Montelukast Sodium to Prevent and Treat Bronchopulmonary Dysplasia in Very Preterm Infants: A Quasi-Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Study Protocol
2.4. Related Definitions
2.5. Sample Size Estimation
2.6. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kair, L.R.; Leonard, D.T.; Anderson, J.M. Bronchopulmonary dysplasia. Pediatr. Rev. 2012, 33, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Principi, N.; Di Pietro, G.M.; Esposito, S. Bronchopulmonary dysplasia: Clinical aspects and preventive and therapeutic strategies. J. Transl. Med. 2018, 16, 36–48. [Google Scholar] [CrossRef] [PubMed]
- García-Muñoz, R.F.; Losada, M.A.; Elorza, M.D.; Moreno, H.J.; Figueras, A.J.; Vento, T.M. The burden of respiratory disease in very-low-birth-weight infants: Changes in perinatal care and outcomes in a decade in Spain. Neonatology 2017, 112, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Siffel, C.; Kistler, K.D.; Lewis, J.F.M.; Sarda, S.P. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: A systematic literature review. J. Matern. Fetal Neonatal Med. 2021, 34, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Carse, E.; Adams, A.M.; Ranganathan, S.; Opie, G.; Cheong, J.L.Y.; Victorian Infant Collaborative Study Group. Ventilation in extremely preterm infants and respiratory function at 8 years. N. Engl. J. Med. 2017, 377, 329–337. [Google Scholar] [CrossRef]
- Jiangsu Multicenter Study Collaborative Group for Breastmilk Feeding in Neonatal Intensive Care Units. Clinical characteristics and risk factors of very low birth weight and extremely low birth weight infants with bronchopulmonary dysplasia: Multicenter retrospective analysis. Chin. J. Pediatr. 2019, 057, 33–39. [Google Scholar]
- Hilgendorff, A.; O’reilly, M.A. Bronchopulmonary dysplasia early changes leading to longterm consequences. Front. Med. (Lausanne) 2015, 2, 2. [Google Scholar]
- Gage, S.; Kan, P.; Lee, H.C.; Gould, J.B.; Stevenson, D.K.; Shaw, G.M.; O’Brodovich, H.M. Maternal Asthma, Preterm Birth, and Risk of Bronchopulmonary Dysplasia. J. Pediatr. 2015, 167, 875–880.e1. [Google Scholar] [CrossRef]
- Wagner, B.D.; Sontag, M.K.; Harris, J.K.; Miller, J.I.; Morrow, L.; Robertson, C.E.; Stephens, M.; Poindexter, B.B.; Abman, S.H.; Mourani, P.M. Airway Microbial Community Turnover Differs by BPD Severity in Ventilated Preterm Infants. PLoS ONE 2017, 12, e0170120. [Google Scholar] [CrossRef]
- Xu, Q.; Yu, J.; Liu, D.; Tan, Q.; He, Y. The Airway Microbiome and Metabolome in Preterm Infants: Potential Biomarkers of Bronchopulmonary Dysplasia. Front. Pediatr. 2022, 10, 862157. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.S.; Rehan, V.K. Recent Advances in Bronchopulmonary Dysplasia: Pathophysiology, Prevention, and Treatment. Lung 2018, 196, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.A.; Lasky, R.E.; Kennedy, K.A.; Moya, F.R.; Hochhauser, L.; Romo, S.; Tyson, J.E. Postnatal dexamethasone therapy and cerebral tissue volumes in extremely low birth weight infants. Pediatrics 2007, 119, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Bassler, D.; Plavka, R.; Shinwell, E.S.; Hallman, M.; Jarreau, P.H.; Carnielli, V.; Van den Anker, J.N.; Meisner, C.; Engel, C.; Schwab, M.; et al. Early Inhaled Budesonide for the Prevention of Bronchopulmonary Dysplasia. N. Engl. J. Med. 2015, 373, 1497–1506. [Google Scholar] [CrossRef]
- Venkataraman, R.; Kamaluddeen, M.; Hasan, S.U.; Robertson, H.L.; Lodha, A. Intratracheal Administration of Budesonide-Surfactant in Prevention of Bronchopulmonary Dysplasia in Very Low Birth Weight Infants: A Systematic Review and Meta-Analysis. Pediatr. Pulmonol. 2017, 52, 968–975. [Google Scholar] [CrossRef]
- Dekker, J.; Hooper, S.B.; Vonderen, J.J.; Witlox, R.S.; Lopriore, E.; Pas, A.B. Caffeine to improve breathing effort of preterm infants at birth: A randomized controlled trial. Pediatr. Res. 2017, 82, 290–296. [Google Scholar] [CrossRef]
- Gadhia, M.M.; Cutter, G.R.; Abman, S.H.; Kinsella, J.P. Effects of early inhaled nitric oxide therapy and vitamin A supplementation on the risk for bronchopulmonary dysplasia in premature newborns with respiratory failure. J. Pediatr. 2014, 164, 744–748. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Mervis, C.F.; Maxey, A.M.; Markham, N.E.; Abman, S.H. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L1073–L1084. [Google Scholar] [CrossRef]
- Abman, S.H.; Bancalari, E.; Jobe, A. The evolution of bronchopulmonary dysplasia after 50 years. Am. J. Respir. Crit. Care Med. 2017, 195, 421–424. [Google Scholar] [CrossRef]
- Peters-Golden, M.; Henderson, W.R., Jr. Leukotrienes. N. Engl. J. Med. 2007, 357, 1841. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Chang, J.C.; Tsao, L.Y.; Yang, R.C.; Chen, H.N.; Lee, C.H.; Lin, C.Y.; Tsai, Y.G. Correlates of Elevated Interleukin-6 and 8-Hydroxy-2’-Deoxyguanosine Levels in Tracheal Aspirates from Very Low Birth Weight Infants Who Develop Bronchopulmonary Dysplasia. Pediatr. Neonatol. 2017, 58, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Urs, R.; Ni, C.R.; Hemy, N.; Wilson, A.C.; Pillow, J.J.; Hall, G.L.; Simpson, S.J. Elevated leukotriene B4 and 8-isoprostane in exhaled breath condensate from preterm-born infants. BMC Pediatr. 2023, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Lu, H.Y.; Luo, Y.Y.; Xu, Y.X.; Hu, Y.H.; Chen, X.Q. Evaluation of the level of urinary cysteinyl leukotriene E4 in diagnosis of bronchopulmonary dysplasia in premature infants. Zhonghua Er Ke Za Zhi 2016, 54, 703–707. [Google Scholar] [PubMed]
- Zhang, X.; Li, B.; Sun, Z. Research on the expressions of peripheral serum 5-lipoxygenase activating protein, leukotriene C4 synthase and cysteinyl leukotriene receptor 1 of premature infants with bronchopulmonary dysplasia. J. Nanjing Med. Univ. (Nat. Ences) 2019, 3, 393–397. [Google Scholar]
- Strueby, L.; Thébaud, B. Advances in bronchopulmonary dysplasia. Expert Rev. Respir. Med. 2014, 8, 327–338. [Google Scholar] [CrossRef]
- Rupprecht, T.; Rupprecht, C.; Harms, D.; Sterlacci, W.; Vieth, M.; Seybold, K. Leukotriene Receptor Blockade as a Life-Saving Treatment in Severe Bronchopulmonary Dysplasia. Respiration 2014, 88, 285–290. [Google Scholar] [CrossRef]
- El Faleh, I.; Faouzi, M.; Adams, M.; Gerull, R.; Chnayna, J.; Giannoni, E.; Roth-Kleiner, M.; Swiss Neonatal Network. Bronchopulmonary dysplasia: A predictive scoring system for very low birth weight infants. A diagnostic accuracy study with prospective data collection. Eur. J. Pediatr. 2021, 180, 2453–2461. [Google Scholar] [CrossRef]
- Parad, R.B.; Breeze, J.L.; Terrin, N.; Rogers, L.K.; Salafia, C.M.; Greenough, A.; Davis, J.M. Differences in clinical and laboratory biomarkers for short and long-term respiratory outcomes in preterm neonates. Pediatr. Pulmonol. 2021, 56, 3847–3856. [Google Scholar] [CrossRef]
- Shim, S.Y.; Yun, J.Y.; Cho, S.J.; Kim, M.H.; Park, E.A. The prediction of bronchopulmonary dysplasia in very low birth weight infants through clinical indicators within 1 h of delivery. J. Korean Med. Sci. 2021, 36, e81. [Google Scholar] [CrossRef]
- Tao, Y.; Han, X.; Guo, W.L. Predictors of bronchopulmonary dysplasia in 625 neonates with respiratory distress syndrome. J. Trop. Pediatr. 2022, 68, fmac037. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, J.H.; Lee, J.; Shin, S.H.; Eun, H.S.; Lee, S.M. The efficacy and safety of Montelukast sodium in the prevention of bronchopulmonary dysplasia. Korean J. Pediatr. 2015, 58, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Harsha, S.S.; Archana, B.R. SNAPPE-II (Score for Neonatal Acute Physiology with Perinatal Extension-II) in Predicting Mortality and Morbidity in NICU. J. Clin. Diagn. Res. 2015, 9, SC10–SC12. [Google Scholar] [CrossRef]
- Dammann, O.; Shah, B.; Naples, M.; Bednarek, F.; Zupancic, J.; Allred, E.N.; Leviton, A.; ELGAN Study Investigators. Interinstitutional variation in prediction of death by SNAP-II and SNAPPE-II among extremely preterm infants. Pediatrics 2009, 124, e1001–e1006. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary dysplasia: Executive summary of a workshop. J. Pediatr. 2018, 197, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Madan, A.; Brozanski, B.S.; Cole, C.H.; Oden, N.L.; Cohen, G.; Phelps, D.L. A Pulmonary Score for Assessing the Severity of Neonatal Chronic Lung Disease. Pediatrics 2005, 115, e450–e457. [Google Scholar] [CrossRef] [PubMed]
- Kielt, M.; Beer, L.; Rivera, B.; Jama, W.; Slaughter, J.; Backes, C.; Conroy, S. Association of the Respiratory Severity Score with Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension in Infants Born Extremely Preterm. Res. Sq. 2023, 27, rs.3.rs-2852392. [Google Scholar]
- Doyle, L.W.; Davis, P.G.; Morley, C.J.; McPhee, A.; Carlin, J.B. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: A multicenter, international, randomized, controlled trial. Pediatrics 2006, 117, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath, S.A.; Soll, R.F.; et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Primers 2019, 14, 78. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Pan, J. Effect of Montelukast on Bronchopulmonary Dysplasia (BPD) and Related Mechanisms. Med. Sci. Monit. 2019, 25, 1886–1893. [Google Scholar] [CrossRef]
- Papagianis, P.C.; Pillow, J.J.; Moss, T.J. Bronchopulmonary dysplasia: Pathophysiology and potential anti-inflammatory therapies. Paediatr. Respir. Rev. 2019, 30, 34–41. [Google Scholar] [CrossRef]
- Rostevanov, I.S.; Betesh-Abay, B.; Nassar, A.; Rubin, E.; Uzzan, S.; Kaplanski, J.; Biton, L.; Azab, A.N. Montelukast induces beneficial behavioral outcomes and reduces inflammation in male and female rats. Front. Immunol. 2022, 6, 981440. [Google Scholar] [CrossRef] [PubMed]
- Qahtani, S.Y.A. Efficacy and safety of intravenous leukotriene receptor antagonists in acute asthma. Am. J. Med. Sci. 2023, 366, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Aigner, L.; Pietrantonio, F.; Bessa de Sousa, D.M.; Michael, J.; Schuster, D.; Reitsamer, H.A.; Zerbe, H.; Studnicka, M. The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Front. Mol. Biosci. 2020, 7, 610132. [Google Scholar] [CrossRef] [PubMed]
- Jiao, B.; Tang, Y.; Liu, S.; Guo, C. Tetrandrine attenuates hyperoxia-induced lung injury in newborn rats via NF-κB p65 and ERK1/2 pathway inhibition. Ann. Transl. Med. 2020, 8, 1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Wu, S.H.; Luo, Y.Y.; Li, B.J.; Li, S.J.; Lu, H.Y.; Jin, R.; Sun, Z.Y. Lipoxin A4 Attenuates Bronchopulmonary Dysplasia via Upregulation of Let-7c and Downregulation of TGF-β1 Signaling Pathway. Inflammation 2017, 40, 2094–2108. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Peng, W.; Zhou, R.; Zhang, Z.; Xu, J. Montelukast improves bronchopulmonary dysplasia by inhibiting epithelial-mesenchymal transition via inactivating the TGF-β1/Smads signaling pathway. Mol. Med. Rep. 2020, 22, 2564–2572. [Google Scholar] [CrossRef] [PubMed]
- Jukema, M.; Borys, F.; Sibrecht, G.; Jørgensen, K.J.; Bruschettini, M. Antileukotrienes for the prevention and treatment of chronic lung disease in very preterm newborns: A systematic review. Respir. Res. 2021, 22, 208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, X.; Sang, X.; Wu, Y.M.; Peng, W.S. Observation on the efficacy of montelukast sodium in the treatment of premature bronchopulmonary dysplasia. J. Qiqihar Med. Univ. 2018, 39, 929–930. [Google Scholar]
- Tucker, M.H.; Yeh, H.W.; Oh, D.; Shaw, N.; Kumar, N.; Sampath, V. Preterm sepsis is associated with acute lung injury as measured by pulmonary severity score. Pediatr. Res. 2022, 29, 1050–1056. [Google Scholar] [CrossRef]
- Feldman, K.; Nitkin, C.R.; Cuna, A.; Oschman, A.; Truog, W.E.; Norberg, M.; Nyp, M.; Taylor, J.B.; Lewis, T. Corticosteroid response predicts bronchopulmonary dysplasia status at 36 wk in preterm infants treated with dexamethasone: A pilot study. Pediatr. Pulmonol. 2022, 57, 1760–1769. [Google Scholar] [CrossRef]
- Liviskie, C.; Vesoulis, Z.; Zeller, B.; Rao, R.; McPherson, C. Respiratory effects of prolonged prednisolone use in infants with evolving and established Bronchopulmonary dysplasia. Early Hum. Dev. 2021, 156, 105344. [Google Scholar] [CrossRef] [PubMed]
- Billion, E.; Hadchouel, A.; Garcelon, N.; Delacourt, C.; Drummond, D. Intravenous pulses of methylprednisolone for infants with severe bronchopulmonary dysplasia and respiratory support after 3 months of age. Pediatr. Pulmonol. 2021, 56, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Keskin, O.; Arik, Y.E.; Motzkus, C.; Sackesen, C.; Lilly, C.M.; Kalayci, O. The effect of montelukast on early-life wheezing: A randomized, double-blinded placebo-controlled study. Pediatr. Allergy Immunol. 2018, 29, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Demet Akbaş, E.; Razi, C.H.; Andıran, N. Effects of using montelukast during acute wheezing attack in hospitalized preschool children on the discharge rate and the clinical asthma score. Pediatr. Pulmonol. 2021, 56, 1931–1937. [Google Scholar] [CrossRef]
- Sarkar, M.; Koren, G.; Kalra, S.; Ying, A.; Smorlesi, C.; De Santis, M.; Diav-Citrin, O.; Avgil, M.; Lavigne, S.V.; Berkovich, M.; et al. Montelukast use during pregnancy: A multicentre, prospective, comparative study of infant outcomes. Eur. J. Clin. Pharmacol. 2009, 65, 1259–1264. [Google Scholar] [CrossRef]
- Hatakeyama, S.; Goto, M.; Yamamoto, A.; Ogura, J.; Watanabe, N.; Tsutsumi, S.; Yakuwa, N.; Yamane, R.; Nagase, S.; Takahashi, K.; et al. The safety of pranlukast and montelukast during the first trimester of pregnancy: A prospective, two-centered cohort study in Japan. Congenit. Anom. 2022, 62, 161–168. [Google Scholar] [CrossRef]
Montelukast Group (n = 44) | Control Group (n = 40) | t | p | |
---|---|---|---|---|
Maternal age (years) | 28.9 ± 4.8 | 29.7 ± 7.3 | −0.632 | 0.529 |
Gestational age (weeks) | 29.1 ± 1.4 | 29.0 ± 1.2 | 0.582 | 0.562 |
Male gender, n (%) a | 30 (68.2) | 25 (62.5) | 0.299 | 0.584 |
Born by cesarean, n (%) a | 23 (52.3) | 18 (45.0) | 0.444 | 0.505 |
Prenatal corticosteroids, n (%) a | 18 (40.9) | 15 (37.5) | 0.102 | 0.749 |
1 min Apgar score [M (Q1,Q3)] b | 6 (3.5, 8) | 7 (5, 8) | −1.146 | 0.252 |
5 min Apgar score [M (Q1,Q3)] b | 7.5 (6, 9) | 8 (7, 9) | −1.085 | 0.278 |
Birth weight (g) | 1197 ± 166 | 1190 ± 167 | 0.214 | 0.831 |
SNAPPE-II at 12–24 h after birth | 22.2 ± 11.8 | 20.8 ± 14.0 | 0.504 | 0.616 |
Hypertriglyceridemia, n (%) a | 3 (6.8) | 4 (10.0) | 0.278 | 0.598 |
PSS at 7–10 days of life | 0.64 ± 0.21 | 0.62 ± 0.22 | 0.272 | 0.705 |
Mechanical ventilation, n (%) a | 11 (25.0) | 9 (22.5) | 0.072 | 0.788 |
Montelukast Group (n = 44) | Control Group (n = 40) | t | p | |
---|---|---|---|---|
Duration of respiratory support, d | 36.4 ± 12.8 | 43.1 ± 15.9 | −2.123 | 0.037 |
Using DART scheme, n (%) a | 10 (22.7) | 8 (20.0) | 0.093 | 0.761 |
Duration of MV after enrollment, d | 4.1 ± 2.2 (n = 11) | 3.7 ± 2.6 (n = 9) | 0.399 | 0.695 |
PSS at 21 days of life | 0.54 ± 0.19 | 0.63 ± 0.19 | −2.011 | 0.048 |
PSS at 35 days of life | 0.47 ± 0.10 | 0.53± 0.15 | −1.596 | 0.114 |
BPD, n (%) b | 32 (72.7) | 30 (75.0) | ||
Mild | 18 (40.9) | 16 (40.0) | −0.189 | 0.850 |
Moderate | 10 (22.7) | 12 (32.5) | ||
Severe | 4 (9.1) | 2 (2.5) | ||
Length of stay, d | 52.9 ± 14.7 | 58.2 ± 16.0 | −1.593 | 0.115 |
Hospitalization expenses, CNY | 71,545 ± 22,354 | 73,233 ± 23,436 | −0.338 | 0.736 |
Montelukast Group (n = 44) | Control Group (n = 40) | χ2 | p | |
---|---|---|---|---|
Feeding intolerance | 8 (18.2) | 13 (32.5) | 2.291 | 0.130 |
Electrolyte disturbances | 8 (18.2) | 9 (22.5) | 0.242 | 0.623 |
Necrotizing enterocolitis (stage ≥ 2) | 2 (4.5) | 2 (5.0) | 0.010 | 0.922 |
Sepsis | 3 (6.8) | 2 (5.0) | 0.124 | 0.725 |
Cholestasis | 4 (9.1) | 3 (7.5) | 0.069 | 0.792 |
Hemorrhage of digestive tract | 3 (6.8) | 3 (7.5) | 0.015 | 0.904 |
Intraventricular hemorrhage (grade ≥ 2) | 4 (9.1) | 4 (10.0) | 0.020 | 0.887 |
Allergic skin rash | 5 (11.4) | 2 (5.0) | 1.111 | 0.292 |
hsPDA | 8(18.2) | 11 (27.5) | 1.039 | 0.308 |
Extrauterine growth retardation at discharge | 5 (11.4) | 7 (17.5) | 0.644 | 0.422 |
Retinopathy of prematurity (stage ≥ 3) | 4 (9.1) | 5 (12.5) | 0.255 | 0.614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Lu, H.; Yang, B.; Li, M.; Ren, Y.; Shi, H.; Gao, X.; Chen, X. Montelukast Sodium to Prevent and Treat Bronchopulmonary Dysplasia in Very Preterm Infants: A Quasi-Randomized Controlled Trial. J. Clin. Med. 2023, 12, 7745. https://doi.org/10.3390/jcm12247745
Sun Z, Lu H, Yang B, Li M, Ren Y, Shi H, Gao X, Chen X. Montelukast Sodium to Prevent and Treat Bronchopulmonary Dysplasia in Very Preterm Infants: A Quasi-Randomized Controlled Trial. Journal of Clinical Medicine. 2023; 12(24):7745. https://doi.org/10.3390/jcm12247745
Chicago/Turabian StyleSun, Zhongyi, Hongyan Lu, Bo Yang, Min Li, Yi Ren, Hongshan Shi, Xiangyu Gao, and Xiaoqing Chen. 2023. "Montelukast Sodium to Prevent and Treat Bronchopulmonary Dysplasia in Very Preterm Infants: A Quasi-Randomized Controlled Trial" Journal of Clinical Medicine 12, no. 24: 7745. https://doi.org/10.3390/jcm12247745
APA StyleSun, Z., Lu, H., Yang, B., Li, M., Ren, Y., Shi, H., Gao, X., & Chen, X. (2023). Montelukast Sodium to Prevent and Treat Bronchopulmonary Dysplasia in Very Preterm Infants: A Quasi-Randomized Controlled Trial. Journal of Clinical Medicine, 12(24), 7745. https://doi.org/10.3390/jcm12247745