 2023, 12, 7521. https://doi.org/10.3390/jcm12247521
Coelho-Júnior HJ, Calvani R, Picca A, Tosato M, Landi F, Marzetti E. Association of Physical Activity and Exercise with Physical Performance and Muscle Mass in Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Journal of Clinical Medicine. 2023; 12(24):7521. https://doi.org/10.3390/jcm12247521
Chicago/Turabian StyleCoelho-Júnior, Hélio José, Riccardo Calvani, Anna Picca, Matteo Tosato, Francesco Landi, and Emanuele Marzetti. 2023. "Association of Physical Activity and Exercise with Physical Performance and Muscle Mass in Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project" Journal of Clinical Medicine 12, no. 24: 7521. https://doi.org/10.3390/jcm12247521
APA StyleCoelho-Júnior, H. J., Calvani, R., Picca, A., Tosato, M., Landi, F., & Marzetti, E. (2023). Association of Physical Activity and Exercise with Physical Performance and Muscle Mass in Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Journal of Clinical Medicine, 12(24), 7521. https://doi.org/10.3390/jcm12247521