Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures and Measurements
2.2. Outcomes
2.3. Statistical Analysis
Data Collection, Imputation, and Sample Size Calculations
2.4. Model Development
2.5. Model Performance Assessment
2.6. Comparison of Predictive Performance
3. Results
3.1. Patient Characteristics
3.2. Model Development
3.3. Model Performance and Comparison of Predictive Performance of Scores in People with Prediabetes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013, 37, S81–S90. [Google Scholar] [CrossRef]
- Sepanlou, S.G.; Safiri, S.; Bisignano, C.; Ikuta, K.S.; Merat, S.; Saberifiroozi, M.; Poustchi, H.; Tsoi, D.; Colombara, D.V.; Abdoli, A.; et al. The Global, Regional, and National Burden of Cirrhosis by Cause in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yu, R.; Xiong, Y.; Du, F.; Zhu, S. A Vicious Circle between Insulin Resistance and Inflammation in Nonalcoholic Fatty Liver Disease. Lipids Health Dis. 2017, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Nishi, T.; Babazono, A.; Maeda, T.; Imatoh, T.; Une, H. Evaluation of the Fatty Liver Index as a Predictor for the Development of Diabetes among Insurance Beneficiaries with Prediabetes. J. Diabetes Investig. 2015, 6, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nat. Rev. Gastroenterol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Sumida, Y.; Nakajima, A.; Itoh, Y. Limitations of Liver Biopsy and Non-Invasive Diagnostic Tests for the Diagnosis of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. World J. Gastroenterol. 2014, 20, 475–485. [Google Scholar] [CrossRef]
- Geethakumari, P.; Kampa, P.; Parchuri, R.; Bhandari, R.; Alnasser, A.R.; Akram, A.; Kar, S.; Osman, F.; Mashat, G.D.; Tran, H.H.-V.; et al. Accuracy of Ultrasonography vs. Elastography in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review. Cureus 2022, 14, e29967. [Google Scholar] [CrossRef]
- Sasso, M.; Miette, V.; Sandrin, L.; Beaugrand, M. The Controlled Attenuation Parameter (CAP): A Novel Tool for the Non-Invasive Evaluation of Steatosis Using Fibroscan®. Clin. Res. Hepatol. Gas. 2012, 36, 13–20. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Orlic, L.; Franjic, N.; Hauser, G.; Stimac, D.; Milic, S. Transient Elastography (FibroScan®) with Controlled Attenuation Parameter in the Assessment of Liver Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease—Where Do We Stand? World J. Gastroenterol. 2016, 22, 7236–7251. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Han, K.; Song, K.; Choi, B.W. How to Develop, Validate, and Compare Clinical Prediction Models Involving Radiological Parameters: Study Design and Statistical Methods. Korean J. Radiol. 2016, 17, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Liver, E.A. for the S. of the; Higado, A.L. para el E. del EASL-ALEH Clinical Practice Guidelines: Non-Invasive Tests for Evaluation of Liver Disease Severity and Prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef]
- Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice Guidelines on Non-Invasive Tests for Evaluation of Liver Disease Severity and Prognosis—2021 Update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Machado, M.V.; Cortez-Pinto, H. Non-Invasive Diagnosis of Non-Alcoholic Fatty Liver Disease. A Critical Appraisal. J. Hepatol. 2013, 58, 1007–1019. [Google Scholar] [CrossRef]
- Brunt, E.M.; Wong, V.W.-S.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic Fatty Liver Disease. Nat. Rev. Dis. Prim. 2015, 1, 15080. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 3. Prevention or Delay of Diabetes and Associated Comorbidities: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S41–S48. [Google Scholar] [CrossRef]
- Snehalatha, C.; Viswanathan, V.; Ramachandran, A. Cutoff Values for Normal Anthropometric Variables in Asian Indian Adults. Diabetes Care 2003, 26, 1380–1384. [Google Scholar] [CrossRef] [PubMed]
- Consultation, W.E. Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.; Zimmet, P.; Shaw, J. The Metabolic Syndrome—A New Worldwide Definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Rajput, R.; Ahlawat, P. Prevalence and Predictors of Non-Alcoholic Fatty Liver Disease in Prediabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2957–2960. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mudgal, S.; Thakur, K.; Gaur, R. How to Calculate Sample Size for Observational and Experiential Nursing Research Studies? Natl. J. Physiol. Pharm. Pharmacol. 2019, 10, 1. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Kahn, H.S.; Bellentani, S.; Tiribelli, C. A Simple Index of Lipid Overaccumulation Is a Good Marker of Liver Steatosis. Bmc Gastroenterol. 2010, 10, 98. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Saokaew, S.; Kanchanasuwan, S.; Apisarnthanarak, P.; Charoensak, A.; Charatcharoenwitthaya, P.; Phisalprapa, P.; Chaiyakunapruk, N. Clinical Risk Scoring for Predicting Non-alcoholic Fatty Liver Disease in Metabolic Syndrome Patients (NAFLD-MS Score). Liver Int. 2017, 37, 1535–1543. [Google Scholar] [CrossRef]
- Yip, T.C.-F.; Ma, A.J.; Wong, V.W.-S.; Tse, Y.-K.; Chan, H.L.-Y.; Yuen, P.-C.; Wong, G.L.-H. Laboratory Parameter-based Machine Learning Model for Excluding Non-alcoholic Fatty Liver Disease (NAFLD) in the General Population. Aliment. Pharmacol. Ther. 2017, 46, 447–456. [Google Scholar] [CrossRef]
- Maurice, J.; Manousou, P. Non-Alcoholic Fatty Liver Disease. Clin. Med. 2018, 18, 245–250. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Saokaew, S.; Kositamongkol, C.; Charatcharoenwitthaya, P.; Srivanichakorn, W.; Washirasaksiri, C.; Chaiyakunapruk, N.; Phisalprapa, P. Comparison of Noninvasive Scoring Systems for the Prediction of Nonalcoholic Fatty Liver Disease in Metabolic Syndrome Patients. Medicine 2020, 99, e23619. [Google Scholar] [CrossRef] [PubMed]
- Petroff, D.; Blank, V.; Newsome, P.N.; Shalimar; Voican, C.S.; Thiele, M.; de Lédinghen, V.; Baumeler, S.; Chan, W.K.; Perlemuter, G.; et al. Assessment of Hepatic Steatosis by Controlled Attenuation Parameter Using the M and XL Probes: An Individual Patient Data Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 185–198. [Google Scholar] [CrossRef] [PubMed]
- de Lédinghen, V.; Wong, G.L.; Vergniol, J.; Chan, H.L.; Hiriart, J.; Chan, A.W.; Chermak, F.; Choi, P.C.; Foucher, J.; Chan, C.K.; et al. Controlled Attenuation Parameter for the Diagnosis of Steatosis in Non-alcoholic Fatty Liver Disease. J. Gastroenterol. Hepatol. 2016, 31, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Vuppalanchi, R.; Siddiqui, M.S.; Natta, M.L.V.; Hallinan, E.; Brandman, D.; Kowdley, K.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Abdelmalek, M.; et al. Performance Characteristics of Vibration-controlled Transient Elastography for Evaluation of Nonalcoholic Fatty Liver Disease. Hepatology 2018, 67, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.S.; Vuppalanchi, R.; Natta, M.L.V.; Hallinan, E.; Kowdley, K.V.; Abdelmalek, M.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Brandman, D.; et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients with Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 156–163.e2. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kwon, H.-J.; Sohn, W.; Cho, J.-Y.; Park, S.J.; Chang, Y.; Ryu, S.; Kim, B.I.; Cho, Y.K. Risk of Liver Fibrosis in Patients with Prediabetes and Diabetes Mellitus. PLoS ONE 2022, 17, e0269070. [Google Scholar] [CrossRef]
- Oliveira, C.P.; de Lima Sanches, P.; de Abreu-Silva, E.O.; Marcadenti, A. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease. J. Diabetes Res. 2016, 2016, 4597246. [Google Scholar] [CrossRef]
- Tacke, F.; Weiskirchen, R. Non-Alcoholic Fatty Liver Disease (NAFLD)/Non-Alcoholic Steatohepatitis (NASH)-Related Liver Fibrosis: Mechanisms, Treatment and Prevention. Ann. Transl. Med. 2021, 9, 729. [Google Scholar] [CrossRef]
Characteristic | Non-MASLD | MASLD | p |
---|---|---|---|
Number | 241 (64.3%) | 134 (35.7%) | - |
Age (years) | 63.06 ± 9.43 | 60.46 ± 10.77 | 0.01 |
Male sex | 72 (29.9%) | 48 (35.8%) | 0.2 |
BMI (kg/m2) | 24.91 ± 3.88 | 28.81 ± 4.84 | <0.001 |
Obesity * (BMI ≥ 25) | 105 (43.6%) | 108 (80.6%) | <0.001 |
Waist circumference | 85.80 ± 14.16 | 95.08 ± 19.49 | <0.001 |
Hip circumference | 96.25 ± 10.87 | 103.24 ± 16.87 | <0.001 |
Body fat percentage | 31.59 ± 12.28 | 36.71 ± 19.27 | <0.001 |
Fat-free mass | 42.52 ± 10.81 | 46.41 ± 18.05 | <0.001 |
SBP (mmHg) | 130.13 ± 14.53 | 131.86 ± 14.01 | 0.2 |
DBP (mmHg) | 71.98 ± 10.34 | 75.23 ± 10.94 | 0.005 |
Hypertension | 148 (61.4%) | 99 (73.9%) | 0.01 |
Dyslipidemia | 193 (80.1%) | 108 (80.6%) | 1.0 |
Metabolic syndrome † | 111 (58.4%) | 102 (92.7%) | <0.001 |
Duration of prediabetes (years) | 4 (1.0, 7.0) | 4 (1.0, 7.0) | 0.6 |
FPG (mg/dL) | 94.65 ± 9.49 | 100.01 ± 10.85 | <0.001 |
HbA1C (%) | 5.81 ± 0.32 | 5.94 ± 0.35 | <0.001 |
Triglyceride (mg/dL) | 94 (71.0, 134.0) | 119.5 (95.0, 156.2) | <0.001 |
HDL-c (mg/dL) | 60.22 ± 14.90 | 51.03 ± 12.67 | <0.001 |
LDL-c (mg/dL) | 100.81 ± 29.56 | 99.31 ± 26.65 | 0.6 |
AST (IU/L) | 22 (19.0, 26.0) | 23 (19.0, 29.0) | 0.05 |
ALT (IU/L) | 19 (15.0, 25.0) | 25 (19.0, 33.0) | <0.001 |
GGT (IU/L) | 24 (17.0, 40.0) | 34 (23.0, 59.0) | <0.001 |
Uric acid (mg/dL) | 5.25 ± 1.07 | 5.73 ± 1.26 | 0.002 |
Hemoglobin | 13.26 ± 1.16 | 13.57 ± 1.45 | 0.2 |
Platelets | 252,369 ± 53,946 | 266,853 ± 70,524 | 0.2 |
LSM (kPa) Median (IQR) | 4.6 (3.8, 5.3) | 5.0 (4.37, 6.1) | <0.001 |
Advanced fibrosis ‡ | 0 (0%) | 9 (6.7%) | <0.001 |
Cirrhosis § | 0 (0%) | 7 (5.2%) | 0.001 |
Drug–Statin | 177 (73.4%) | 92 (68.7%) | 0.3 |
Number of physical activities: Moderate- to high-intensity exercise (minutes per week) | 75 (0.0, 210.0) | 60 (0.0, 210.0) | 0.9 |
Predictors | Cut-Off Value | Coefficient | Odds Ratio | 95% CI | p | Assigned Score |
---|---|---|---|---|---|---|
FPG | <110 mg/dL | Reference | 0 | |||
≥110 mg/dL | 1.18 | 3.27 | 2.39, 4.45 | <0.001 | 2 | |
HbA1C | <6.0% | Reference | 0 | |||
≥6.0% | 0.81 | 2.24 | 1.83, 2.74 | <0.001 | 1.5 | |
HDL-c | ≥40 mg/dL male ≥50 mg/dL female | Reference | 0 | |||
<40 mg/dL male <50 mg/dL female | 0.74 | 2.10 | 1.67, 2.65 | <0.001 | 1.5 | |
ALT | <30 IU/L | Reference | 0 | |||
≥30 IU/L | 0.96 | 2.61 | 2.08, 3.29 | <0.001 | 1.5 | |
BMI category | <23 kg/m2 | Reference | 0 | |||
23–24.99 kg/m2 | 0.45 | 1.57 | 1.09, 2.26 | 0.01 | 1 | |
≥25 kg/m2 | 1.81 | 6.11 | 4.52, 8.25 | <0.001 | 4 |
Predictive Performance | MASLD Pre-DM (95% CI) | LAP Index (95% CI) | FLI (95% CI) | HSI (95% CI) | NAFLD-MS (95% CI) | NAFLD Ridge (95% CI) |
---|---|---|---|---|---|---|
AuROC | 0.80 (0.73, 0.86) | 0.83 (0.77, 0.89) | 0.84 (0.78, 0.90) | 0.68 (0.59, 0.76) | 0.72 (0.64, 0.80) | 0.72 (0.64, 0.80) |
Low cutoff | ||||||
Sensitivity (%) | 70.7% (62.2%, 78.2%) | 99.1% (95.0%, 100%) | 93.3% (86.1%, 97.5%) | 96.2% (91.4%, 98.8%) | 55.6% (44.1%, 66.6%) | 78.8% (70.8%, 85.4%) |
Specificity (%) | 72.3% (66.1%, 77.9%) | 14.7% (10.0%, 20.6%) | 57.9% (49.2%, 66.1%) | 7.9% (4.9%, 12.1%) | 74.2% (66.7%, 80.8%) | 36.7% (30.6%, 43.2%) |
LR (+) | 2.55 (2.02, 3.22) | 1.16 (1.09, 1.24) | 2.21 (1.81, 2.71) | 1.05 (0.99, 1.10) | 2.15 (1.55, 2.99) | 1.24 (1.09, 1.42) |
LR (−) | 0.41 (0.31, 0.53) | 0.06 (0.01, 0.45) | 0.12 (0.05, 0.25) | 0.47 (0.18, 1.24) | 0.60 (0.46, 0.78) | 0.58 (0.40, 0.84) |
PPV (%) | 58.8% (50.7%, 66.5%) | 40.2% (34.3%, 46.3%) | 58.7% (50.2%, 66.9%) | 36.8% (31.7%, 42.1%) | 52.3% (41.3%, 63.2%) | 40.9% (34.8%, 47.3%) |
NPV (%) | 81.5% (75.6%, 86.5%) | 96.6% (82.2%, 99.9%) | 93.1% (85.6%, 97.4%) | 79.2% (57.8%, 92.9%) | 76.6% (69.1%, 83.1%) | 75.7% (66.8%, 83.2%) |
High cutoff | ||||||
Sensitivity (%) | 48.9% (38.2%, 59.7%) | 60.2% (51.3%, 68.5%) | 1.2% (0.0%, 6.7%) | 78.8% (70.8%, 85.4%) | ||
Specificity (%) | 87.1% (80.4%, 92.2%) | 57.7% (51.2%, 64.1%) | 99.4% (96.5%, 100%) | 37.1% (31.0%, 43.6%) | ||
LR (+) | 3.80 (2.35, 6.15) | 1.41 (1.16, 1.74) | 1.96 (0.12, 30.98) | 1.25 (1.10, 1.43) | ||
LR (−) | 0.59 (0.47, 0.72) | 0.69 (0.55, 0.87) | 0.99 (0.97, 1.02) | 0.57 (0.40, 0.83) | ||
PPV (%) | 71.0% (58.1%, 81.8%) | 44.2% (36.8%, 51.8%) | 50% (1.3%, 98.7%) | 41.1% (35.0%, 47.4%) | ||
NPV (%) | 72.6% (65.2%, 79.2%) | 72.3% (65.3%, 87.5%) | 66.4% (60.0%, 72.4%) | 75.9% (67.0%, 83.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahachai, N.; Washirasaksiri, C.; Ariyakunaphan, P.; Kositamongkol, C.; Sitasuwan, T.; Tinmanee, R.; Auesomwang, C.; Sayabovorn, N.; Chaisathaphol, T.; Phisalprapa, P.; et al. Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography. J. Clin. Med. 2023, 12, 7617. https://doi.org/10.3390/jcm12247617
Mahachai N, Washirasaksiri C, Ariyakunaphan P, Kositamongkol C, Sitasuwan T, Tinmanee R, Auesomwang C, Sayabovorn N, Chaisathaphol T, Phisalprapa P, et al. Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography. Journal of Clinical Medicine. 2023; 12(24):7617. https://doi.org/10.3390/jcm12247617
Chicago/Turabian StyleMahachai, Nutthachoke, Chaiwat Washirasaksiri, Pinyapat Ariyakunaphan, Chayanis Kositamongkol, Tullaya Sitasuwan, Rungsima Tinmanee, Chonticha Auesomwang, Naruemit Sayabovorn, Thanet Chaisathaphol, Pochamana Phisalprapa, and et al. 2023. "Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography" Journal of Clinical Medicine 12, no. 24: 7617. https://doi.org/10.3390/jcm12247617
APA StyleMahachai, N., Washirasaksiri, C., Ariyakunaphan, P., Kositamongkol, C., Sitasuwan, T., Tinmanee, R., Auesomwang, C., Sayabovorn, N., Chaisathaphol, T., Phisalprapa, P., Charatcharoenwitthaya, P., & Srivanichakorn, W. (2023). Clinical Predictive Score for Identifying Metabolic Dysfunction-Associated Steatotic Liver Disease in Individuals with Prediabetes Using Transient Elastography. Journal of Clinical Medicine, 12(24), 7617. https://doi.org/10.3390/jcm12247617