The Haemodialysis Session Effect on the Choroidal Thickness and Retinal and Choroidal Microcirculation—A Literature Review
Abstract
:1. Introduction
2. Material and Methods
3. Discussion
3.1. Choroidal Thickness Changes Due to HD in Patients with and without Diabetes Mellitus
3.2. Correlation between the Choroidal Thickness Changes and the Selected Systemic Parameter Changes
3.3. Ultrafiltration
3.4. Blood Pressure
3.5. Body Weight
3.6. Plasma Colloid Osmotic Pressure and Serum Osmolarity
3.7. Ocular Perfusion Pressure
3.8. Other Factors
3.9. Retinal Thickness
3.10. OCT-A
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. Current Challenges and Future Perspectives. Adv. Ther. 2022, 39, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Liew, A. Perspectives in renal replacement therapy: Haemodialysis. Nephrology 2018, 23, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Farrah, T.E.; Dhillon, B.; Keane, P.A.; Webb, D.J.; Dhaun, N. The eye, the kidney, and cardiovascular disease: Old concepts, better tools, and new horizons. Kidney Int. 2020, 98, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Chin, H.S.; Lee, D.H.; Yoon, M.H.; Kim, N.R. Changes in subfoveal choroidal thickness and choroidal extravascular density by spectral domain optical coherence tomography after haemodialysis: A pilot study. Br. J. Ophthalmol. 2014, 98, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Kal, A.; Kal, O.; Eroglu, F.C.; Öner, O.; Kucukerdonmez, C.; Yılmaz, G. Evaluation of choroidal and retinal thickness measurements in adult hemodialysis patients using spectral-domain optical coherence tomography. Arq. Bras. Oftalmol. 2016, 79, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Çelikay, O.; Çalışkan, S.; Biçer, T.; Kabataş, N.; Gürdal, C. The Acute Effect of Hemodialysis on Choroidal Thickness. J. Ophthalmol. 2015, 2015, 528681. [Google Scholar] [CrossRef] [PubMed]
- Mayali, H.; Altinisik, M.; Sarigul, C.; Toraman, A.; Turkoglu, M.S.; Kurt, E. Multimodal ocular evaluation in hemodialysis patients. Int. Ophthalmol. 2021, 41, 1799–1805. [Google Scholar] [CrossRef]
- Ulaş, F.; Doğan, Ü.; Keleş, A.; Ertilav, M.; Tekçe, H.; Çelebi, S. Evaluation of choroidal and retinal thickness measurements using optical coherence tomography in non-diabetic haemodialysis patients. Int. Ophthalmol. 2013, 33, 533–539. [Google Scholar] [CrossRef]
- Yang, S.J.; Han, Y.H.; Song, G.I.; Lee, C.H.; Sohn, S.W. Changes of choroidal thickness, intraocular pressure and other optical coherence tomographic parameters after haemodialysis. Clin. Exp. Optom. 2013, 96, 494–499. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Shen, X. Ocular changes during hemodialysis in patients with end-stage renal disease. BMC Ophthalmol. 2018, 18, 208. [Google Scholar] [CrossRef]
- Nakano, H.; Hasebe, H.; Murakami, K.; Cho, H.; Kondo, D.; Iino, N.; Fukuchi, T. Choroid structure analysis following initiation of hemodialysis by using swept-source optical coherence tomography in patients with and without diabetes. PLoS ONE. 2020, 15, e0239072. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.U.; Lee, S.E.; Kang, M.H.; Han, S.-W.; Yi, J.-H.; Cho, H. Evaluation of changes in choroidal thickness and the choroidal vascularity index after hemodialysis in patients with end-stage renal disease by using swept-source optical coherence tomography. Medicine 2019, 98, e15421. [Google Scholar] [CrossRef]
- Elbay, A.; Altinisik, M.; Dincyildiz, A.; Kutluturk, I.; Canan, J.; Akkan, U.; Koytak, A.; Ozdemir, H. Are the effects of hemodialysis on ocular parameters similar during and after a hemodialysis session? Arq. Bras. De Oftalmol. 2017, 80, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Hao, R.; Zhang, L.; Shi, X.; Hei, K.; Dong, L.; Wei, F.; Jiang, A.; Li, B.; Li, X.; et al. The effect of hemodialysis on ocular changes in patients with the end-stage renal disease. Ren Fail. 2019, 41, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, G.; Yu, Z.; Chen, N.; Wang, D. Effect of hemodialysis on eye coats, axial length, and ocular perfusion pressure in patients with chronic renal failure. J. Ophthalmol. 2018, 2018, 3105138. [Google Scholar] [CrossRef] [PubMed]
- Coppolino, G.; Carnevali, A.; Gatti, V.; Battaglia, C.; Randazzo, G.; Figlia, I.; Patella, G.; Fuiano, G.; Andreucci, M.; Giannaccare, G.; et al. OCT angiography metrics predict intradialytic hypotension episodes in chronic hemodialysis patients: A pilot, prospective study. Sci. Rep. 2021, 11, 7202. [Google Scholar] [CrossRef] [PubMed]
- Coppolino, G.; Bolignano, D.; Presta, P.; Ferrari, F.F.; Lionetti, G.; Borselli, M.; Randazzo, G.; Andreucci, M.; Bonelli, A.; Errante, A.; et al. Acquisition of optical coherence tomography angiography metrics during hemodialysis procedures: A pilot study. Front. Med. 2022, 9, 1057165. [Google Scholar] [CrossRef]
- Zhang, Y.; Weng, H.; Li, Q.; Wang, Z. Changes in retina and choroid after haemodialysis assessed using optical coherence tomography angiography. Clin. Exp. Optometry 2018, 101, 674–679. [Google Scholar] [CrossRef]
- Shin, Y.U.; Lee, D.E.; Kang, M.H.; Seong, M.; Yi, J.H.; Han, S.W.; Cho, H. Optical coherence tomography angiography analysis of changes in the retina and the choroid after haemodialysis. Sci. Rep. 2018, 8, 17184. [Google Scholar] [CrossRef]
- Hwang, H.; Chae, J.B.; Kim, J.Y.; Moon, B.G.; Kim, D.Y. Changes in optical coherence tomography findings in patients with chronic renal failure undergoing dialysis for the first time. Retina 2019, 39, 2360–2368. [Google Scholar] [CrossRef]
- Shoshtari, F.S.; Biranvand, S.; Rezaei, L.; Salari, N.; Aghaei, N. The impact of hemodialysis on retinal and choroidal thickness in patients with chronic renal failure. Int. Ophthalmol. 2021, 41, 763–1771. [Google Scholar] [CrossRef] [PubMed]
- Ishibazawa, A.; Nagaoka, T.; Minami, Y.; Kitahara, M.; Yamashita, T.; Yoshida, A. Choroidal thickness evaluation before and after hemodialysis in patients with and without diabetes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6534–6541. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.B.; Lee, J.H.; Kim, J.S. Changes in choroidal thickness in and outside the macula after hemodialysis in patients with end-stage renal disease. Retina 2017, 37, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Choi, J.H.; Kim, S.J.; Moon, S.J.; Kim, C.H. Changes in Choroidal Thickness after Hemodialysis and the Influence of Diabetes. J. Retin. 2017, 2, 76–82. [Google Scholar] [CrossRef]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [PubMed]
- Moss, H.E. Retinal Vascular Changes are a Marker for Cerebral Vascular Diseases. Curr. Neurol. Neurosci. Rep. 2015, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Gilchrist, M.; Strain, D.; Fraser, D.; Shore, A. The systemic microcirculation in dialysis populations. Microcirculation 2020, 27, e12613. [Google Scholar] [CrossRef]
- Sadda, S.R.; Maram, J.; Srinivas, S.R. Evaluating ocular blood flow. Indian J. Ophthalmol. 2017, 65, 337–346, Correction in Indian J. Ophthalmol. 2018, 66, 181. [Google Scholar] [CrossRef]
- McIntyre, C.W.; Burton, J.O.; Selby, N.M.; Leccisotti, L.; Korsheed, S.; Baker, C.S.; Camici, P.G. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin. J. Am. Soc. Nephrol. 2008, 3, 19–26. [Google Scholar] [CrossRef]
- Slessarev, M.; Mahmoud, O.; Albakr, R.; Dorie, J.; Tamasi, T.; McIntyre, C.W. Hemodialysis Patients Have Impaired Cerebrovascular Reactivity to CO2 Compared to Chronic Kidney Disease Patients and Healthy Controls: A Pilot Study. Kidney Int. Rep. 2021, 6, 1868–1877. [Google Scholar] [CrossRef]
- Tosun, Ö.; Davutluoglu, B.; Arda, K.; Boran, M.; Yarangumeli, A.; Kurt, A.; Ozkan, D. Determination of the effect of a single hemodialysis session on retrobulbar blood hemodynamics by color Doppler ultrasonography. Acta Radiol. 2007, 48, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Niutta, A.; Spicci, D.; Barcaroli, I. Fluoroangiographic findings in hemodialyzed patients. Ann. Ophthalmol. 1993, 25, 375–380. [Google Scholar] [PubMed]
- Al Zubidi, N.; Zhang, J.; Spitze, A.; Yalamanchili, S.; Lee, A.G. Pallid disc edema and choroidal perfusion delay in posthemodialysis nonarteritic ischemic optic neuropathy. Can. J. Ophthalmol. 2013, 48, e120–e123. [Google Scholar] [CrossRef] [PubMed]
- Kur, J.; Newman, E.A.; Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 2012, 31, 377–406. [Google Scholar] [CrossRef] [PubMed]
- Reiner, A.; Fitzgerald, M.E.; Del Mar, N.; Li, C. Neural control of choroidal blood flow. Prog. Retin. Eye Res. 2018, 64, 96–130. [Google Scholar] [CrossRef] [PubMed]
- Sogawa, K.; Nagaoka, T.; Takahashi, A.; Tanano, I.; Tani, T.; Ishibazawa, A.; Yoshida, A. Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am. J. Ophthalmol. 2012, 153, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Gupta, P.; Tan, K.-A.; Cheung, C.M.G.; Wong, T.-Y.; Cheng, C.-Y. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci. Rep. 2016, 6, 21090. [Google Scholar] [CrossRef]
- Lahme, L.; Storp, J.J.; Marchiori, E.; Esser, E.; Eter, N.; Mihailovic, N.; Alnawaiseh, M. Evaluation of Ocular Perfusion in Patients with End-Stage Renal Disease Receiving Hemodialysis Using Optical Coherence Tomography Angiography. J. Clin. Med. 2023, 12, 3836. [Google Scholar] [CrossRef]
- Vadalà, M.; Castellucci, M.; Guarrasi, G.; Terrasi, M.; La Blasca, T.; Mulè, G. Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1687–1698. [Google Scholar] [CrossRef]
- Basiony, A.I.; Atta, S.N.; Dewidar, N.M.; Zaky, A.G. Association of chorioretinal thickness with chronic kidney disease. BMC Ophthalmol. 2023, 23, 55. [Google Scholar] [CrossRef]
- Balmforth, C.; Van Bragt, J.J.; Ruijs, T.; Cameron, J.R.; Kimmitt, R.; Moorhouse, R.; Czopek, A.; Hu, M.K.; Gallacher, P.J.; Dear, J.W.; et al. Chorioretinal thinning in chronic kidney disease links to inflammation and endothelial dysfunction. JCI Insight. 2016, 1, e89173. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Bagordo, D.; Perrotta, A.M.; Gigante, A.; Gasperini, M.L.; Muscaritoli, M.; Mazzaferro, S.; Cianci, R. Autonomic dysfunction in kidney diseases. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8458–8468. [Google Scholar] [CrossRef] [PubMed]
- Lurie, K.G.; Benditt, D. Syncope and the autonomic nervous system. J. Cardiovasc. Electrophysiol. 1996, 7, 760–776. [Google Scholar] [CrossRef] [PubMed]
- Mihara, N.; Sonoda, S.; Terasaki, H.; Shiihara, H.; Sakono, T.; Funatsu, R.; Sakamoto, T. Sex-and Age-Dependent Wide-Field Choroidal Thickness Differences in Healthy Eyes. J. Clin. Med. 2023, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Bafiq, R.; Mathew, R.; Pearce, E.; Abdel-Hey, A.; Richardson, M.; Bailey, T.; Sivaprasad, S. Age, Sex, and Ethnic Variations in Inner and Outer Retinal and Choroidal Thickness on Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2015, 160, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Patzer, R.E.; McClellan, W.M. Influence of race, ethnicity and socioeconomic status on kidney disease. Nat. Rev. Nephrol. 2012, 8, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Muhiddin, H.S.; Mayasari, A.R.; Umar, B.T.; Sirajuddin, J.; Patellongi, I.; Islam, I.C.; Ichsan, A.M. Choroidal Thickness in Correlation with Axial Length and Myopia Degree. Vision 2022, 6, 16. [Google Scholar] [CrossRef]
- Tan, C.S.; Ouyang, Y.; Ruiz, H.; Sadda, S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 261–266. [Google Scholar] [CrossRef]
- Ho, J.; Branchini, L.; Regatieri, C.; Krishnan, C.; Fujimoto, J.G.; Duker, J.S. Analysis of normal peripapillary choroidal thickness via spectral domain optical coherence tomography. Ophthalmology 2011, 118, 2001–2007. [Google Scholar] [CrossRef]
- Su, Z.; Mao, Y.; Qi, Z.; Xie, M.; Liang, X.; Hu, B.; Wang, X.; Jiang, F. Impact of Hemodialysis on Subfoveal Choroidal Thickness Measured by Optical Coherence Tomography: A Systematic Review and a Pooled Analysis of Self-Controlled Case Series. Ophthalmol Ther. 2023, 1, 2265–2280. [Google Scholar] [CrossRef]
- Lutty, G.A. Diabetic choroidopathy. Vision Res. 2017, 139, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Smith, J.H.; Kang-Mieler, J.J.; Budzynski, E.; Linsenmeier, R.A. Decreased circulation in the feline choriocapillaris underlying retinal photocoagulation lesions. Investig. Opthalmology Vis. Sci. 2011, 52, 3398–3403. [Google Scholar] [CrossRef] [PubMed]
- Taal, M.W.; Chertow, G.M.; Marsden, P.A.; Skorecki, K.; Alan, S.L. Brenner and Rector’s The Kidney, 9th ed.; Elsevier/Saunders: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Sonoda, S.; Sakamoto, T.; Yamashita, T.; Uchino, E.; Kawano, H.; Yoshihara, N.; Terasaki, H.; Shirasawa, M.; Tomita, M.; Ishibashi, T. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am. J. Ophthalmol. 2015, 159, 1123–1131. [Google Scholar] [CrossRef]
- Stefanidis, I.; Wurth, P.; Mertens, P.R.; Ikonomov, V.; Philippidis, G.; Golphinopoulos, S.; Makropoulos, V.; Liakopoulos, V.; Mann, H.; Heintz, B. Plasma endothelin-1 in hemodialysis treatment-the Influence of Hypertension. J. Cardiovasc. Pharmacol. 2004, 44 (Suppl. S1), S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Gluba-Brzózka, A. Oxidative Stress in ESRD Patients on Dialysis and the Risk of Cardiovascular Diseases. Antioxidants 2020, 9, 1079. [Google Scholar] [CrossRef] [PubMed]
- Janda, K.; Siteń, G.; Sułowicz, W. Hipotonia śróddializacyjna-przyczyny i zasady leczenia. Ren. Dis. Transplant. Forum 2009, 2, 15–22. [Google Scholar]
- Tokuyama, T.; Ikeda, T.; Sato, K. Effect of plasma colloid osmotic pressure on intraocular pressure during haemodialysis. Br. J. Ophthalmol. 1998, 82, 751–753. [Google Scholar] [CrossRef]
- Cheng, L.; Ding, Y.; Duan, X.; Wu, Z. Ocular pulse amplitude in different types of glaucoma using dynamic contour tonometry: Diagnosis and follow-up of glaucoma. Exp. Ther. Med. 2017, 14, 4148–4152. [Google Scholar] [CrossRef]
- Bertelmann, T.; Langanke, S.; Potstawa, M.; Strempel, I. Can dynamic contour tonometry and ocular pulse amplitude help to detect severe cardiovascular pathologies? Clin Ophthalmol. 2014, 8, 1317–1321. [Google Scholar] [CrossRef]
- Sezer, T.; Altınışık, M.; Koytak, I.A.; Özdemir, M.H. The Choroid and Optical Coherence Tomography. Turk. J. Ophthalmol. 2016, 46, 30–37. [Google Scholar] [CrossRef]
- Chianca, D.A., Jr.; Bonagamba, L.G.; Machado, B.H. Neurotransmission of the Bezold-Jarisch reflex in the nucleus tractus solitarii of sino-aortic deafferentated rats. Brain Res. 1997, 756, 46–51. [Google Scholar] [CrossRef] [PubMed]
Studies | Choroidal Thickness (µm) Mean ± SD | Retinal Thickness (µm) Mean ± SD | VD of the SCP | VD of the DCP | VD of the Outer Retina | VD of the Choriocapillaris | FAZ SCP | ||
---|---|---|---|---|---|---|---|---|---|
Jung et al. [4] | SFCT Before: 276.94 ± 58.73 After: 288.29 ± 65.57 p = 0.003 | - | - | - | - | - | - | ||
Kal et al. [5] | SFCT Before: median 182, range (103–374) After: median 161, range (90–353) p < 0.001 Significant decrease in all measured points | Before: median 246, range (179–296) After: median 248, range (141–299) p = 0.12 | - | - | - | - | - | ||
Çelikay et al. [6] | SFCT Before: 254.59 ± 84.66 After: 229.34 ± 77.79 p < 0.001 Significant decrease in all measured points | - | - | - | - | - | - | ||
Mayali et al. [7] | SFCT Before: 255.21 ± 6.15 After: 234.95 ± 7.89 p < 0.001 Significant decrease in all measured points | - | - | - | - | - | - | ||
Ulaş et al. [8] | SFCT Before: 232.81 After: 210.9 p < 0.001 Significant decrease in all measured points | Before:215.86 After: 216.9 p = 0.411 | - | - | - | - | - | ||
Yang et al. [9] | average choroidal thickness Before: 233.1 ± 77.5 After: 219.1 ± 76.8 p = 0.000 | Before: 214.0 ± 21 After: 213.8 ± 21.8 p = 0.821 | - | - | - | - | - | ||
Chen et al. [10] | average choroidal thickness Before:289.55 ± 11.385 After: 254.134 ± 11.46 p < 0.001 | Before:273.4 ± 3.302 After: 275.6 ± 3.18 p = 0.071 RNFL thickness Before:90.65 ± 1.829 After: 93.18 ± 1.974 p = 0.001 | - | - | - | - | - | ||
Nakano et al. [11] * | DM | NDM | DM | NDM | - | - | - | - | - |
SFCT Before: 301.7 ± 70.3 After: 261.6 ± 77.3 p < 0.001 | SFCT Before: 281.8 ± 57.1 After: 259.8 ± 68.3 p < 0.001 | Before: 277 ± 51.7 After: 255 ± 17 p > 0.05 | Before: 276 ± 49 After: 255 ± 20 p > 0.05 | ||||||
Shin et al. [12] | Total Before: 223.4 ± 78.3 After: 212.5 ± 81.6 Δ = 10.9 ± 14.0 p < 0.001 Central Before:232.8 ± 88.8 After:223.8 ± 93.8 Δ = 8.9 ± 22.3 p = 0.033 | - | - | - | - | - | - | ||
Elbay et al. [13] | SFCT Before: 270.85 ± 73.82 After the second hour: 257.01 ± 71.49 p < 0.001 After: 258.44 ± 75.17 it was still significantly lower than before haemodialysis p < 0.001 | - | - | - | - | - | - | ||
Sun et al. [14] | SFCT Before: 254.29 ± 69.36 After: 235.54 ± 59.9 p = 0.002 | Before: 255.72 ± 35.29 After: 258.19 ± 48.26 p = 0.252 | - | - | - | - | - | ||
Wang et al. [15] | SFCT Before:267.97 ± 99.17 After: 255.87 ± 95.59 p < 0.01 | Before: 207.88 ± 23.47 After: 209.94 ± 24.41 p < 0.05 | - | - | - | - | - | ||
Coppolino G et al. [16] | Δ Choroid central thickness 25 (10–57) significant reduction p < 0.001 | Δ CRT 0 (− 3-2) p = 0.28 | ΔWHOLE-SCP 3 × 3 mm 0.3 (− 1.6 − 1.7) p = 0.91 ΔWHOLE-SCP 6 × 6 mm 1.4 (0.6 − 3.5) p = 0.04 ΔPARAFOVEA-SCP 3 × 3 mm 0.5 (− 1.6 − 1.6) p = 0.8 ΔPARAFOVEA-SCP 6 × 6 mm 1 (− 0.8 − 3.3) p = 0.13 ΔFOVEA-SCP 3 × 3 mm − 0.5 (− 1.7 − 1.5) p = 0.12 ΔFOVEA-SCP 6 × 6 mm 0.5 (− 1 − 2.6) p = 0.82 | ΔWHOLE-DCP 3 × 3 mm − 0.1 (− 3.2 − 1.2) p = 0.97 ΔWHOLE-DCP 6 × 6 mm − 0.6 (− 2.6 − 3.5) p = 0.26 ΔPARAFOVEA-DCP 3 × 3 mm 0.3 (− 3 − 1.9) p = 0.8 ΔPARAFOVEA-DCP 6×6 mm − 1.3 (− 3 − 4.7) p = 0.27 ΔFOVEA-DCP 3 × 3 mm − 0.1 (− 2.5 − 1.4) p = 0.26 ΔFOVEA-DCP 6 × 6 mm 2.5 (0.4 − 4.6) p = 0.02 | - | - | ΔFAZ-SCP 3 × 3 mm 0 (− 0.01 − 0.01) p = 0.58 ΔFAZ-SCP 6 × 6 mm 0.05 (− 0.04 − 0.01) p = 0.11 | ||
Coppolino G et al. [17] | Central choroid thickness Before: 193.83 ± 43.88 After 1 h: 193 ± 47.62 After 2 h: 191.55 ± 46.14 After 3 h: 175.33 ± 49.00 After HD: 181.82 ± 47.77 p = 0.05 (before vs. after HD) | - | SCP Whole Before: 40.71 ± 5.13 After 1 h: 40.08 ± 5.78 After 2 h: 40.87 ± 5 After 3 h: 41.03 ± 5.16 After HD: 41.42 ± 3.14 p = 0.45 (before vs. after HD) SCP fovea: Before: 16.06 ± 6.85 After 1 h: 16.3 ± 7.33 After 2 h: 20.03 ± 8.75 After 3 h: 18.5 ± 7.48 After HD: 17.16 ± 7.03 p = 0.07 (before vs. after HD) SCP parafovea: Before: 43.4 ± 5.99 After 1 h: 42.67 ± 6.06 After 2 h: 42.08 ± 8.99 After 3 h: 43.89 ± 5.43 After HD: 44.08 ± 3.44 p = 0.5 (before vs. after HD) | DCP Whole Before: 47.76 ± 5.07 After 1 h: 46.72 ± 4.48 After 2 h: 47.64 ± 3.71 After 3 h: 46.83 ± 4.23 After HD: 42.82 ± 10.19 p = 0.02 (before vs. after HD) DCP fovea: Before: 32.26 ± 8.31 After 1 h: 31.60 ± 9.25 After 2 h: 33.54 ± 7.93 After 3 h: 33.69 ± 7.47 After HD: 30.59 ± 6.87 p = 0.03 (before vs. after HD) DCP parafovea: Before: 50.03 ± 5.44 After 1 h: 49.24 ± 4.50 After 2 h: 50.13 ± 3.67 After 3 h: 49.08 ± 4.77 After HD: 47.34 ± 3.84 p = 0.01 (before vs. after HD) | - | - | Before: 0.28 ± 0.11 After 1 h: 0.27 ± 0.11 After 2 h: 0.25 ± 0.11 After 3 h: 0.25 ± 0.12 After HD: 0.27 ± 0.12 p = 0.3 (before vs. after HD) | ||
Zhang et al. [18] | SFCT Before:240.3 ± 91.7 After: 228.4 ± 82.3 p > 0.05 | Before: 204.7 ± 22.4 After: 200.8 ± 22.8 p < 0.05 | Before: 50.7 ± 3.1 After: 50.5 ± 3.2 p > 0.05 | Before: 55.6 ± 2.5 After: 55.4 ± 2.5 p > 0.05 | Before: 38.8 ± 5.5 After: 37.5 ± 3.4 p < 0.05 | Before: 65.5 ± 1.7 After: 65.6 ± 1.5 p > 0.05 | - | ||
Shin YU et al. [19] | Total CT: Before: 209.6 ± 64.6 After: 195.2 ± 64.1 p < 0.001 Central CT: Before: 214.8 ± 80.9 After: 199.1 ± 83.2 p < 0.001 | Total RT: Before: 267.3 ± 15.5 After: 267.2 ± 15.5 p = 0.866 Central RT: Before: 235.7 ± 40.6 After: 235.4 ± 41.5 p = 0.759 | Total Before: 21.7 ± 6.3 After: 21.9 ± 5.7 p= 0.772 Central Before: 5.2 ± 5.6 After: 5.3 ± 3.8 p= 0.917 | Total Before: 8.5 ± 5.7 After: 8.9 ± 4.8 p= 0.512 Central Before: 2 ± 3.2 After: 1.5 ± 1.8 p= 0.291 | - | Total Before: 46.2 ± 11.3 After: 43.3 ± 10.7 p < 0.001 Central Before: 37.5 ± 14.3 After: 34.7 ± 14.1 p = 0.007 | - | ||
Hwang et al. [20] | SFCT Before: 313.31 ± 85.29 After: 288.81 ± 92.02 p = 0.001 | Before: 317.92 ± 91.41 After: 287.77 ± 57.55 p = 0.024 | - | - | - | - | |||
Ishibazawa et al. † [22] | DM | NDM | DM | NDM | - | - | - | - | - |
SFCT Before: 268 ± 75 After: 234 ± 69 p < 0.05 | SFCT Before: 233 ± 78 After: 217 ± 72 p < 0.05 | Before: 259 ± 40 After: 260 ± 33 p > 0.05 | Before: 263 ± 29 After: 268 ± 28 p > 0.05 | ||||||
Chang et al. [23] | SFCT: Before: 233.6 ± 45.2 After: 214.2 ± 43.8 p < 0.001 Significant decrease in all measured points | - | - | - | - | - | - | ||
Kang et al. [24] | SFCT Before: 311.8 ± 64.9 After: 311.2 ± 65.1 p = 0.877 | - | - | - | - | - | - |
Studies | Country | OCT Type | Number of Patients | Number of Eyes | Mean Age | Sex Ratio (Male/Female) | Mean HD Duration | Hemodialysis Parameters Blood Flow Rate/Dialysate Flow Rate (mL/min) | CT-Measured Areas | Ophthalmological Parameters Evaluated before and after HD | Patients Divided into DM and NDM Group |
---|---|---|---|---|---|---|---|---|---|---|---|
Jung et al. [4] | Korea | SD-OCT Heidelberg | 19 | 28 | 51.21 ± 9.47 | 7/12 | 3.50 ± 1.50 years | 250/- | SFCT | choroidal extravascular density SFCT IOP | No |
Kal et al. [5] | Turkey | SD-OCT Optovue | 25 | - | - | 17/8 | 42.8 months | 250–300/500 | SFCT; 500 μm and 1000 μm nasal to the fovea 500 μm, 1000 μm, and 1500 μm temporal to the fovea | CT, RT, IOP | No, Patients with DM were excluded from the study |
Çelikay et al. [6] | Turkey | SD-OCT Optovue | 41 | 41 | 53.2 ± 14.6 | 16/25 | 42.81 ± 30.38 months | 250–300/500 | SFCT and 1500 μm and 3000 μm nasal and temporal to the fovea | CT, IOP | Yes |
Mayali et al. [7] | Turkey | SD-OCT Cirrus EDI mode | 22 | 22 | 56.14 ± 9.96 | 8/14 | 56.7 ± 51.9 months | 250/- | SFCT and at 1500 μm and 3000 μm nasal and temporal of the fovea | IOP, OPA, CT CCT, ACD, LT, AXL | No Patients with DM were excluded from the study |
Ulaş et al. [8] | Turkey | SD-OCT Heidelberg | 21 | 21 | 61.81 | 21 | 2.48 years | 250–300/500 | SFCT and 1500 μm nasal and temporal from the center of the fovea | IOP, CCT CT, RT | No Patients with DM were excluded from the study |
Yang et al. [9] | Korea | EDI-OCT Heidelberg | 34 | 34 | 58.2 ± 9.8 | 20/14 | 71.1 ± 60.8 months | 250/- | Vertical and horizontal scans were taken through the fovea | CFT, CT, MV, RNFL thickness, IOP | Yes |
Chen et al. [10] | China | Cirrus HD-OCT EDI mode | 45 | 90 | 57.48 ± 13.57 | 27/18 | 70.09 ± 58.03 months | -/- | SFCT; 1000 μm and 2000 μm nasal and temporal away from the center of the macula, averaged, and recorded as the average thickness of the choroid. | TBUT, Schirmer’s I logMAR of BCVA, Spherical power, Cylinder power, RT, RNFL thickness, CT, corneal thickness IOP, ACD, LT, ECD, ECS, ECSCV | Yes |
Nakano et al. [11] | Japan | SS-OCT Topcon | 31 | 60 | DM: 66.6 ± 10.6 NDM: 69.4± 10.7 | 16/15 | - | -/- | average of all points in the inner circle (radius 1 mm) of the center of the nine sectors, which was defined by the ETDRS grid | CT, CMT choroidal vessel layer thickness, Choriocapillaris-medium choroidal vessel layer thickness, luminal area, stromal area, choroidal area, IOP, ACD, spherical equivalent | Yes |
Shin et al. [12] | Korea | SS-OCT Topcon | 32 | 32 | 56.4 ± 10.4 | 13/19 | 6.0 ± 4.1 years | 250/500 | Representative points within the ETDRS grid were determined as the central (fovea), and 1000 μm and 2250 μm temporal, superior, nasal, and inferior to the macula | IOP, AL, CT, CVI, LA, SA, TCA | Yes |
Elbay et al. [13] | Turkey | SD-OCT Nidek | 27 | 27 | 54.92 ± 18.84 | 16/11 | 3.37 ± 2.30 years | 250/- | SFCT | SFCT, IOP, CCT, ICA | No |
Sun et al. [14] | China | SD-OCT Optovue | 202 | 404 | 54.76 ± 11.1 | 109/93 | 75.24 ± 66.04 months | 200–300/500 | SFCT | SFCT, CMT, RAC, RVC, IOP, BCVA | Yes |
Wang et al. [15] | China | OCT | 52 | 52 | 52.4 | 25/27 | 6.1 years | 250/- | SFCT 1500 μm nasal and temporal from the center of the fovea | CT, RT, CCT, IOP< ACD, IT, CBT, VAL, EAL | No Patients with DM were excluded from the study |
Coppolino G et al. [16] | Italy | OCTA Optovue | 20 | 35 | 63.7 ± 11.4 | 69.2%/ 31.8% | 25 months | mean UF rate for an hour never exceeded 0.6 mL/Kg/hour | CCT | SCP VD, DCP VD of whole image, foveal and parafoveal zone, and FAZ for both OCT-A 3 × 3 mm and 6 × 6 mm scans, CRT, central CT | No |
Coppolino G et al. [17] | Italy | OCT-A Optovue | 15 | 23 | 64.3 ± 9.2 | 66.2%/ 33.8% | 27 (16–48) months | 300/500 | CCT | SCP VD and DCP VD of whole image, foveal and parafoveal zone and FAZ for both OCT-A 3 mm × 3 mm and 6 mm × 6 mm scans CVI, FAZ SCP, central CT | No |
Zhang et al. [18] | China | OCT-A Optovue | 77 | 77 | 53.2 ± 6.8 | 40/37 | 4.6 ± 5.1 years | 250–300/500 | SFCT | SFCT, RT, VD of SCP, DCP, outer retina, choriocapillaris, IOP | Yes |
Shin YU et al. [19] | Korea | OCT-A Topcon | 29 | 29 | 55.6 ± 9.9 | 12/17 | 69.3 ± 47.8 months | 250/500 | nine subfields of the ETDRS grid were obtained, automatically calculated using a macular 3D scan | CT, RT, IOP, VD of SCP, VD of DCP, VD of choriocapillaris | Yes |
Hwang et al. [20] | Korea | SD-OCT Heidelberg EDI-mode | 15 | 26 | 55.93 ± 11.71 | 6/9 | 19.19 ± 9.02 years | -/- | SFCT | BCVA, IOP, Central RT, SFCT | No only patients with DM were included in the study |
Shoshtari et al. [21] | Iran | OCT Optovue | 67 | 134 | 57.3 ± 15 | 40/27 | - | 250–300/- | SFCT at 500 and 1000 μm intervals temporal and nasal from the fovea | BCVA, IOP refraction, macular thickness, CT | No |
Ishibazawa et al. [22] | Japan | SD-OCT Nidek | 41 20 DM 21NDM | 77 | DM: 67.2 ± 7.1 NDM: 66.7 ± 8.7 | 20/21 | DM: 3.9–5.0 years NDM: 5.5–5.3 years | 250–300/- | SFCT | IOP, CMT, SFCT | Yes |
Chang et al. [23] | Korea | Spectralis OCT Heidelberg | 31 | 54 | 60.1 ± 7.8 | 16/15 | 59.1 ± 29.1 months | 250/- | SFCT and 1500 μm temporal to the foveal center and outside the macula in the superior, inferior, and nasal areas 3500 μm from the optic disk margin | VA, IOP, CCT, AL, peripapillary RNFL thickness, CT | Yes |
Kang et al. [24] | Korea | EDI OCT Heidelberg | 18 | - | 54.3 ± 9.5 | 7/11 | - | -/- | SFCT | SFCT | Yes |
Studies | Ultrafiltration Volume (mL) | Body Weight (kg) | Systolic Blood Pressure (mmHg) | Diastolic Blood Pressure (mmHg) | Mean Arterial Pressure (mmHg) | Plasma Colloid Osmotic Pressure | Serum Osmolarity (mOs m/L) | Ocular Perfusion Pressure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jung et al. [4] | - | Before: 63.17 ± 9.75 After: 61.01 ± 9.81 p < 0.001 | Before: 158.68 ± 24.24 After: 142.16 ± 22.64 p = 0.018 | Before: 78.68 ± 14.26 After: 78.26 ± 14.85 p = 0.859 | - | Before: 25.12 ± 1.63 After: 29.42 ± 2.6 p < 0.001 | Before: 312.74 ± 11.87 After: 292.74 ± 7.8 p < 0.001 | decreased p = 0.052 | |||||||
Kal et al. [5] | 3136 ± 578 | - | Before: 131.6 ± 13.1 After: 119.0 ± 10.7 p < 0.001 | Before: 82.6 ± 11.1 After: 70.8 ± 9.3 p < 0.001 | Before: 98.6 ± 10.6 After: 87.2 ± 9.1 p < 0.001 | - | - | Before: 48.9 ± 8.5 After: 41.4 ± 7.3 p < 0.001 | |||||||
Çelikay et al. [6] | 2647.22 ± 731.43 | Before: 65.77 ± 10.5 After: 63.65 ± 10.41 p < 0.001 | Before: 126.12 ± 19.4 After: 104.49 ± 22.61 p < 0.001 | Before: 83.24 ± 23.26 After: 69.24 ± 11.6 p < 0.001 | - | - | - | - | |||||||
Mayali et al. [7] | 1412.4 ± 748.3 | Before: 63.59 ± 10.96 After: 62.34 ± 11.15 p < 0.001 | Before: 115.45 ± 17.38 After: 108.64 ± 17.81 p = 0.04 | Before: 68.18 ± 7.95 After: 67.73 ± 7.52 p = 0.73 | - | - | - | - | |||||||
Ulaş et al. [8] | 3042.86 | - | - | - | Before: 80.33 After: 77.9 p = 0.22 | Before: 23.66 After: 28.76 p < 0.001 | - | - | |||||||
Yang et al. [9] | - | Δ = 2.8 ± 1.3 | Before: 139.3 ± 24.7 After: 131.6 ± 34.2 p-not rated | Before: 82.4 ± 15.7 After: 82.8 ± 14.7 p-not rated | - | - | - | - | |||||||
Chen et al. [10] | - | - | Before: 147.14 ± 22.43 After: 136.09 ± 24.37 p = 0.001 | Before: 83.75 ± 16.03 After: 76.48 ± 13.47 p = 0.006 | - | - | - | - | |||||||
Nakano et al. [11] * | - | DM | NDM | DM | NDM | DM | NDM | DM | NDM | DM | NDM | DM | NDM | DM | NDM |
Before: 70.1 ± 13.9 After: 66.5 ± 13.5 p < 0.01 Δ = 3.63 ± 1.59 | Before: 60 ± 11.4 After: 57.8 ± 10.5 p < 0.01 Δ = 2.78 ± 2.2 | Before: 155.6 ± 16 After: 137.1 ± 16.8 p = 0.04 | Before: 154 ± 21.3 After: 137.3 ± 12.6 p > 0.05 | Before: 76.5 ± 15.4 After: 72.6 ± 12.5 p > 0.05 | Before: 82.8 ± 8.7 After: 74.1 ± 6.2 p < 0.05 | Before: 102.9 ± 12.9 After: 94.1 ± 12.4 p = 0.004 | Before: 106.8 ± 13.9 After: 94.5 ± 7.3 p = 0.003 | Before: 19.9 ± 3 After: 21.4 ± 2.8 p = 0.03 | Before: 21.3 ± 3.9 After: 22 ± 3.3 p > 0.05 | Before: 307.4 ± 7.5 After: 299.4 ± 7.7 p = 0.024 | Before: 314.6 ± 7.6 After: 302.3 ± 5.9 p = 0.006 | Before: 60.3 ± 11.5 After: 59.4 ± 7.8 p > 0.05 | Before: 61.2 ± 7.9 After: 51.7 ± 4.8 p = 0.001 | ||
Shin et al. [12] | 3000 | Before: 62.6 ± 10.5 After: 60.0 ± 10.5 p < 0.05 Δ = 2.6 ± 0.8 | Before: 153.4 ± 30.8 After: 142.2 ± 28.1 p < 0.05 Δ = 11.3 ± 20.3 | Before: 76.5 ± 11.4 After: 79.3 ± 10.7 p = 0.267 Δ = 2.8 ± 13.9 | Before: 102.1 ± 11.7 After: 100.2 ± 14 p = 0.424 Δ = 1.9 ± 13.3 | - | - | - | |||||||
Elbay et al. [13] | 2071.2 | Before: 64.53 ± 12.71 After: 62.41 ± 12.25 p < 0.001 | Before: 140 Second hour:120 p < 0.01 After: 120 p < 0.001 | Before: 80 Second hour: 80 p = 0.701 After: 70 p = 0.054 | - | - | - | - | |||||||
Sun et al. [14] | - | Before: 66 ± 11.98 After: 63.15 ± 9.42 p < 0.001 Δ = 3.12 ± 1.07 | Before: 140.54 ± 24.93 After: 118.49 ± 21.11 p < 0.001 Δ = 20.13 ± 16.06 | Before: 80.84 ± 14.67 After: 67.41 ± 12.63 p < 0.001 Δ = 2.57 ± 11.87 | -- - | - | - | -- | |||||||
Wang et al. [15] | 2318 | Δ = 2.1 | Before: 135.19 ± 17.28 Second hour: 123.28 ± 18.56 p <0.05 After: 133.03 ± 18.89 p > 0.05 | Before: 76.98 ± 14.02 Second hour: 74.26 ± 16.9 After: 77.84 ± 15.07 p > 0.05 | - | Before: 279.37 ± 6.16 After: 270.54 ± 7.32 p < 0.05 | Before: 53.75 ± 7.8 Second hour: 50.67 ± 9.89 p < 0.01 After: 55.23 ± 9.73 p > 0.05 | ||||||||
Coppolino G et al. [17] | - | Before: 77.12 ± 12.32 After: 75.14 ± 11.55 p = 0.05 | - | - | - | - | - | - | |||||||
Zhang et al. [18] | 2500 ± 1400 | - | Before: 123.7 ± 19.7 After: 116.9 ± 24.6 p < 0.05 | Before: 73.4 ± 12.8 After: 71.9 ± 16.2 p > 0.05 | - | - | - | Before: 51.2 ± 8.9 After: 48.8 ± 10.1 p < 0.05 | |||||||
Shin YU et al. [19] | 2900 ± 800 | Before: 62.4 ± 11.4 After: 59.7 ± 11.4 p < 0.001 | Before: 152.8 ± 32.5 After: 142.7 ± 29.5 p = 0.014 | Before: 77.5 ± 11.9 After: 79.8 ± 11.7 p = 0.369 | Before: 102.6 ± 12.7 After: 100.8 ± 15.3 p = 0.476 | - | - | - | |||||||
Hwang et al. [20] | - | Before: 63.43 ± 15.51 After: 61.57 ± 11.97 p = 0.059 | Before: 151.12 ± 19.7 After: 144.16 ± 0.41 p = 0.194 | Before: 80.04 ± 15.03 After: 74.72 ± 11.06 p = 0.146 | Before: 103.73 ± 16 After: 97.87 ± 8.94 p = 0.143 | - | - | - | |||||||
Ishibazawa et al. [22] † | DM: 2770 ± 630; NDM: 2140 ± 950 | DM | NDM | DM | NDM | DM | NDM | DM | NDM | - | - | DM | NDM | ||
Before: 58.1 ± 9.4 After: 55.5 ± 9.3 p < 0.01 | Before: 57.7 ± 13 After: 55.8 ± 8.7 p < 0.01 | Before: 168.5 ± 23.4 After: 151.9 ± 19.8 p < 0.01 | Before: 155.4 ± 26 After: 143.5 ± 28.8 p < 0.05 | Before: 77.7 ± 12.1 After: 74.6 ± 9.2 p > 0.05 | Before: 79.0 ± 16.3 After: 73.2 ± 17 p < 0.05 | Before: 113.7 ± 22.2 After: 106.3± 18.7 p < 0.05 | Before: 112.1± 19.4 After: 101.9± 21.9 p < 0.05 | Before: 62.8 ± 14.5 After: 56.7 ± 13.5 p < 0.05 | Before: 60.4 ± 12.1 After: 54.0 ± 14 p < 0.05 | ||||||
Chang et al. [23] | >2000 | Before: 65.7 ± 13 After: 63.4 ± 12.6 p < 0.001 | Before: 144.1 ± 22.5 After: 129.6 ± 21.1 p < 0.001 | Before: 78.1 ± 13.9 After: 74.5 ± 16.6 p = 0.184 | Before: 100.1 ± 14.7 After: 92.8 ± 15.6 p = 0.008 | - | Before: 317.5 ± 12.02 After: 94.4 ± 11.7 p < 0.001 | Before: 56.6 ± 10.2 After: 52.9 ± 10.3 p = 0.041 | |||||||
Kang et al. [24] | Before: 61.8 ± 14.1 After: 59.7 ± 13.7 | Before: 139 ± 14.6 After: 139.4 ± 21.1 | Before: 80.2 ± 10.6 After: 82.8 ± 14.1 | - | - | - | - |
Studies | Ultrafiltration Volume | Body Weight Change | Systolic Blood Pressure Change | Diastolic Blood Pressure Change | Mean Arterial PRESSURE change | Plasma Colloid Osmotic Pressure Change | Serum Osmolarity Change | Ocular Perfusion Pressure Change |
---|---|---|---|---|---|---|---|---|
Jung et al. [4] | C | A (negative) | A (negative) * only SBP in multivariate analysis | B | C | A (positive) | A (negative) | C |
Kal et al. [5] | C | C | C | C | C | C | C | C |
Çelikay et al. [6] | B | B | B | A (positive) | C | B | B | C |
Mayali et al. [7] | C | C | C | C | C | C | C | C |
Ulaş et al. [8] | B | C | B | B | B | B | B | C |
Yang et al. [9] | C | A (positive) | B | B | C | C | C | C |
Chen et al. [10] | C | C | C | C | C | C | C | C |
Nakano et al. [11] | C | C | C | C | C | C | C | C |
Shin et al. [12] | B | B | B | B | B | C | C | C |
Elbay et al. [13] | C | B | B | B | C | C | C | C |
Sun et al. [14] | B | A (positive) | B | B | C | C | C | C |
Wang et al. [15] | A (positive) | C | C | C | C | C | C | C |
Coppolino G et al. [16] | C | C | C | C | C | C | C | C |
Coppolino G et al. [17] | C | C | C | C | C | C | C | C |
Zhang et al. [18] | C | C | B | B | C | C | C | C |
Shin YU et al. [19] | A (negative) for the entire group and NDM | B | B | B | B | C | C | C |
Hwang et al. [20] | C | C | C | C | C | C | C | C |
Shoshtari et al. [21] | C | C | C | C | C | C | C | C |
Ishibazawa et al. [22] | A (negative) only for NDM | B | B For DM and NDM | C | C | C | C | B |
Chang et al. [23] | C | A (positive) | A (positive) | C | C | C | A (positive) | C |
Kang et al. [24] | C | B | B | B | C | C | C | C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roskal-Wałek, J.; Gołębiewska, J.; Mackiewicz, J.; Wałek, P.; Bociek, A.; Biskup, M.; Odrobina, D.; Jaroszyński, A. The Haemodialysis Session Effect on the Choroidal Thickness and Retinal and Choroidal Microcirculation—A Literature Review. J. Clin. Med. 2023, 12, 7729. https://doi.org/10.3390/jcm12247729
Roskal-Wałek J, Gołębiewska J, Mackiewicz J, Wałek P, Bociek A, Biskup M, Odrobina D, Jaroszyński A. The Haemodialysis Session Effect on the Choroidal Thickness and Retinal and Choroidal Microcirculation—A Literature Review. Journal of Clinical Medicine. 2023; 12(24):7729. https://doi.org/10.3390/jcm12247729
Chicago/Turabian StyleRoskal-Wałek, Joanna, Joanna Gołębiewska, Jerzy Mackiewicz, Paweł Wałek, Agnieszka Bociek, Michał Biskup, Dominik Odrobina, and Andrzej Jaroszyński. 2023. "The Haemodialysis Session Effect on the Choroidal Thickness and Retinal and Choroidal Microcirculation—A Literature Review" Journal of Clinical Medicine 12, no. 24: 7729. https://doi.org/10.3390/jcm12247729
APA StyleRoskal-Wałek, J., Gołębiewska, J., Mackiewicz, J., Wałek, P., Bociek, A., Biskup, M., Odrobina, D., & Jaroszyński, A. (2023). The Haemodialysis Session Effect on the Choroidal Thickness and Retinal and Choroidal Microcirculation—A Literature Review. Journal of Clinical Medicine, 12(24), 7729. https://doi.org/10.3390/jcm12247729