X-Linked Hypophosphatemia: Does Targeted Therapy Modify Dental Impairment?
Abstract
:1. Introduction
2. Pathogenesis and Dental Symptoms
- Grade I: minimal or no dental manifestations.
- Grade II: moderate pulp enlargement with a few abscessed teeth.
- Grade III: large pulp chambers and multiple dental abscesses [8].
3. Diagnosis
3.1. Imaging
3.2. Histology
- Grade I: <50% of the total dentin thickness is involved, and minimal interglobular spaces are present.
- Grade II: >50% but does not involve entire dentin thickness and moderate interglobular spaces are present.
- Grade III: the entire dentin thickness is involved, and large interglobular spaces are present [8].
4. PHEX Gene Mutation and Dental Phenotype
5. Dental Management of XLH
6. The Impact of Therapy on Dental Impairment
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, S.; Becker, G.L. Origin, diagnosis, and treatment of the dental manifestations of vitamin D-resistant rickets: Review of the literature and report of case. J. Am. Dent. Assoc. 1976, 92, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, R.; Harrison, H.; Reveley, R.A.; Drabkowski, A.J. Familial vitamin D-refractory rickets. J. Am. Dent. Assoc. 1971, 82, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.K. X-linked hypophosphataemic vitamin D-resistant rickets. Aust. Dent. J. 1984, 29, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S. FGF23 and Bone and Mineral Metabolism. Handb. Exp. Pharmacol. 2020, 262, 281–308. [Google Scholar] [CrossRef]
- Athonvarangkul, D.; Insogna, K.L. New Therapies for Hypophosphatemia-Related to FGF23 Excess. Calcif. Tissue Int. 2021, 108, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Rafaelsen, S.; Johansson, S.; Ræder, H.; Bjerknes, R. Hereditary hypophosphatemia in Norway: A retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur. J. Endocrinol. 2016, 174, 125–136. [Google Scholar] [CrossRef]
- Dahir, K.; Roberts, M.S.; Krolczyk, S.; Simmons, J.H. X-Linked Hypophosphatemia: A New Era in Management. J. Endocr. Soc. 2020, 4, bvaa151. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.K.; Romaniuk, K.; Sclavos, S. Micromorphologic features of dentin in vitamin D-resistant rickets: Correlation with clinical grading of severity. Pediatr. Dent. 1989, 11, 203–208. [Google Scholar]
- Carpenter, T.O. New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr. Clin. N. Am. 1997, 44, 443–466. [Google Scholar] [CrossRef]
- Razali, N.N.; Hwu, T.T.; Thilakavathy, K. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. J. Pediatr. Endocrinol. Metab. 2015, 28, 1009–1017. [Google Scholar] [CrossRef]
- Rabbani, A.; Rahmani, P.; Ziaee, V.; Ghodoosi, S. Dental problems in hypophosphatemic rickets, a cross sectional study. Iran. J. Pediatr. 2012, 22, 531–534. [Google Scholar] [PubMed]
- Gjørup, H.; Beck-Nielsen, S.S.; Hald, J.D.; Haubek, D. Oral health-related quality of life in X-linked hypophosphataemia and osteogenesis imperfecta. J. Oral. Rehabil. 2021, 48, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Baroncelli, G.I.; Zampollo, E.; Manca, M.; Toschi, B.; Bertelloni, S.; Michelucci, A.; Isola, A.; Bulleri, A.; Peroni, D.; Giuca, M.R. Pulp chamber features, prevalence of abscesses, disease severity, and PHEX mutation in X-linked hypophosphatemic rickets. J. Bone Miner. Metab. 2021, 39, 212–223. [Google Scholar] [CrossRef]
- Seow, W.K. The effect of medical therapy on dentin formation in vitamin D-resistant rickets. Pediatr. Dent. 1991, 13, 97–102. [Google Scholar] [PubMed]
- Abe, K.; Masatomi, Y.; Nakajima, Y.; Shintani, S.; Moriwaki, Y.; Sobue, S.; Ooshima, T. The occurrence of interglobular dentin in incisors of hypophosphatemic mice fed a high-calcium and high-phosphate diet. J. Dent. Res. 1992, 71, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, C.A.; Mitsiades, N.S.; Sun, D.; Chrousos, G.P.; O’Connell, A. Recurring oral giant cell lesion in a child with X-linked hypophosphatemic rickets: Clinical manifestation of occult parathyroidism? J. Pediatr. 1995, 127, 444–446. [Google Scholar] [CrossRef]
- Insogna, K.L.; Briot, K.; Imel, E.A.; Kamenický, P.; Ruppe, M.D.; Portale, A.A.; Weber, T.; Pitukcheewanont, P.; Cheong, H.I.; Jan de Beur, S.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2018, 33, 1383–1393. [Google Scholar] [CrossRef]
- Drezner, M. X-Linked Hypophosphatemia: New Horizons. Clin. Pediatr. Endocrinol. 2005, 14, S23_21–S23_31. [Google Scholar] [CrossRef]
- Onishi, T.; Ogawa, T.; Hayashibara, T.; Hoshino, T.; Okawa, R.; Ooshima, T. Hyper-expression of osteocalcin mRNA in odontoblasts of Hyp mice. J. Dent. Res. 2005, 84, 84–88. [Google Scholar] [CrossRef]
- Ogawa, T.; Onishi, T.; Hayashibara, T.; Sakashita, S.; Okawa, R.; Ooshima, T. Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch. Oral Biol. 2006, 51, 58–63. [Google Scholar] [CrossRef]
- Bender, I.B.; Naidorf, I.J. Dental observations in vitamin D-resistant rickets with special reference to periapical lesions. J. Endod. 1985, 11, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, I.; Nucci, C.; D’Alessandro, G.; Alkhamis, N.; Marchionni, S.; Piana, G. X-linked hypophosphatemic rickets: Enamel abnormalities and oral clinical findings. Scanning 2014, 36, 456–461. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Brusgaard, K.; Rasmussen, L.M.; Brixen, K.; Brock-Jacobsen, B.; Poulsen, M.R.; Vestergaard, P.; Ralston, S.H.; Albagha, O.M.; Poulsen, S.; et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif. Tissue Int. 2010, 87, 108–119. [Google Scholar] [CrossRef] [PubMed]
- McKee, M.D.; Hoac, B.; Addison, W.N.; Barros, N.M.; Millán, J.L.; Chaussain, C. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontology 2000 2013, 63, 102–122. [Google Scholar] [CrossRef]
- Coyac, B.R.; Falgayrac, G.; Baroukh, B.; Slimani, L.; Sadoine, J.; Penel, G.; Biosse-Duplan, M.; Schinke, T.; Linglart, A.; McKee, M.D.; et al. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 2017, 103, 334–346. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Mughal, Z.; Haffner, D.; Nilsson, O.; Levtchenko, E.; Ariceta, G.; de Lucas Collantes, C.; Schnabel, D.; Jandhyala, R.; Mäkitie, O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 2019, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Chavez, M.B.; Kramer, K.; Chu, E.Y.; Thumbigere-Math, V.; Foster, B.L. Insights into dental mineralization from three heritable mineralization disorders. J. Struct. Biol. 2020, 212, 107597. [Google Scholar] [CrossRef]
- Schwartz, S.; Scriver, C.R.; Reade, T.M.; Shields, E.D. Oral findings in patients with autosomal dominant hypophosphatemic bone disease and X-linked hypophosphatemia: Further evidence that they are different diseases. Oral. Surg. Oral. Med. Oral. Pathol. 1988, 66, 310–314. [Google Scholar] [CrossRef]
- Sabandal, M.M.; Robotta, P.; Bürklein, S.; Schäfer, E. Review of the dental implications of X-linked hypophosphataemic rickets (XLHR). Clin. Oral. Investig. 2015, 19, 759–768. [Google Scholar] [CrossRef]
- Haffner, D.; Emma, F.; Eastwood, D.M.; Duplan, M.B.; Bacchetta, J.; Schnabel, D.; Wicart, P.; Bockenhauer, D.; Santos, F.; Levtchenko, E.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019, 15, 435–455. [Google Scholar] [CrossRef]
- Ribeiro, T.R.; Costa, F.W.; Soares, E.C.; Williams, J.R., Jr.; Fonteles, C.S. Enamel and dentin mineralization in familial hypophosphatemic rickets: A micro-CT study. Dentomaxillofac Radiol. 2015, 44, 20140347. [Google Scholar] [CrossRef] [PubMed]
- Clayton, D.; Chavez, M.B.; Tan, M.H.; Kolli, T.N.; Giovani, P.A.; Hammersmith, K.J.; Bowden, S.A.; Foster, B.L. Mineralization Defects in the Primary Dentition Associated with X-Linked Hypophosphatemic Rickets. JBMR Plus 2021, 5, e10463. [Google Scholar] [CrossRef] [PubMed]
- Nikiforuk, G.; Fraser, D. Etiology of Enamel Hypoplasia and Interglobular Dentin: The Roles of Hypocalcemia and Hypophosphatemia. Metab. Bone Dis. Relat. Res. 1979, 2, 17–23. [Google Scholar] [CrossRef]
- Shields, E.D.; Scriver, C.R.; Reade, T.; Fujiwara, T.M.; Morgan, K.; Ciampi, A.; Schwartz, S. X-linked hypophosphatemia: The mutant gene is expressed in teeth as well as in kidney. Am. J. Hum. Genet. 1990, 46, 434–442. [Google Scholar] [PubMed]
- Wang, L.; Du, L.; Ecarot, B. Evidence for Phex haploinsufficiency in murine X-linked hypophosphatemia. Mamm. Genome 1999, 10, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Holm, I.A.; Nelson, A.E.; Robinson, B.G.; Mason, R.S.; Marsh, D.J.; Cowell, C.T.; Carpenter, T.O. Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 2001, 86, 3889–3899. [Google Scholar] [CrossRef]
- Onishi, T.; Okawa, R.; Ogawa, T.; Shintani, S.; Ooshima, T. Phex mutation causes the reduction of npt2b mRNA in teeth. J. Dent. Res. 2007, 86, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.A.; Soares Junior, L.A.; Santos, M.A.; Vaisbich, M.H. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics 2010, 65, 1023–1026. [Google Scholar] [CrossRef]
- Lyseng-Williamson, K.A. Burosumab in X-linked hypophosphatemia: A profile of its use in the USA. Drugs Ther. Perspect. 2018, 34, 497–506. [Google Scholar] [CrossRef]
- Salmon, B.; Bardet, C.; Coyac, B.R.; Baroukh, B.; Naji, J.; Rowe, P.S.; Opsahl Vital, S.; Linglart, A.; McKee, M.D.; Chaussain, C. Abnormal osteopontin and matrix extracellular phosphoglycoprotein localization, and odontoblast differentiation, in X-linked hypophosphatemic teeth. Connect. Tissue Res. 2014, 55 (Suppl. 1), 79–82. [Google Scholar] [CrossRef]
- Boukpessi, T.; Hoac, B.; Coyac, B.R.; Leger, T.; Garcia, C.; Wicart, P.; Whyte, M.P.; Glorieux, F.H.; Linglart, A.; Chaussain, C.; et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 2017, 95, 151–161. [Google Scholar] [CrossRef]
- Takeda, E.; Taketani, Y.; Sawada, N.; Sato, T.; Yamamoto, H. The regulation and function of phosphate in the human body. Biofactors 2004, 21, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Chaussain-Miller, C.; Sinding, C.; Septier, D.; Wolikow, M.; Goldberg, M.; Garabedian, M. Dentin structure in familial hypophosphatemic rickets: Benefits of vitamin D and phosphate treatment. Oral. Dis. 2007, 13, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Seow, W.K. Diagnosis and management of unusual dental abscesses in children. Aust. Dent. J. 2003, 48, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.G.; Beck-Nielsen, S.S.; Haubek, D.; Hintze, H.; Gjørup, H.; Poulsen, S. Periapical and endodontic status of permanent teeth in patients with hypophosphatemic rickets. J. Oral. Rehabil. 2012, 39, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, M.; Bohner, L.; Sabandal, M.M.I.; Kleinheinz, J.; Jung, S. Oral symptoms and oral health-related quality of life of individuals with x-linked hypophosphatemia. Head. Face Med. 2019, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Munns, C.F.; Yoo, H.-W.; Jalaludin, M.Y.; Vasanwala, R.; Chandran, M.; Rhee, Y.; BUT, W.M.; Kong, A.P.-S.; Su, P.-H.; Numbenjapon, N.; et al. Asia-Pacific Consensus Recommendations on X-Linked Hypophosphatemia: Diagnosis, Multidisciplinary Management, and Transition from Pediatric to Adult Care. JBMR Plus 2023, 7, e10744. [Google Scholar] [CrossRef]
- Imanishi, Y.; Shoji, T.; Emoto, M. Complications and Treatments in Adult X-Linked Hypophosphatemia. Endocrines 2022, 3, 560–569. [Google Scholar] [CrossRef]
- Gadion, M.; Hervé, A.; Herrou, J.; Rothenbuhler, A.; Smail-Faugeron, V.; Courson, F.; Linglart, A.; Chaussain, C.; Biosse Duplan, M. Burosumab and Dental Abscesses in Children with X-Linked Hypophosphatemia. JBMR Plus 2022, 6, e10672. [Google Scholar] [CrossRef]
- Coyac, B.R.; Hoac, B.; Chafey, P.; Falgayrac, G.; Slimani, L.; Rowe, P.S.; Penel, G.; Linglart, A.; McKee, M.D.; Chaussain, C.; et al. Defective Mineralization in X-Linked Hypophosphatemia Dental Pulp Cell Cultures. J. Dent. Res. 2018, 97, 184–191. [Google Scholar] [CrossRef]
- Whyte, M.P.; Carpenter, T.O.; Gottesman, G.S.; Mao, M.; Skrinar, A.; San Martin, J.; Imel, E.A. Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia: A multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019, 7, 189–199. [Google Scholar] [CrossRef]
- Ward, L.M.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Portale, A.A.; Högler, W.; Simmons, J.H.; Gottesman, G.S.; Padidela, R.; Namba, N.; et al. Effect of Burosumab Compared with Conventional Therapy on Younger vs Older Children with X-linked Hypophosphatemia. J. Clin. Endocrinol. Metab. 2022, 107, e3241–e3253. [Google Scholar] [CrossRef]
- Imel, E.A.; Zhang, X.; Ruppe, M.D.; Weber, T.J.; Klausner, M.A.; Ito, T.; Vergeire, M.; Humphrey, J.S.; Glorieux, F.H.; Portale, A.A.; et al. Prolonged Correction of Serum Phosphorus in Adults with X-Linked Hypophosphatemia Using Monthly Doses of KRN23. J. Clin. Endocrinol. Metab. 2015, 100, 2565–2573. [Google Scholar] [CrossRef] [PubMed]
- Ukarapong, S.; Seeherunvong, T.; Berkovitz, G. Current and Emerging Therapies for Pediatric Bone Diseases. Clin. Rev. Bone Miner. Metab. 2020, 18, 31–42. [Google Scholar] [CrossRef]
- Imel, E.A.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Simmons, J.H.; Padidela, R.; Namba, N.; Cheong, H.I.; et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A randomised, active-controlled, open-label, phase 3 trial. Lancet 2019, 393, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Okawa, R.; Ogasawara, T.; Hoshino, Y.; Hidaka, N.; Koga, M.; Kinoshita, Y.; Kobayashi, H.; Taniguchi, Y.; Fukumoto, S.; et al. Effect of conventional treatment on dental complications and ectopic ossifications among 30 adults with XLH. J. Clin. Endocrinol. Metab. 2022, 108, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Brener, R.; Zeitlin, L.; Lebenthal, Y.; Brener, A. Dental health of pediatric patients with X-linked hypophosphatemia (XLH) after three years of burosumab therapy. Front. Endocrinol. 2022, 13, 947814. [Google Scholar] [CrossRef] [PubMed]
- Linglart, A.; Imel, E.A.; Whyte, M.P.; Portale, A.A.; Högler, W.; Boot, A.M.; Padidela, R.; Van’t Hoff, W.; Gottesman, G.S.; Chen, A.; et al. Sustained Efficacy and Safety of Burosumab, a Monoclonal Antibody to FGF23, in Children with X-Linked Hypophosphatemia. J. Clin. Endocrinol. Metab. 2022, 107, 813–824. [Google Scholar] [CrossRef]
Authors (Year) | # of XLH Patients | Control Group | Duration | Dental Outcome |
---|---|---|---|---|
Imel EA et al. (2019) [55] | 61 | Conventional therapy | 64 weeks | Higher prevalence of dental abscesses in the Burosumab group |
Gadion M et al. (2022) [49] | 71 | Conventional therapy | ≥1 year | Decreased mean number of dental abscesses in the Burosumab group, caries’ prevalence same in both groups |
Ward LM et al. (2022) [52] | 61 | Conventional therapy | 64 weeks | No dental abscesses in patients under the age of five in the Burosumab group, dental abscesses in 53% of older children in the Burosumab group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, A.; Wuersching, S.N.; Kollmuss, M.; Poxleitner, P.; Dewenter, I.; Brandenburg, L.S.; Steybe, D.; Fegg, F.N.; Smolka, W.; Otto, S.; et al. X-Linked Hypophosphatemia: Does Targeted Therapy Modify Dental Impairment? J. Clin. Med. 2023, 12, 7546. https://doi.org/10.3390/jcm12247546
Abdullah A, Wuersching SN, Kollmuss M, Poxleitner P, Dewenter I, Brandenburg LS, Steybe D, Fegg FN, Smolka W, Otto S, et al. X-Linked Hypophosphatemia: Does Targeted Therapy Modify Dental Impairment? Journal of Clinical Medicine. 2023; 12(24):7546. https://doi.org/10.3390/jcm12247546
Chicago/Turabian StyleAbdullah, Anusha, Sabina Noreen Wuersching, Maximilian Kollmuss, Philipp Poxleitner, Ina Dewenter, Leonard Simon Brandenburg, David Steybe, Florian Nepomuk Fegg, Wenko Smolka, Sven Otto, and et al. 2023. "X-Linked Hypophosphatemia: Does Targeted Therapy Modify Dental Impairment?" Journal of Clinical Medicine 12, no. 24: 7546. https://doi.org/10.3390/jcm12247546
APA StyleAbdullah, A., Wuersching, S. N., Kollmuss, M., Poxleitner, P., Dewenter, I., Brandenburg, L. S., Steybe, D., Fegg, F. N., Smolka, W., Otto, S., & Obermeier, K. T. (2023). X-Linked Hypophosphatemia: Does Targeted Therapy Modify Dental Impairment? Journal of Clinical Medicine, 12(24), 7546. https://doi.org/10.3390/jcm12247546