Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Cohort
3.2. White Blood Cell Count and the Impact on Delayed Cerebral Ischemia
3.3. White Blood Cell Count and the Impact on Ventriculoperitoneal Shunt Dependency
3.4. Follow-Up and Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Gijn, J.; Kerr, R.S.; Rinkel, G.J. Subarachnoid haemorrhage. Lancet 2007, 369, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Nieuwkamp, D.J.; Setz, L.E.; Algra, A.; Linn, F.H.; de Rooij, N.K.; Rinkel, G.J. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: A meta-analysis. Lancet Neurol. 2009, 8, 635–642. [Google Scholar] [CrossRef]
- Al-Mufti, F.; Misiolek, K.A.; Roh, D.; Alawi, A.; Bauerschmidt, A.; Park, S.; Agarwal, S.; Meyers, P.M.; Connolly, E.S.; Claassen, J.; et al. White Blood Cell Count Improves Prediction of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery 2019, 84, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Bederson, J.B.; Connolly, E.S.; Hunt Batjer, H.; Dacey, R.G.; Dion, J.E.; Diringer, M.N.; Duldner, J.E.; Harbaugh, R.E.; Patel, A.B.; Rosenwasser, R.H. AHA/ASA Guideline Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage A Statement for Healthcare Professionals From a Special Writing Group of the Stroke Council, American Heart Association. Stroke 2009, 40, 994–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawton, M.; Vates, G. Subarachnoid hemorrhage. N. Engl. J. Med. 2017, 5, 251–268. [Google Scholar] [CrossRef]
- Ferguson, S.; Macdonald, R.L. Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 2007, 60, 658–667. [Google Scholar] [CrossRef]
- Pluta, R.M.; Hansen-Schwartz, J.; Dreier, J.; Vajkoczy, P.; Macdonald, R.L.; Nishizawa, S.; Kasuya, H.; Wellman, G.; Keller, E.; Zauner, A.; et al. Cerebral vasospasm following subarachnoid hemorrhage: Time for a new world of thought. Neurol. Res. 2009, 31, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Rowland, M.J.; Hadjipavlou, G.; Kelly, M.; Westbrook, J.; Pattinson, K.T.S. Delayed cerebral ischaemia after subarachnoid haemorrhage: Looking beyond vasospasm. Br. J. Anaesth. 2012, 109, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Cahill, J.; Zhang, J.H. Subarachnoid Hemorrhage Is It Time for a New Direction? Stroke 2009, 40, 86–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, R.L.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Höllig, A.; Stoffel-Wagner, B.; Clusmann, H.; Veldeman, M.; Schubert, G.A.; Coburn, M. Time courses of inflammatory markers after aneurysmal subarachnoid hemorrhage and their possible relevance for future studies. Front. Neurol. 2017, 8, 694. [Google Scholar] [CrossRef] [Green Version]
- McGirt, M.J.; Mavropoulos, J.C.; McGirt, L.Y.; Alexander, M.J.; Friedman, A.H.; Laskowitz, D.T.; Lynch, J.R. Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2003, 98, 1222–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, E.S.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef] [Green Version]
- Karimy, J.K.; Zhang, J.; Kurland, D.B.; Theriault, B.C.; Duran, D.; Stokum, J.A.; Furey, C.G.; Zhou, X.; Mansuri, M.S.; Montejo, J.; et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat. Med. 2017, 23, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Rincon, F.; Gordon, E.; Starke, R.M.; Buitrago, M.M.; Fernandez, A.; Schmidt, J.M.; Claassen, J.; Wartenberg, K.E.; Frontera, J.; Seder, D.B.; et al. Predictors of long-term shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: Clinical article. J. Neurosurg. 2010, 113, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Wessell, A.P.; Kole, M.J.; Cannarsa, G.; Oliver, J.; Jindal, G.; Miller, T.; Gandhi, D.; Parikh, G.; Badjatia, N.; Francois Aldrich, E.; et al. A sustained systemic inflammatory response syndrome is associated with shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2019, 1306, 1984–1991. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Zhang, P.; Yuan, B.; Zhao, D.; Chen, Y.; Zhang, X. Thrombin-induced TGF-β1 pathway: A cause of communicating hydrocephalus post subarachnoid hemorrhage. Int. J. Mol. Med. 2013, 31, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Czorlich, P.; Ricklefs, F.; Reitz, M.; Vettorazzi, E.; Abboud, T.; Regelsberger, J.; Westphal, M.; Schmidt, N.O. Impact of intraventricular hemorrhage measured by Graeb and LeRoux score on case fatality risk and chronic hydrocephalus in aneurysmal subarachnoid hemorrhage. Acta Neurochir. 2015, 157, 409–415. [Google Scholar] [CrossRef]
- Erixon, H.O.; Sorteberg, A.; Sorteberg, W.; Eide, P.K. Predictors of shunt dependency after aneurysmal subarachnoid hemorrhage: Results of a single-center clinical trial. Acta Neurochir. 2014, 156, 2059–2069. [Google Scholar] [CrossRef]
- Czorlich, P.; Sauvigny, T.; Ricklefs, F.; Abboud, T.; Nierhaus, A.; Vettorazzi, E.; Reuter, D.; Regelsberger, J.; Westphal, M.; Schmidt, N.O. Impact of dexamethasone in patients with aneurysmal subarachnoid haemorrhage. Eur. J. Neurol. 2017, 24, 645–651. [Google Scholar] [CrossRef]
- Feigin, V.L.; Anderson, N.; Rinkel, G.J.; Algra, A.; van Gijn, J.; Bennett, D.A. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst. Rev. 2005, 3, CD004583. [Google Scholar] [CrossRef] [PubMed]
- Gomis, P.; Graftieaux, J.P.; Sercombe, R.; Hettler, D.; Scherpereel, B.; Rousseaux, P. Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2010, 112, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, A.M.; Mistry, E.A.; Ganesh Kumar, N.; Froehler, M.T.; Fusco, M.R.; Chitale, R.V. Corticosteroids in the management of hyponatremia, hypovolemia, and vasospasm in subarachnoid hemorrhage: A meta-analysis. Cerebrovasc. Dis. 2016, 42, 263–271. [Google Scholar] [CrossRef]
- Güresir, E.; Lampmann, T.; Bele, S.; Czabanka, M.; Czorlich, P.; Gempt, J.; Goldbrunner, R.; Hurth, H.; Hermann, E.; Jabbarli, R.; et al. Fight INflammation to Improve outcome after aneurysmal Subarachnoid HEmorRhage (FINISHER) trial: Study protocol for a randomized controlled trial. Int. J. Stroke, 2022; online ahead of print. [Google Scholar] [CrossRef]
- Vergouwen, M.D.I.; Vermeulen, M.; van Gijn, J.; Rinkel, G.J.E.; Wijdicks, E.F.; Muizelaar, J.P.; Mendelow, A.D.; Juvela, S.; Yonas, H.; Terbrugge, K.G.; et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: Proposal of a multidisciplinary research group. Stroke 2010, 41, 2391–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, B.A.; Turan, N.; Chau, M.; Pradilla, G. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res. Int. 2014, 2014, 384342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweingruber, N.; Fischer, H.J.; Fischer, L.; Van Den Brandt, J.; Karabinskaya, A.; Labi, V.; Villunger, A.; Kretzschmar, B.; Huppke, P.; Simons, M.; et al. Chemokine-mediated redirection of T cells constitutes a critical mechanism of glucocorticoid therapy in autoimmune CNS responses. Acta Neuropathol. 2014, 127, 713–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Manoel, A.L.; Loch Macdonald, R. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front. Neurol. 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Saand, A.R.; Yu, F.; Chen, J.; Chou, S.H.-Y. Systemic inflammation in hemorrhagic strokes—A novel neurological sign and therapeutic target? J. Cereb. Blood Flow Metab. 2019, 39, 959–988. [Google Scholar] [CrossRef]
- Mohney, N.; Williamson, C.A.; Rothman, E.; Ball, R.; Sheehan, K.M.; Pandey, A.S.; Fletcher, J.J.; Jacobs, T.L.; Thompson, B.G.; Rajajee, V. A Propensity Score Analysis of the Impact of Dexamethasone Use on Delayed Cerebral Ischemia and Poor Functional Outcomes After Subarachnoid Hemorrhage. World Neurosurg. 2018, 109, e655–e661. [Google Scholar] [CrossRef]
- Dhar, R.; Diringer, M.N. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurointensive Care 2008, 8, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Tam, A.K.H.; Ilodigwe, D.; Mocco, J.; Mayer, S.; Kassell, N.; Ruefenacht, D.; Schmiedek, P.; Weidauer, S.; Pasqualin, A.; MacDonald, R.L. Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: Exploratory analysis of CONSCIOUS-1 database. Neurointensive Care 2010, 13, 182–189. [Google Scholar] [CrossRef]
- Chang, S.I.; Tsai, M.D.; Yen, D.H.-T.; Hsieh, C.-T. The Clinical Predictors of Shunt-Dependent Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage. Turk. Neurosurg. 2018, 28, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohme, M.; Sauvigny, T.; Mader, M.M.D.; Schweingruber, N.; Maire, C.L.; Rünger, A.; Ricklefs, F.; Regelsberger, J.; Schmidt, N.O.; Westphal, M.; et al. Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Transl. Stroke Res. 2020, 11, 1348–1361. [Google Scholar] [CrossRef] [PubMed]
- Khey, K.M.W.; Huard, A.; Mahmoud, S.H. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell. Mol. Neurobiol. 2020, 40, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Saccaro, L.F.; Pico, F.; Chadenat, M.L.; Richard, O.; Launay, J.M.; Bastenaire, B.; Jullien, P.; Lambert, J.; Feuga, V.; Macquet, M.; et al. Platelet, Plasma, Urinary Tryptophan-Serotonin-Kynurenine Axis Markers in Hyperacute Brain Ischemia Patients: A Prospective Study. Front. Neurol. 2022, 12, 782317. [Google Scholar] [CrossRef]
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef]
- Busl, K.M. Healthcare-Associated Infections in the Neurocritical Care Unit. Curr. Neurol. Neurosci. Rep. 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, V.D.; Maki, D.G.; Salomao, R.; Álvarez-Moreno, C.; Mehta, Y.; Higuera, F.; Cuellar, L.E.; Arikan, Ö.A.; Abouqal, R.; Leblebicioglu, H. Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann. Intern. Med. 2006, 145, 582–591. [Google Scholar] [CrossRef]
- Dixon, W.G.; Suissa, S.; Hudson, M. The association between systemic glucocorticoid therapy and the risk of infection in patients with rheumatoid arthritis: Systematic review and meta- analyses. Arthritis Res. Ther. 2011, 13, R139. [Google Scholar] [CrossRef]
- Youssef, J.; Novosad, S.A.; Winthrop, K.L. Infection Risk and Safety of Corticosteroid Use. Rheum. Dis. Clin. N. Am. 2016, 42, 157–176. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall | No DMX | DMX Given | p-Value | |
---|---|---|---|---|---|
n = 484 | n = 251 | n = 233 | |||
Gender | 323 | 166 | 157 | 0.773 | |
(female) | 66.7% | 66.1% | 67.4% | ||
Age | 55.04 ± 13.51 | 56.45 ± 13.45 | 53.52 ± 13.45 | 0.058 | |
Range: 18–90 | Range: 18–90 | Range: 18–86 | |||
Height (cm) | 171.94 ± 12.57 | 172.35 ± 7.89 | 171.49 ± 16.25 | 0.546 | |
Weight (kg) | 77.01 ± 16.30 | 76.77 ± 17.20 | 77.27 ± 15.31 | 0.759 | |
GCS | 15 | 15 | 14 | 0.045 | |
Range, 3–15 | Range, 3–15 | Range, 3–15 | |||
Hunt and Hess | 1 | 102 (21.1%) | 60 (32.9%) | 42 (18.0%) | 0.004 |
2 | 139 (28.7%) | 82 (32.7%) | 57 (42.5%) | ||
3 | 83 (17.1%) | 39 (15.5%) | 44 (18.9%) | ||
4 | 61 (12.6%) | 26 (10.4%) | 35 (15.0%) | ||
5 | 99 (20.5%) | 44 (17.5%) | 55 (23.6%) | ||
Fisher | 1 | 17 (3.6%) | 13 (5.3%) | 4 (1.7%) | 0.016 |
2 | 47 (9.9%) | 22 (8.9%) | 25 (10.9%) | ||
3 | 83 (17.4%) | 54 (22.0%) | 29 (12.6%) | ||
4 | 329 (69.1%) | 157 (63.8%) | 172 (74.8%) | ||
Acute hydrocephalus | 312 (65.0%) | 156 (62.9%) | 156 (67.2%) | 0.339 | |
Intracerebral hemorrhage | 144 (30.5%) | 49 (19.5%) | 93 (39.9%) | <0.0001 | |
Treatment of aneurysms (endovascular) | 314 (69.93%) | 187 (80.3%) | 127 (58.8%) | <0.0001 | |
DCI | 180 (37.3%) | 85 (33.9%) | 95 (40.9%) | 0.111 | |
VP shunt | 65 (13.5%) | 24 (9.6%) | 41 (17.6%) | 0.011 |
Parameter | No DMX | DMX Given | p-Value | |
---|---|---|---|---|
WBC | At admission (n = 470) | 12.12 ± 4.18 | 13.31 ± 5.02 | 0.014 |
Range (5–25) | Range (3–29) | |||
d3 (n = 468) | 11.13 ± 3.89 | 15.18 ± 5.91 | <0.0001 | |
Range (1–25.4) | Range (5.6–40.6) | |||
d7 (n = 424) | 10.42 ± 3.38 | 13.6 ± 5.18 | <0.0001 | |
Range (2.1–27.1) | Range (1.6–31.7) | |||
d14 (n = 336) | 10.49 ± 4.14 | 15.74 ± 6.9 | <0.0001 | |
Range (2.1–29.8) | Range (4.8–34.9) | |||
Peak within 72 h (n = 468) | 14.81 ± 4.63 | 18.63 ± 5.89 | <0.0001 | |
Range (6–31) | Range (7–41) | |||
Persistent leukocytosis (n = 430) | 74 (17.2%) | 126 (29.3%) | <0.0001 | |
CRP | At admission (n = 465) | 10.68 ± 19.99 | 10.45 ± 13.91 | 0.883 |
Range (1.3–167) | Range (1.1–84) | |||
d3 (n = 468) | 72.235 ± 66.39 | 84.49 ± 75.54 | 0.083 | |
Range (5–295) | Range (5–359) | |||
d7 (n = 423) | 44.87 ± 51.33 | 40.75 ± 58.48 | 0.441 | |
Range (5–305) | Range (5–408) | |||
d14 (n = 337) | 32.84 ± 41.16 | 41.02 ± 50.80 | 0.279 | |
Range (5–229) | Range (5–258) | |||
Peak within 72 h (n = 468) | 82.73 ± 70.86 | 92.47 ± 74.18 | 0.147 | |
Range (5–355) | Range (0.22–359) |
No Dexamethasone | ||
---|---|---|
Parameter | Odds Ratio | p-Value |
(95% CI) | ||
Acute hydrocephalus | 2.332 | 0.018 |
(1.153–4.677) | ||
WBC d7 | 1.134 | 0.009 |
(1.032–1.246) | ||
Dexamethasone given | ||
Hunt and Hess | 1.485 | 0.002 |
(1.157–1.907) | ||
Treatment of aneurysms (endovascular) | 2.304 (1.169–4.545) | 0.016 |
No Dexamethasone | ||
---|---|---|
Parameter | Odds Ratio | p-Value |
(95% CI) | ||
WBC d7 | 1.139 | 0.036 |
(1.008–1.287) | ||
CRP peak within 72 h | 1.007 | 0.015 |
(1.001–1.013) | ||
Dexamethasone given | ||
Acute hydrocephalus | 3.818 | 0.008 |
(1.410–10.337) |
Parameter | Whole Cohort (n = 332) | No DMX (n = 162) | DMX Given (n = 170) | |||
---|---|---|---|---|---|---|
Odds Ratio | p-Value | Odds Ratio | p-Value | Odds Ratio | p-Value | |
(95% CI) | (95% CI) | (95% CI) | ||||
Age | 1.033 | <0.001 | 1.071 | <0.001 | 1.019 | 0.03 |
(1.019–1.084) | (1.044–1.099) | (1.002–1.036) | ||||
Hunt and Hess | 1.486 | <0.001 | 1.619 | <0.001 | 1.504 | <0.001 |
(1.295–1.706) | (1.329–1.971) | (1.258–1.798) | ||||
Acute hydrocephalus | 1.390 | 0.240 | 1.103 | 0.858 | 1.473 | 0.246 |
(0.802–2.407) | (0.376–3.235) | (0.766–2.831) | ||||
Shunt dependency | 1.099 | 0.616 | 1.417 | 0.273 | 0.892 | 0.636 |
(0.759–1.592) | (0.760–2.641) | (0.556–1.431) | ||||
WBC d3 | 1.068 | <0.001 | 1.005 | 0.91 | 1.053 | 0.003 |
(1.035–1.102) | (0.924–1.093) | (1.018–1.088) | ||||
Persistent leukocytosis | 0.656 | 0.048 | 0.640 | 0.228 | 0.739 | 0.259 |
(0.432–0.996) | (0.310–1.322) | (0.437–1.249) | ||||
CRP peak within 72 h | 1.004 | 0.001 | 1.002 | 0.262 | 1.004 | 0.024 |
(1.002–1.006) | (0.998–1.006) | (1.000–1.007) | ||||
DCI | 1.951 | <0.001 | 2.895 | <0.001 | 1.441 | 0.102 |
(1.386–2.746) | (1.638–5.116) | (0.930–2.232) | ||||
Treatment of aneurysms | 1.018 | 0.927 | 0.728 | 0.38 | 1.186 | 0.51 |
(endovascular) | (0.690–1.503) | (0.358–1.478) | (0.714–1.971) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piffko, A.; Ricklefs, F.L.; Schweingruber, N.; Sauvigny, T.; Mader, M.M.-D.; Mohme, M.; Dührsen, L.; Westphal, M.; Regelsberger, J.; Schmidt, N.O.; et al. Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage. J. Clin. Med. 2023, 12, 1006. https://doi.org/10.3390/jcm12031006
Piffko A, Ricklefs FL, Schweingruber N, Sauvigny T, Mader MM-D, Mohme M, Dührsen L, Westphal M, Regelsberger J, Schmidt NO, et al. Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage. Journal of Clinical Medicine. 2023; 12(3):1006. https://doi.org/10.3390/jcm12031006
Chicago/Turabian StylePiffko, Andras, Franz L. Ricklefs, Nils Schweingruber, Thomas Sauvigny, Marius Marc-Daniel Mader, Malte Mohme, Lasse Dührsen, Manfred Westphal, Jan Regelsberger, Nils Ole Schmidt, and et al. 2023. "Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage" Journal of Clinical Medicine 12, no. 3: 1006. https://doi.org/10.3390/jcm12031006
APA StylePiffko, A., Ricklefs, F. L., Schweingruber, N., Sauvigny, T., Mader, M. M. -D., Mohme, M., Dührsen, L., Westphal, M., Regelsberger, J., Schmidt, N. O., & Czorlich, P. (2023). Corticosteroid-Dependent Leukocytosis Masks the Predictive Potential of White Blood Cells for Delayed Cerebral Ischemia and Ventriculoperitoneal Shunt Dependency in Aneurysmatic Subarachnoid Hemorrhage. Journal of Clinical Medicine, 12(3), 1006. https://doi.org/10.3390/jcm12031006