The Relationship between General Movements and Risk Factors in Moderate-Late Preterm Infants: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Outcome Measures
2.4. Procedure
2.5. Statistics
3. Results
3.1. Demographics
3.2. Relationship between Outcome Measures
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Garcia, C.V.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [PubMed]
- García-Reymundo, M.; Demestre, X.; Calvo, M.J.; Ginovart, G.; Jiménez, A.; Hurtado, J.A. Late preterm infants in Spain: Experience of the 34–36 Neonatal Group. An. Pediatr. 2018, 88, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Bonnevier, A.; Björklund, L.; Elfvin, A.; Håkansson, S.; Altman, M. Att Födas Några Veckor för Tidigt—Spelar Det Någon Roll? Born a Few Weeks Too Early; Does It Matter? Lakartidningen 2019, 116, FSR7. Available online: https://pubmed.ncbi.nlm.nih.gov/31593288/ (accessed on 14 May 2023). [PubMed]
- Mitha, A.; Chen, R.; Altman, M.; Johansson, S.; Stephansson, O.; Bolk, J. Neonatal Morbidities in Infants Born Late Preterm at 35-36 Weeks of Gestation: A Swedish Nationwide Population-based Study. J. Pediatr. 2021, 233, 43–50.e5. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Romeo, D.; Ricci, D.; Brogna, C.; Mercuri, E. Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: A critical review of the literature. Dev. Med. Child Neurol. 2016, 58, 240–245. [Google Scholar] [CrossRef]
- Brazy, J.E.; Eckerman, C.O.; Oehler, J.M.; Goldstein, R.F.; O’Rand, A.M. Nursery Neurobiologic Risk Score: Important factor in predicting outcome in very low birth weight infants. J. Pediatr. 1991, 118, 783–792. [Google Scholar] [CrossRef]
- Schemer, A.P.; Sexton, M.E. Prediction of Developmental Outcome Using a Perinatal Risk Inventory. Pediatrics 1991, 88, 1135–1143. [Google Scholar] [CrossRef]
- Zaramella, P.; Freato, F.; Milan, A.; Grisafi, D.; Vianello, A.; Chiandetti, L. Comparison between the perinatal risk inventory and the nursery neurobiological risk score for predicting development in high-risk newborn infants. Early Hum. Dev. 2008, 84, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Chatziioannidis, I.; Kyriakidou, M.; Exadaktylou, S.; Antoniou, E.; Zafeiriou, D.; Nikolaidis, N. Neurological outcome at 6 and 12 months corrected age in hospitalised late preterm infants—A prospective study. Eur. J. Paediatr. Neurol. 2018, 22, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Kalia, J.L.; Visintainer, P.; Brumberg, H.L.; Pici, M.; Kase, J. Comparison of enrollment in interventional therapies between late-preterm and very preterm infants at 12 months’ corrected age. Pediatrics 2009, 123, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Prechti, H.F.R.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef] [PubMed]
- Einspieler, C.; Prechtl, H.F.R. Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, F.; Grégoire, M.C.; Dubois, J.; Glorieux, J. Nursery Neurobiologic Risk Score and outcome at 18 months. Acta Paediatr. 1998, 87, 751–757. [Google Scholar] [CrossRef]
- Brogna, C.; Romeo, D.M.; Cervesi, C.; Scrofani, L.; Romeo, M.G.; Mercuri, E.; Guzzetta, A. Prognostic value of the qualitative assessments of general movements in late-preterm infants. Early Hum. Dev. 2013, 89, 1063–1066. [Google Scholar] [CrossRef]
- Einspieler, C.; Marschik, P.B.; Pansy, J.; Scheuchenegger, A.; Krieber, M.; Yang, H.; Kornacka, M.K.; Rowinska, E.; Soloveichick, M.; Bos, A.F. The general movement optimality score: A detailed assessment of general movements during preterm and term age. Dev. Med. Child Neurol. 2016, 58, 361–368. [Google Scholar] [CrossRef]
- Spittle, A.J.; Walsh, J.; Olsen, J.E.; McInnes, E.; Eeles, A.L.; Brown, N.C.; Anderson, P.J.; Doyle, L.W.; Cheong, J.L. Neurobehaviour and neurological development in the first month after birth for infants born between 32–42 weeks’ gestation. Early Hum. Dev. 2016, 96, 7–14. [Google Scholar] [CrossRef]
- Badawi, N.; Mcintyre, S.; Hunt, R.W. Perinatal care with a view to preventing cerebral palsy. Dev. Med. Child Neurol. 2021, 63, 156–161. [Google Scholar] [CrossRef]
- Crowle, C.; Badawi, N.; Walker, K.; Novak, I. General Movements Assessment of infants in the neonatal intensive care unit following surgery. J. Paediatr. Child Health 2015, 51, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Kerstjens, J.M.; Bocca-Tjeertes, I.F.; De Winter, A.F.; Reijneveld, S.A.; Bos, A.F. Neonatal morbidities and developmental delay in moderately preterm-born children. Pediatrics 2012, 130, e265–e272. [Google Scholar] [CrossRef] [PubMed]
- Hurtado Suazo, J.A.; García Reymundo, M.; Calvo Aguilar, M.J.; Galiana, G.G.; Moya, A.J.; Aguinagalde, M.T.; Guasch, X.D. Recommendations for the perinatal management and follow up of late preterm newborns. An. Pediatr. 2014, 81, 327.e1–327.e7. [Google Scholar] [CrossRef]
- Soorani-Lunsing, I.; Woltil, H.A.; Hadders-Algra, M. Are moderate degrees of hyperbilirubinemia in healthy term neonates really safe for the brain? Pediatr. Res. 2001, 50, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, A.; Alkan, H.; Çelik, H.T.; Mutlu, A. The effect of hyperbilirubinemia on motor repertoire of infants between 3 and 5 months of age. Eur. J. Pediatr. 2022, 181, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Lunsing, R.J.; Pardoen, W.F.H.; Hadders-Algra, M. Neurodevelopment after moderate hyperbilirubinemia at term. Pediatr. Res. 2013, 73, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Merino-Andrés, J.; Pérez-Nombela, S.; Álvarez-Bueno, C.; Hidalgo-Robles, Á.; Ruiz-Becerro, I.; Fernández-Rego, F.J. Neonatal hyperbilirubinemia and repercussions on neurodevelopment: A systematic review. Child Care Health Dev. 2023. [Google Scholar] [CrossRef] [PubMed]
- Nogolová, A.; Pavlíček, J. General movements and neurological development of the early age in children with neonatal hypoglycemia. Ces. Slov. Neurol. Neurochir. 2019, 82, 189–193. [Google Scholar] [CrossRef]
- Skworc, A.; Marciniak, S.; Sławska, H. Influence of Infections on the Quality of General Movements in Premature Infants. Early Hum. Dev. 2020, 148, 105118. Available online: https://pubmed.ncbi.nlm.nih.gov/32673903/ (accessed on 30 May 2023). [CrossRef]
- Hitzert, M.M.; Roescher, A.M.; Bos, A.F. The quality of general movements after treatment with low-dose dexamethasone in preterm infants at risk of bronchopulmonary dysplasia. Neonatology 2014, 106, 222–228. [Google Scholar] [CrossRef]
- Adamkin, D.H. Neonatal hypoglycemia. Semin. Fetal Neonatal Med. 2017, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Branch, A.; Havranek, T. Neonatal Hypoglycemia. Pediatr. Rev. 2017, 38, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.H.; Wehberg, S.; Pørtner, F.; Larsen, A.M.; Filipsen, K.; Christesen, H.T. Neurodevelopmental outcomes after moderate to severe neonatal hypoglycemia. Eur. J. Pediatr. 2020, 179, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, C.J.D.; Alsweiler, J.M.; Ansell, J.M.; Anstice, N.S.; Chase, J.G.; Gamble, G.D.; Harris, D.L.; Jacobs, R.J.; Jiang, Y.; Paudel, N.; et al. Neonatal Glycemia and Neurodevelopmental Outcomes at 2 Years. N. Engl. J. Med. 2015, 373, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Kerstjens, J.M.; De Winter, A.F.; Bocca-Tjeertes, I.F.; Ten Vergert, E.M.J.; Reijneveld, S.A.; Bos, A.F. Developmental delay in moderately preterm-born children at school entry. J. Pediatr. 2011, 159, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ross, G. Hyperbilirubinemia in the 2000s: What Should We Do Next? Am. J. Perinatol. 2003, 20, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Yang, L.; Pan, L.; Xiao, D. Association between bronchopulmonary dysplasia and cerebral palsy in children: A meta-analysis. BMJ Open 2018, 8, e020735. [Google Scholar] [CrossRef]
- Domagalska-Szopa, M.; Szopa, A.; Serrano-Gómez, M.E.; Hagner-Derengowska, M.; Behrendt, J. Identification of risk factors in pre-term infants with abnormal general movements. Front. Neurol. 2022, 13, 850877. [Google Scholar] [CrossRef]
- Mehler, K.; Mainusch, A.; Hucklenbruch-Rother, E.; Hahn, M.; Hünseler, C.; Kribs, A. Increased rate of parental postpartum depression and traumatization in moderate and late preterm infants is independent of the infant’s motor repertoire. Early Hum. Dev. 2014, 90, 797–801. [Google Scholar] [CrossRef]
- Spittle, A.J.; Walsh, J.M.; Potter, C.; Mcinnes, E.; Olsen, J.E.; Lee, K.J.; Anderson, P.J.; Doyle, L.W.; Cheong, J.L.Y. Neurobehaviour at term-equivalent age and neurodevelopmental outcomes at 2 years in infants born moderate-to-late preterm. Dev. Med. Child Neurol. 2017, 59, 207–215. [Google Scholar] [CrossRef]
- Nakajima, Y.; Einspieler, C.; Marschik, P.B.; Bos, A.F.; Prechtl, H.F.R. Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally? Early Hum. Dev. 2006, 82, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, R.; Darabi, A.; Emadzadeh, M.; Maamouri, G.; Rezvani, R. Predicting neurodevelopmental outcomes in preterm infants: A comprehensive evaluation of neonatal and maternal risk factors. Early Hum. Dev. 2023, 184, 105834. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.K.; Mukherjee, S. Neurodevelopment outcome of late prematurity: A retrospective cohort study from a developing country. Eur. J. Pediatr. 2023, 182, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Valentini, N.C.; de Borba, L.S.; Panceri, C.; Smith, B.A.; Procianoy, R.S.; Silveira, R.C. Early Detection of Cognitive, Language, and Motor Delays for Low-Income Preterm Infants: A Brazilian Cohort Longitudinal Study on Infant Neurodevelopment and Maternal Practice. Front. Psychol. 2021, 12, 753551. [Google Scholar] [CrossRef]
Outcome | Moderate-Late Preterm Infants (n = 65) |
---|---|
Gestational age (weeks) | 34.4 ± 1.27 |
Weight (g) | 2233.96 ± 395.68 |
Size (cm) | 44.11 ± 3.48 |
Cranial perimeter (cm) | 31.54 ± 2.21 |
Gender (M/F) | 36/29 |
Referred to EI (n, %) | 13 (20%) |
Nursery Neurobiologic Risk Score Items | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apgar | Pa02 | Ventilation | Blood pH | Apnea + Bradycardia | Hypotension | PDA | Seizures | Intraventricular Hemorrhage | Periventricular Leukomalacia | Infection | Hypoglycemia | Bilirubin | ||
Perinatal Risk Inventory Items | Apgar | 0 | 0 | −0.07 | 0 | −0.06 | 0 | −0.02 | 0 | 0 | −0.04 | −0.05 | −0.06 | −0.10 |
EEG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Seizures | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Intracranial Hemorrhage | 0 | 0 | 0.21 | 0 | 0.26 | 0 | −0.02 | 0 | 1 | −0.04 | 0.29 | −0.06 | 0.16 | |
Hydrocephalus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Findings CNS | 0 | 0 | 0.23 | 0 | 0.21 | 0 | 0.35 | 0 | −0.04 | 1 | −0.01 | 0.08 | 0.05 | |
GA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Weight | 0 | 0 | −0.15 | 0 | 0.05 | 0 | −0.03 | 0 | −0.03 | −0.09 | 0.06 | 0.04 | −0.06 | |
Dysmorphic Traits | 0 | 0 | 0.40 | 0 | −0.08 | 0 | −0.02 | 0 | −0.02 | −0.06 | 0.42 | −0.09 | 0.23 | |
Ventilation | 0 | 0 | 0.85 | 0 | 0.42 | 0 | −0.08 | 0 | 0.17 | 0.17 | 0.12 | 0.07 | 0.19 | |
Head Growth (Preterm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Head Growth (Aterm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Polycythemia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Meningitis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Hypoglycemia | 0 | 0 | 0.06 | 0 | −0.01 | 0 | 0.27 | 0 | −0.08 | 0.26 | 0.13 | 0.82 | −0.26 | |
Infection | 0 | 0 | 0.21 | 0 | −0.08 | 0 | −0.05 | 0 | 0.31 | −0.14 | 0.82 | 0.11 | 0.43 | |
Hyperbilirubinemia | 0 | 0 | 0.29 | 0 | 0.25 | 0 | −0.09 | 0 | 0.17 | −0.03 | 0.33 | −0.21 | 0.87 | |
Others | 0 | 0 | 0.27 | 0 | 0.05 | 0 | 0.27 | 0 | −0.06 | 0.20 | 0.12 | −0.18 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merino-Andrés, J.; Pérez-Nombela, S.; Hidalgo-Robles, Á.; Pérez-Domínguez, M.d.P.; Prieto-Sánchez, L.; Fernández-Rego, F.J. The Relationship between General Movements and Risk Factors in Moderate-Late Preterm Infants: A Prospective Cohort Study. J. Clin. Med. 2023, 12, 7763. https://doi.org/10.3390/jcm12247763
Merino-Andrés J, Pérez-Nombela S, Hidalgo-Robles Á, Pérez-Domínguez MdP, Prieto-Sánchez L, Fernández-Rego FJ. The Relationship between General Movements and Risk Factors in Moderate-Late Preterm Infants: A Prospective Cohort Study. Journal of Clinical Medicine. 2023; 12(24):7763. https://doi.org/10.3390/jcm12247763
Chicago/Turabian StyleMerino-Andrés, Javier, Soraya Pérez-Nombela, Álvaro Hidalgo-Robles, María del Prado Pérez-Domínguez, Lorena Prieto-Sánchez, and Francisco Javier Fernández-Rego. 2023. "The Relationship between General Movements and Risk Factors in Moderate-Late Preterm Infants: A Prospective Cohort Study" Journal of Clinical Medicine 12, no. 24: 7763. https://doi.org/10.3390/jcm12247763
APA StyleMerino-Andrés, J., Pérez-Nombela, S., Hidalgo-Robles, Á., Pérez-Domínguez, M. d. P., Prieto-Sánchez, L., & Fernández-Rego, F. J. (2023). The Relationship between General Movements and Risk Factors in Moderate-Late Preterm Infants: A Prospective Cohort Study. Journal of Clinical Medicine, 12(24), 7763. https://doi.org/10.3390/jcm12247763