Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Sociodemographic and Technology Use Variables
2.2.2. Problematic Internet Use and Psychometric Scales
2.2.3. Psychometric Tests Related to Psychological Factors
2.3. Statistical Analyses
3. Results
3.1. Sociodemographics, Internet Use by Device, and Activity in Europe and Outside Europe
3.2. Problematic Internet Use and Psychopathology in and Outside of Europe
3.3. Regression Analysis to Identify Predictors of Problematic Internet Use in and Outside of Europe
4. Discussion
4.1. Limitations
4.2. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Telecommunication Union. Measuring Digital Development: Facts and Figures 2021—Global and Regional ICT Data. Available online: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2021.pdf (accessed on 14 February 2021).
- Kuss, D.J.; Lopez-Fernandez, O. internet addiction and problematic internet use: A systematic review of clinical research. World J. Psychiatry 2016, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Pontes, H.M.; Macur, M. Problematic internet use profiles and psychosocial risk among adolescents. PLoS ONE 2021, 16, e0257329. [Google Scholar] [CrossRef] [PubMed]
- Gjoneska, B.; Potenza, M.N.; Jones, J.; Corazza, O.; Hall, N.; Sales, C.M.D.; Grünblatt, E.; Martinotti, G.; Burkauskas, J.; Werling, A.M.; et al. Problematic use of the internet during the COVID-19 pandemic: Good practices and mental health recommendations. Compr. Psychiatry 2022, 112, 152279. [Google Scholar] [CrossRef]
- van Rooij, A.J.; Prause, N. A critical review of “internet addiction” criteria with suggestions for the future. J. Behav. Addict. 2014, 3, 203–213. [Google Scholar] [CrossRef]
- Tran, B.X.; Ha, G.H.; Vu, G.T.; Hoang, C.L.; Nguyen, S.H.; Nguyen, C.T.; Latkin, C.A.; Tam, W.W.; Ho, C.S.H.; Ho, R.C.M. How have excessive electronics devices and internet uses been concerned? implications for global research agenda from a bibliometric analysis. J. Behav. Addict. 2020, 9, 469–482. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O. How has internet addiction research evolved since the advent of internet gaming disorder? an overview of cyberaddictions from a psychological perspective. Curr. Addict. Rep. 2015, 2, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Billieux, J.; Stein, D.J.; Castro-Calvo, J.; Higushi, S.; King, D.L. Rationale for and usefulness of the inclusion of gaming disorder in the ICD-11. World Psychiatry 2021, 20, 198–199. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- World Health Organization [WHO]. ICD-11 Beta Draft—Mortality and Morbidity Statistics. Mental, Behavioural or Neurodevelopmental Disorders. 2018. Available online: https://icd.who.int/dev11/l-m/en#/http://id.who.int/icd/entity/1448597234 (accessed on 14 February 2021).
- Billieux, J.; van Rooij, A.J.; Heeren, A.; Schimmenti, A.; Maurage, P.; Edman, J.; Blaszczynski, A.; Khazaal, Y.; Kardefelt-Winther, D. Behavioural Addiction Open Definition 2.0—Using the Open Science Framework for collaborative and transparent theoretical development. Addiction 2017, 112, 1723–1724. [Google Scholar] [CrossRef]
- Kuss, D.; Griffiths, M.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montag, C.; Schivinski, B.; Pontes, H.M. Is the proposed distinction of gaming disorder into a predominantly online vs. offline form meaningful? Empirical evidence from a large German speaking gamer sample. Addict. Behav. Rep. 2021, 14, 100391. [Google Scholar] [CrossRef]
- Pezoa-Jares, R.E. Internet addiction: A review. J. Addict. Res. Ther. 2012, 29, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Li, A.Y.L. Internet addiction prevalence and quality of (real) life: A meta-analysis of 31 nations across seven world regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meerkerk, G.J.; van den Eijnden, R.J.J.M.; Vermulst, A.A.; Garretsen, H.F.L. The Compulsive Internet Use Scale (CIUS): Some psychometric properties. Cyberpsychol. Behav. 2009, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.A. Cognitive-behavioral model of pathological internet use. Comput. Human. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Baggio, S.; Starcevic, V.; Studer, J.; Simon, O.; Gainsbury, S.M.; Gmel, G.; Billieux, J. Technology-mediated addictive behaviors constitute a spectrum of related yet distinct conditions: A network perspective. Psychol. Addict. Behav. 2018, 32, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Fernandez, O.; Männikkö, N.; Kääriäinen, M.; Griffiths, M.D.; Kuss, D.J. Mobile gaming and problematic smartphone use: A comparative study between Belgium and Finland. J. Behav. Addict. 2018, 7, 88–99. [Google Scholar] [CrossRef]
- Starcevic, V. Is internet addiction a useful concept? Aust. NZJ Psychiatry 2013, 47, 16–19. [Google Scholar] [CrossRef]
- Starcevic, V.; Billieux, J. Does the construct of internet addiction reflect a single entity or a spectrum of disorders? Clin. Neuropsychiatry 2017, 14, 5–10. [Google Scholar]
- Zajac, K.; Ginley, M.K.; Chang, R.; Petry, N.M. Treatments for internet gaming disorder and internet addiction: A systematic review. Psychol. Addict. Behav. 2017, 31, 979–994. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abus. 2010, 36, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Chatton, A.; Thorens, G.; Achab, S.; Nallet, A.; Broers, B.; Calzada, G.; Poznyak, V.; Zullino, D.; Khazaal, Y. Validation of the French version of the alcohol, smoking and substance involvement screening test (ASSIST) in the elderly. Subst. Abus. Treat. Prev. Policy 2012, 7, 14. [Google Scholar] [CrossRef]
- M’hiri, K.; Costanza, A.; Khazaal, Y.; Khan, R.; Zullino, D.; Achab, S. Problematic internet use in older adults, a critical review of the literature. J. Addict. Res. Ther. 2015, 6, 253. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Fernandez, O. Cross-cultural research on internet addiction: A systematic review. Int. Arch. Addict. Res. Med. 2015, 1, 1–5. [Google Scholar] [CrossRef]
- Durkee, T.; Kaess, M.; Carli, V.; Parzer, P.; Wasserman, C.; Floderus, B.; Apter, A.; Balazs, J.; Barzilay, S.; Bobes, J.; et al. Prevalence of pathological internet use among adolescents in Europe: Demographic and social factors. Addiction 2012, 107, 2210–2222. [Google Scholar] [CrossRef]
- Tsitsika, A.; Janikian, M.; Schoenmakers, T.M.; Tzavela, E.C.; Ólafsson, K.; Wójcik, S.; Macarie, G.F.; Tzavara, C.; Richardson, C. Internet addictive behavior in adolescence: A cross-sectional study in seven European countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Laconi, S.; Kaliszewska-Czeremska, K.; Gnisci, A.; Sergi, I.; Barke, A.; Jeromin, F.; Groth, J.; Gamez-Guadix, M.; Ozcan, N.K.; Demetrovics, Z.; et al. Cross-cultural study of problematic internet use in nine European countries. Comput. Hum. Behav. 2018, 84, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.K.; Lai, C.M.; Watanabe, H.; Kim, D.I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.C.M.; Aum, N.R.; Cheng, C. Epidemiology of internet behaviors and addiction among adolescents in six Asian countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef]
- Sariyska, R.; Reuter, M.; Bey, K.; Sha, P.; Li, M.; Chen, Y.F.; Liu, W.Y.; Zhu, Y.K.; Li, C.B.; Suárez-Rivillas, A.; et al. Self-esteem, personality and internet addiction: A cross-cultural comparison study. Pers. Individ. Differ. 2014, 61–62, 28–33. [Google Scholar] [CrossRef]
- Laconi, S.; Kalaitzaki, A.; Spritzer, D.T.; Hauck, S.; Gnisci, A.; Sergi, I.; Vally, Z.; Tudorel, O.; Vintila, M.; Malik, S.; et al. A Cross-cultural exploration of problematic internet use, pathological personality traits, defense mechanisms, coping strategies, and self-esteem in 14 countries. Ann. Med.-Psycho. 2022, in press. [Google Scholar] [CrossRef]
- Chen, L.; Nath, R. Understanding the underlying factors of internet addiction across cultures: A comparison study. Electron. Commer. Res. Appl. 2016, 17, 38–48. [Google Scholar] [CrossRef]
- Rochat, L.; Wilkosc-Debczynska, M.; Zajac-Lamparska, L.; Rothen, S.; Andryszak, P.; Gaspoz, J.; Colombo, L.; Khazaal, Y.; Achab, S. Internet use and problematic use in seniors: A comparative study in Switzerland and Poland. Front. Psychiatry 2021, 12, 609190. [Google Scholar] [CrossRef] [PubMed]
- Przepiórka, A.; Błachnio, A.; Sullman, M.; Gorbaniuk, O.; Siu, N.Y.F.; Hill, T.; Gras, M.E.; Kagialis, A.; Lisun, Y.; Díaz-Peñaloza, M.; et al. Facebook intrusion as a mediator between positive capital and general distress: A cross-cultural study. Front Psychiatry 2021, 12, 667536. [Google Scholar] [CrossRef] [PubMed]
- Evenden, J.L. Varieties of impulsivity. Psychopharmacology 1999, 146, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J. Problematic use of the internet and self-regulation: A review of the initial studies. Open Addict. J. 2012, 5, 24–29. [Google Scholar] [CrossRef]
- Şalvarlı, Ş.İ.; Griffiths, M.D. The association between internet gaming disorder and impulsivity: A systematic review of literature. Int. J. Ment. Health Addict. 2022, 20, 92–118. [Google Scholar] [CrossRef] [Green Version]
- Technological Use Disorders: European Cross-Cultural Longitudinal and Experimental Studies for Internet and Smartphone Problem Uses. Tech Use Disorders Project. FP7-PEOPLE-627999. Available online: https://cordis.europa.eu/project/id/627999 (accessed on 15 January 2023).
- Brislin, R.W. Back-Translation for cross-cultural research. J. Cross Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Kuss, D.J.; Romo, L.; Morvan, Y.; Kern, L.; Graziani, P.; Rousseau, A.; Rumpf, H.J.; Bischof, A.; Gässler, A.K.; et al. Self-reported dependence on mobile phones in young adults: A European cross-cultural empirical survey. J. Behav. Addict. 2017, 6, 168–177. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Kuss, D.J.; Pontes, H.M.; Griffiths, M.D.; Dawes, C.; Justice, L.V.; Männikkö, N.; Kääriäinen, M.; Rumpf, H.J.; Bischof, A.; et al. Measurement invariance of the short version of the Problematic Mobile Phone Use Questionnaire (PMPUQ-SV) across eight languages. Int. J. Environ. Res. Public Health 2018, 15, 1213. [Google Scholar] [CrossRef] [Green Version]
- Besser, B.; Rumpf, H.J.; Bischof, A.; Meerkerk, G.J.; Higuchi, S.; Bischof, G. Internet-related disorders: Development of the Short Compulsive Internet Use Scale. Cyberpsychol. Behav. Soc. Netw. 2017, 20, 709–717. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Jess Williams, A.; Kuss, D.J. Measuring female gaming: Gamer profile, predictors, prevalence, and characteristics from psychological and gender perspectives. Front. Psychol. 2019, 10, 898. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Griffiths, M.D.; Kuss, D.J.; Dawes, C.; Pontes, H.M.; Justice, L.; Rumpf, H.J.; Bischof, A.; Gässler, A.K.; Suryani, E.; et al. Cross-cultural validation of the Compulsive Internet Use Scale in four forms and eight languages. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 451–464. [Google Scholar] [CrossRef]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression Anxiety Stress Scales; Psychology Foundation of Australia: Sydney, Australia, 1995; Volume 56. [Google Scholar]
- Antony, M.M.; Cox, B.J.; Enns, M.W.; Bieling, P.J.; Swinson, R.P. Psychometric properties of the 42-Item and 21-Item versions of the Depression Anxiety Stress Scales in clinical groups and a community sample. Psychol. Assess 1998, 10, 176–181. [Google Scholar] [CrossRef]
- Billieux, J.; Rochat, L.; Ceschi, G.; Carré, A.; Offerlin-Meyer, I.; Defeldre, A.C.; Khazaal, Y.; Besche-Richard, C.; van der Linden, M. Validation of a Short French Version of the UPPS-P Impulsive Behavior Scale. Compr. Psychiatry 2012, 53, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Laor, T. My Social Network: Group differences in frequency of use, active use, and interactive use on Facebook, Instagram and Twitter. Technol. Soc. 2022, 68, 101922. [Google Scholar] [CrossRef]
- Deleuze, J.; Christiaens, M.; Nuyens, F.; Billieux, J. Shoot at first sight! First person shooter players display reduced reaction time and compromised inhibitory control in comparison to other video game players. Comput. Hum. Behav. 2017, 72, 570–576. [Google Scholar] [CrossRef] [Green Version]
- Derevensky, J.L. Behavioral addictions: Some developmental considerations. Curr. Addict. Rep. 2019, 6, 313–322. [Google Scholar] [CrossRef]
- Shek, D.T.L.; Keung Ma, H.; Sun, R.C.F. A brief overview of adolescent developmental problems in Hong Kong. Sci. World J. 2011, 11, 2243–2256. [Google Scholar] [CrossRef] [PubMed]
- Koronczai, B.; Urbán, R.; Kökönyei, G.; Paksi, B.; Papp, K.; Kun, B.; Arnold, P.; Kállai, J.; Demetrovics, Z. Confirmation of the three-factor model of problematic internet use on off-line adolescent and adult samples. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 657–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Kristensen, A.M.; Lopez-Fernandez, O. Internet addictions outside of Europe: A systematic literature review. Comput. Hum. Behav. 2021, 115, 106621. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Kuss, D.J. Preventing harmful internet use-related addiction problems in Europe: A literature review and policy options. Int. J. Environ. Res. Public Health 2020, 17, 3797. [Google Scholar] [CrossRef]
- Müller, K.W.; Janikian, M.; Dreier, M.; Wölfling, K.; Beutel, M.E.; Tzavara, C.; Richardson, C.; Tsitsika, A. Regular gaming behavior and internet gaming disorder in European adolescents: Results from a cross-national representative survey of prevalence, predictors, and psychopathological correlates. Eur. Child Adolesc. Psychiatry 2015, 24, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Király, O.; Bothe, B.; Ramos-Diaz, J.; Rahimi-Movaghar, A.; Lukavska, K.; Hrabec, O.; Miovsky, M.; Billieux, J.; Deleuze, J.; Nuyens, F.; et al. Ten-item Internet Gaming Disorder Test (IGDT-10): Measurement Invariance and cross-cultural validation across seven language-based samples. Psychol. Addict. Behav. 2019, 33, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.; Lopez Fernandez, O.; Throuvala, M.; Pontes, H.; Kuss, D. Excessive and Problematic Use of Social Media in Adolescence: A Brief Overview, Technical Report; Nottingham Trent University: Nottingham, UK, 2018. Available online: http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/science-and-technology-committee/social-media-and-mental-health/written/81105.pdf(accessed on 10 November 2022).
- Montag, C.; Bey, K.; Sha, P.; Li, M.; Chen, Y.F.; Liu, W.Y.; Zhu, Y.K.; Li, C.B.; Markett, S.; Keiper, J. Is it meaningful to distinguish between generalized and specific internet addiction? Evidence from a cross-cultural study from Germany, Sweden, Taiwan and China. Asia-Pac. Psychiatry 2015, 7, 20–26. [Google Scholar] [CrossRef]
- Philippe, G.; Courvoisier, D.S.; Billieux, J.; Rochat, L.; Schmidt, R.E.; Linden, M. van der. Can the distinction between intentional and unintentional interference control help differentiate varieties of impulsivity? J. Res. Pers. 2010, 44, 46–52. [Google Scholar] [CrossRef]
- Rebetez, M.M.L.; Rochat, L.; Barsics, C.; van der Linden, M. Procrastination as a self-regulation failure: The role of impulsivity and intrusive thoughts. Psychol. Rep. 2018, 121, 26–41. [Google Scholar] [CrossRef]
- Billieux, J.; Heeren, A.; Rochat, L.; Maurage, P.; Bayard, S.; Bet, R.; Besche-Richard, C.; Challet-Bouju, G.; Carré, A.; Devos, G.; et al. Positive and negative urgency as a single coherent construct: Evidence from a large-scale network analysis in clinical and non-clinical samples. J. Pers. 2021, 2021 89, 1252–1262. [Google Scholar] [CrossRef]
- García-Manglano, J.; López-Madrigal, C.; Sádaba-Chalezquer, C.; Serrano, C.; Lopez-Fernandez, O. Difficulties in establishing “truth” conditions in the assessment of addictive smartphone use in young adults. Int. J. Environ. Res. Public Health 2022, 19, 358. [Google Scholar] [CrossRef]
- Baloğlu, M.; Şahin, R.; Arpaci, I. A review of recent research in problematic internet use: Gender and cultural differences. Curr. Opin. Psychol. 2020, 36, 124–129. [Google Scholar] [CrossRef]
Overall Sample | Germany | Belgium | Spain | Finland | France | Hungary | Italy | |
---|---|---|---|---|---|---|---|---|
N | 5130 | 490 | 586 | 194 | 602 | 457 | 335 | 380 |
Women (n (%)) | 3527(69) | 3236(5.9) | 427 (74.8) | 157(80.9) | 398(66.1) | 375(82.1) | 220(65.7) | 261(68.7) |
Age (years; M (SD)) | 24.71(8.70) | 25.38(7.06) | 26.93(11.88) | 25.7(9.07) | 27.98(8.65) | 25.08(10.24) | 27.8(9.13) | 28.49(9.83) |
Occupation Status—Student (n (%)) | 3565(69.5) | 356(79.5) | 387(71.8) | 115(68) | 457(85.1) | 319(78.6) | 165(50.3) | 186(53.6) |
Civil Status—Single (n (%)) | 2381(55.2) | 210(46.9) | 314(58.3) | 89(52.7) | 170(31.7) | 252(62.1) | 141(43) | 229(66) |
Education Status—Secondary Ed. (n (%)) | 440(85.1) | 249(55.6) | 245(45.5) | 46(27.2) | 252(46.9) | 74(18.2) | 104(31.7) | 150(43.2) |
Norway | Poland | UK | Switzerland | Canada | US | Indonesia | Peru | |
N | 68 | 277 | 98 | 142 | 227 | 356 | 723 | 195 |
Women (n (%)) | 50(73.5) | 201(72.6) | 75(76.5) | 92(64.8) | 156(68.7) | 197(55.3) | 474(65.6) | 121(62.1) |
Age (years; M (SD)) | 30.69(11.16) | 25.17(6.9) | 24.84(9.91) | 25.39(6.88) | 21.8(3.02) | 18.89(1.67) | 19.28(1.21) | 22.66(7.28) |
Occupation Status—Student (n (%)) | 39(67.2) | 170(64.2) | 66(80.5) | 101(84.3) | 221(97.36) | 348(97.8) | 720(99.9) | 130(86.7) |
Civil Status—Single (n (%)) | 24(41.4) | 116(43.8) | 54(65.9) | 80(66.1) | 111(49.3) | 318(89.3) | 611(84.7) | 112(74.7) |
Education Status—Secondary Ed. (n (%)) | 12(20.7) | 153(57.7) | 42(51.2) | 50(41.3) | 222(98.2) | 146(41) | 542(75.2) | 43(28.7) |
Overall | Germany | Belgium | Spain | Finland | France | Hungary | Italy | |
---|---|---|---|---|---|---|---|---|
N | 5130 | 490 | 586 | 194 | 602 | 457 | 335 | 380 |
Computer owner (n (%)) | 4643(90.5) | 441(98.4) | 524(97.2) | 164(97) | 533(99.3) | 395(97.3) | 316(96.3) | 331(95.4) |
Mean (min/day) on computer (M (SD)) | 129.23(173.64) | 173.46(173.17) | 185.05(188.18) | 111.95(257.16) | 158.79(176.34) | 185.81(173.46) | 209.31(187.27) | 89.7(114.36) |
Emailing (n (%)) | 4115(80.2) | 395(80.6) | 484(82.6) | 144(74.2) | 485(80.6) | 359(78.6) | 296(88.4) | 272(71.6) |
Video streaming (n (%)) | 3403(66.3) | 321(65.5) | 399(68.1) | 87(44.8) | 379(63) | 297(65) | 221(66) | 196(51.6) |
Gaming FPS (n (%)) | 370(7.2) | 51(10.4) | 21(3.6) | 2(1) | 67(11.1) | 23(5) | 14(4.2) | 10(2.6) |
Gaming MOBA (n (%)) | 315(6.1) | 36(7.3) | 21(3.6) | 2(1) | 38(6.3) | 25(5.5) | 22(6.6) | 6(1.6) |
Gaming MMORPG (n (%)) | 292(5.7) | 34(6.9) | 34(5.8) | 2(1) | 47(7.8) | 28(6.1) | 24(7.2) | 11(2.9) |
Buying (n (%)) | 1825(35.6) | 254(51.8) | 195(33.3) | 34(17.5) | 210(34.9) | 204(44.6) | 112(33.4) | 125(32.9) |
Facebook (n (%)) | 3436(67) | 299(61) | 441(75.3) | 137(70.6) | 424(70.4) | 296(64.8) | 271(80.9) | 249(65.5) |
Instagram (n (%)) | 888(17.3) | 21(4.3) | 44(7.5) | 46(23.7) | 71(11.8) | 40(8.8) | 30(9) | 53(13.9) |
Norway | Poland | UK | Switzerland | Canada | US | Indonesia | Peru | |
N | 68 | 277 | 98 | 142 | 227 | 356 | 723 | 195 |
Computer owner (n (%)) | 58(100) | 260(98.1) | 81(98.8) | 119(98.3) | 221(99.5) | 348(98) | 714(99) | 138(92) |
Mean (min/day) on computer (M (SD)) | 130.64(119.45) | 188.73(230.91) | 230.62(248.67) | 159.51(141.7) | 105.27(90.45) | 174.83(168.43) | 191.87(209.78) | 189.55(170.89) |
Emailing (n (%)) | 53(77.9) | 249(89.9) | 69(70.4) | 112(78.9) | 212(93.4) | 292(82) | 575(79.5) | 118(60.5) |
Video streaming (n (%)) | 40(58.8) | 175(63.2) | 60(61.2) | 99(69.7) | 178(78.4) | 281(78.9) | 583(80.6) | 87(44.6) |
Gaming FPS (n (%)) | 1(1.5) | 23(8.3) | 9(9.2) | 7(4.9) | 9(4) | 48(13.5) | 75(10.4) | 10(5.1) |
Gaming MOBA (n (%)) | 0 | 13(4.7) | 3(3.1) | 7(4.9) | 8(3.5) | 33(9.3) | 89(12.3) | 12(6.2) |
Gaming MMORPG (n (%)) | 4(5.9) | 6(2.2) | 5(5.1) | 6(4.2) | 1(0.4) | 23(6.5) | 58(8) | 9(4.6) |
Buying (n (%)) | 27(39.7) | 115(41.5) | 51(52) | 53(37.3) | 96(42.3) | 186(52.2) | 137(18.9) | 26(13.3) |
Facebook (n (%)) | 51(75) | 227(81.9) | 66(67.3) | 72(50.7) | 211(93) | 245(68.8) | 320(44.3) | 127(65.1) |
Instagram (n (%)) | 16(23.5) | 27(9.7) | 66(67.3) | 9(6.3) | 50(22) | 161(45.2) | 269(37.2) | 33(16.9) |
Germany | Belgium | Spain | Finland | France | Hungary | Italy | Norway | Poland | UK | Switzerland | Canada | US | Indonesia | Peru | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CIUS-5 Original M (SD), α, Fr | 5.37(3.73) 0.77, 2.1 | 7.00(4.14) 0.74, 5.4 | 4.14(3.54) 0.71, 2.1 | 4.98(3.62) 0.75, 1.1 | 6.71(4.20) 0.72, 5.4 | 5.67(3.99) 0.77, 3.2 | 4.62(3.34) 0.66, 0.7 | 5.74(3.42) 0.71, 2.3 | 5.74(3.51) 0.71, 1.6 | 6.49(4.97) 0.84, 10.1 | 6.82(4.13) 0.69, 6.9 | 5.38(3.98) 0.78, 2.9 | 8.01(4.67) 0.78, 10.4 | 7.66(4.15) 0.73, 7.6 | 8.04(4.05) 0.65, 6.3 |
CIUS-5 Gaming M (SD), α, Fr | 1.91(3.41) 0.77, 0.8 | 2.09(3.61) 0.74, 0.9 | 0.63(1.61) 0.71, 0 | 2.29(3.68) 0.75, 1.6 | 2.22(3.77) 0.72, 1.0 | 2.02(3.72) 0.76, 1.3 | 1.55(3.01) 0.66, 0.7 | 1.30(2.74) 0.71, 0 | 1.13(2.68) 0.71, 0.4 | 2.83(4.38) 0.84, 1.4 | 2.48(4.08) 0.69, 1.1 | 1.15(2.74) 0.77, 0.5 | 3.81(4.81) 0.78, 4.0 | 4.59(4.96) 0.73, 4.7 | 2.05(3.58) 0.64, 1.0 |
CIUS-5 Gambling M (SD), α, Fr | 0.06(0.44) 0.86, 0 | .09(.64) 0.84, 0 | 0.17(0.78) 0.63, 0 | 0.27(1.08) 0.87, 0 | 0.14(0.98) 0.84, 0 | 0.29(1.31) 0.88, 0 | 0.28(1.05) 0.83, 0 | 0.07(0.34) 0.86, 0 | 0.17(0.79) 0.87, 0 | 0.55(1.87) 0.90, 0 | 0.38(1.68) 0.89, 0 | .10(.57) 0.86, 0 | 0.93(2.42) 0.89, 0 | 1.05(2.69) 0.87, 0.4 | 0.81(2.41) 0.83, 1.0 |
CIUS-5 Social networking M (SD), α, Fr | 3.60(3.66) 0.80, 1.0 | 6.02(4.67) 0.81, 5.6 | 5.05(4.09) 0.77, 2.8 | 3.31(3.38) 0.79, 0 | 4.57(4.60) 0.82, 3.8 | 4.50(4.07) 0.80, 2.2 | 4.50(3.88) 0.75, 2.2 | 5.12(3.75) 0.77, 0 | 4.74(3.89) 0.77, 0.4 | 6.42(4.59) 0.82, 7.2 | 4.21(4.45) 0.83, 3.4 | 5.32(3.99) 0.77, 1.5 | 7.98(4.85) 0.79, 11.0 | 8.26(4.60) 0.76, 10.8 | 7.99(4.48) 0.75, 9.4 |
CIUS-5 Sex M (SD), α, Fr | 0.45(1.57) 0.76, 0 | .46(1.60) 0.75, 0 | 0.35(1.54) 0.78, 0 | 0.44(1.39) 0.69, 0 | 0.57(1.79) 0.71, 0.3 | 0.46(1.67) 0.82, 0.3 | 0.39(1.29) 0.70, 0 | 0.46(1.44) 0.80, 0 | 0.30(1.28) 0.78, 0 | 0.62(2.01) 0.77, 0 | 1.06(2.77) 0.86, 1.1 | 0.31(1.34) 0.82, 0 | 1.36(3.08) 0.85, 1.1 | 0.93(2.38) 0.79, 0.1 | 0.67(1.61) 0.62, 0 |
CIUS-5 Shopping M (SD), α, Fr | 1.68(2.17) 0.68, 0.3 | 1.40(2.31) 0.70, 0.2 | 0.91(1.81) 0.67, 0 | 0.90(1.73) 0.68, 0 | 2.13(2.75) 0.69, 0 | 0.87(1.92) 0.72, 0 | 1.36(2.05) 0.63, 0 | 1.51(2.21) 0.69, 0 | 1.41(1.97) 0.64, 0 | 3.26(3.77) 0.82, 1.4 | 1.75(3.05) 0.78, 1.1 | 1.83(2.82) 0.78, 0 | 4.84(4.24) 0.80, 3.1 | 3.06(3.87) 0.84, 1.8 | 0.95(2.02) 0.72, 0 |
DASS-21 Stress M (SD), α | 4.84(3.66) 0.83 | 6.43(4.56) 0.85 | 6.25(4.74) 0.86 | 4.92(3.68) 0.83 | 6.57(4.95) 0.84 | 5.91(4.20) 0.85 | 6.47(4.54) 0.86 | 4.68(4.14) 0.85 | 5.79(4.25) 0.84 | 5.17(4.71) 0.89 | 5.61(4.70) 0.85 | 5.08(4.50) 0.99 | 5.29(4.45) 0.85 | 5.90(4.13) 0.85 | 7.42(4.32) 0.85 |
DASS-21 Anxiety M (SD), α | 2.47(2.78) 0.74 | 4.08(3.88) 0.79 | 3.44(3.92) 0.85 | 2.93(3.11) 0.78 | 4.12(4.11) 0.79 | 3.34(3.35) 0.80 | 4.64(3.96) 0.80 | 2.23(2.71) 0.70 | 3.25(3.68) 0.82 | 3.34(3.82) 0.83 | 3.29(3.84) 0.78 | 2.85(3.86) 0.99 | 4.15(4.20) 0.83 | 6.03(4.09) 0.82 | 4.78(4.25) 0.81 |
DASS-21 Depression M (SD), α | 3.73(3.93) 0.90 | 4.29(4.41) 0.88 | 4.08(5.13) 0.94 | 4.24(4.23) 0.90 | 4.95(5.32) 0.91 | 4.98(4.47) 0.90 | 5.05(4.57) 0.89 | 3.95(4.26) 0.88 | 4.47(4.48) 0.89 | 4.02(4.65) 0.92 | 3.99(5.12) 0.93 | 2.86(4.01) 0.99 | 3.93(4.57) 0.90 | 4.72(4.29) 0.88 | 6.19(5.41) 0.91 |
S-UPPS-P Negative urgency M (SD), α | 8.56(2.39) 0.76 | 8.87(2.67) 0.84 | 9.23(2.87) 0.84 | 8.90(2.79) 0.83 | 8.96(2.80) 0.82 | 8.95(2.92) 0.83 | 10.06(2.87) 0.85 | 7.71(2.78) 0.88 | 9.29(2.99) 0.80 | 9.78(2.75) 0.85 | 8.64(2.71) 0.85 | 7.75(2.65) 0.86 | 9.87(3.03) 0.83 | 10.14(2.67) 0.80 | 9.50(2.35) 0.70 |
S-UPPS-P Positive urgency M (SD), α | 9.22(2.20) 0.69 | 10.39(2.50) 0.77 | 9.22(2.37) 0.69 | 9.26(2.34) 0.72 | 10.65(2.57) 0.76 | 9.82(2.63) 0.74 | 8.79(2.74) 0.86 | 8.67(2.30) 0.65 | 10.23(2.61) 0.67 | 9.97(2.33) 0.76 | 9.76(2.52) 0.77 | 9.56(2.64) 0.80 | 10.67(2.52) 0.72 | 11.14(2.27) 0.73 | 9.82(2.30) 0.59 |
S-UPPS-P Lack of premeditation M (SD), α | 6.88(2.12) 0.81 | 7.27(2.27) 0.85 | 7.07(2.19) 0.72 | 7.74(2.14) 0.71 | 7.15(2.19) 0.80 | 6.83(2.19) 0.82 | 6.51(2.12) 0.80 | 6.83(2.40) 0.81 | 6.37(2.20) 0.82 | 7.00(2.19) 0.78 | 6.37(2.24) 0.84 | 5.97(2.31) 0.67 | 7.08(2.40) 0.79 | 7.38(1.96) 0.75 | 7.25(2.38) 0.83 |
S-UPPS-P Lack of perseverance M (SD), α | 6.65(2.26) 0.86 | 7.07(2.43) 0.90 | 6.49(2.43) 0.86 | 6.83(2.14) 0.81 | 7.05(2.59) 0.89 | 7.00(2.18) 0.70 | 6.54(2.05) 0.84 | 6.48(2.20) 0.85 | 10.60(3.06) 0.80 | 10.64(2.28) 0.82 | 9.84(2.81) 0.86 | 9.66(2.97) 0.91 | 11.96(2.55) 0.80 | 11.47(2.26) 0.71 | 10.90(3.03) 0.76 |
S-UPPS-P Sensation seeking M (SD), α | 9.00(2.64) 0.83 | 9.55(2.77) 0.85 | 8.83(2.60) 0.79 | 9.65(2.45) 0.75 | 9.95(2.95) 0.87 | 10.00(2.88) 0.81 | 9.28(2.85) 0.84 | 9.83(2.95) 0.85 | 7.32(2.42) 0.82 | 7.27(2.16) 0.78 | 6.65(2.23) 0.84 | 6.02(2.15) 0.89 | 7.24(2.46) 0.79 | 7.21(1.95) 0.75 | 6.95(2.15) 0.83 |
A | r | ||||||
---|---|---|---|---|---|---|---|
Scales and Dimensions | 1 | 2 | 3 | 4 | 5 | 6 | |
1. CIUS-5 Internet | 0.75 | - | |||||
2. CIUS-5 Gaming | 0.87 | 0.38 *** | - | ||||
3. CIUS-5 Gambling | 0.83 | 0.20 *** | 0.35 *** | - | |||
4. CIUS-5 Social networking | 0.81 | 0.64 *** | 0.20 *** | 0.24 *** | - | ||
5. CIUS-5 Online sex | 0.79 | 0.23 *** | 0.34 *** | 0.48 *** | 0.19 *** | - | |
6. CIUS-5 Shopping | 0.79 | 0.41 *** | 0.21 *** | 0.38 *** | 0.44 *** | 0.26 *** | - |
7. DASS-21 Stress | 0.98 | 0.29 *** | 0.11 *** | 0.14 *** | 0.28 *** | 0.12 *** | 0.15 *** |
8. DASS-21 Anxiety | 0.98 | 0.31 *** | 0.21 *** | 0.22 *** | 0.31 *** | 0.17 *** | 0.21 *** |
9. DASS-21 Depression | 0.99 | 0.31 *** | 0.19 *** | 0.16 *** | 0.22 *** | 0.16 *** | 0.15 *** |
11. S-UPPS-P Negative Urgency | 0.83 | 0.24 *** | 0.11 *** | 0.12 *** | 0.29 *** | 0.08 *** | 0.19 *** |
12. S-UPPS-P Positive Urgency | 0.74 | 0.28 *** | 0.16 *** | 0.10 *** | 0.30 *** | 0.10 *** | 0.19 *** |
13. S-UPPS-P Lack of Premeditation | 0.81 | 0.10 *** | 0.06 *** | 0.09 *** | 0.11** | 0.08 *** | 0.08 *** |
14. S-UPPS-P Lack of Perseverance | 0.82 | 0.27 *** | 0.17 *** | 0.10 *** | 0.19 *** | 0.11 *** | 0.11 *** |
15. S-UPPS-P Sensation Seeking | 0.83 | 0.11 *** | 0.12 *** | 0.09 *** | 0.16 *** | 0.07 *** | 0.12 *** |
CIUS-5 Predictor | Overall | Germany | Belgium | Spain | Finland | France | Hungary | Italy |
---|---|---|---|---|---|---|---|---|
Gaming | 0.21 *** | 0.17 *** | 0.16 *** | −0.01 | 0.39 *** | 0.18 ** | 0.20 *** | 0.22 *** |
Gambling | −0.08 *** | 0.03 | −0.00 | −0.14 | −0.09 | −0.14 * | −0.03 | −0.01 |
Social networking | 0.48 *** | 0.40 *** | 0.51 *** | 0.46 *** | 0.45 ** | 0.42 *** | 0.48 *** | 0.63 *** |
Online sex | 0.03 * | 0.12 ** | −0.04 | 0.14 | 0.01 | 0.14 * | 0.08 | −0.03 |
Shopping | 0.11 *** | 0.16 *** | 0.05 | 0.14 | 0.05 | 0.03 | 0.07 | 0.05 |
Stress | 0.01 | −0.06 | −0.13 * | 0.07 | −0.00 | 0.15 | 0.07 | −0.16 |
Anxiety | −0.03 | 0.31 | 0.03 | −0.07 | −0.00 | −0.06 | −0.02 | 0.05 |
Depression | 0.13 *** | 0.13 * | 0.79 ** | 0.08 | 0.17 ** | 0.08 | 0.12 | 0.17 * |
Negative urgency | −0.21 | −0.03 | 0.04 | 0.10 | −0.00 | −0.07 | 0.06 | 0.05 |
Positive urgency | 0.08 *** | 0.14 * | 0.08 | −0.02 | −0.02 | −0.01 | −0.12 * | 0.00 |
Lack of premeditation | −0.06 *** | −0.08 | −0.10 * | −0.18 | −0.07 | −0.07 | 0.07 | −0.03 |
Lack of perseverance | 0.14 *** | 0.26 *** | 0.19 *** | 0.19 * | 0.18 *** | 0.14 * | 0.05 | −0.01 |
Sensation seeking | −0.01 | −1.80 | 0.11 ** | 0.00 | 0.00 | 0.03 | −0.01 | −0.04 |
R2 adjusted | 0.49 | 0.44 | 0.48 | 0.40 | 0.52 | 0.31 | 0.41 | 0.47 |
D–W | 1.26 | 1.82 | 1.39 | 1.49 | 1.44 | 1.09 | 1.51 | 1.35 |
F | 265.02 *** | 21.98 *** | 29.07 *** | 7.44 *** | 34.34 *** | 10.18 *** | 16.16 *** | 16.09 *** |
Tmin | 0.41 | 0.45 | 0.45 | 0.55 | 0.42 | 0.70 | 0.53 | 0.39 |
VIF max | 2.42 | 2.21 | 2.71 | 1.81 | 2.40 | 1.44 | 1.88 | 2.54 |
CIUS-5 Predictors | Norway | Poland | UK | Switzerland | Canada | US | Indonesia | Peru |
Gaming | 0.33 * | 0.28 *** | 0.22 ** | 0.18 | 0.25 *** | 0.20 *** | 0.23 *** | 0.08 |
Gambling | 0.09 | −0.08 | 0.01 | −0.04 | −0.06 | −0.12 * | −0.04 | −0.04 |
Social networking | 0.67 *** | 0.60 *** | 0.70 *** | 0.46 ** | 0.48 *** | 0.46 *** | 0.44 *** | 0.50 *** |
Cybersex | −0.22 | −0.02 | −0.16 | 0.10 | 0.15 ** | −0.02 | 0.04 | 0.02 |
Shopping | −0.06 | 0.06 | 0.18 * | 0.20 | 0.18 ** | 0.18 *** | 0.12 ** | 0.13 |
Stress | 0.18 | 0.05 | −0.32 | 0.04 | 0.03 | 0.07 | 0.01 | −0.17 |
Anxiety | 0.12 | −0.03 | 0.27 | −0.11 | −0.07 | 0.04 | 0.01 | 0.10 |
Depression | −0.16 | 0.12 | 0.01 | 0.14 | 0.07 | 0.05 | 0.07 | 0.27 |
Negative urgency | 0.09 | 0.02 | −0.04 | −0.09 | −0.22 ** | 0.05 | 0.07 | −0.03 |
Positive urgency | −0.01 | 0.12 * | 0.32 ** | −0.00 | 0.15 * | 0.06 | 0.05 | 0.29 * |
Lack of premeditation | −0.26 | −0.03 | −0.12 | 0.10 | 0.07 | −0.03 | −0.10 ** | 0.01 |
Lack of perseverance | 0.14 | 0.03 | −0.03 | 0.25 | 0.17 ** | 0.10 | 0.09 * | 0.12 |
Sensation seeking | 0.06 | −0.02 | −0.09 | 0.06 | 0.03 | −0.12 * | −0.00 | −0.03 |
R2 adjusted | 0.63 | 0.61 | 0.77 | 0.26 | 0.57 | 0.52 | 0.43 | 0.43 |
D–W | 1.95 | 1.58 | 1.61 | 1.29 | 1.56 | 1.34 | 1.33 | 1.23 |
F | 5.96 *** | 27.72 *** | 15.16 *** | 0.286 *** | 20.11 *** | 24.78 *** | 38.30 *** | 4.84 *** |
T min | 0.37 | 0.58 | 0.35 | 0.68 | 0.48 | 0.64 | 0.59 | 0.49 |
VIF max | 2.69 | 1.72 | 2.85 | 1.67 | 2.09 | 1.93 | 1.75 | 2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Fernandez, O.; Romo, L.; Kern, L.; Rousseau, A.; Lelonek-Kuleta, B.; Chwaszcz, J.; Männikkö, N.; Rumpf, H.-J.; Bischof, A.; Király, O.; et al. Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries. J. Clin. Med. 2023, 12, 1027. https://doi.org/10.3390/jcm12031027
Lopez-Fernandez O, Romo L, Kern L, Rousseau A, Lelonek-Kuleta B, Chwaszcz J, Männikkö N, Rumpf H-J, Bischof A, Király O, et al. Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries. Journal of Clinical Medicine. 2023; 12(3):1027. https://doi.org/10.3390/jcm12031027
Chicago/Turabian StyleLopez-Fernandez, Olatz, Lucia Romo, Laurence Kern, Amélie Rousseau, Bernadeta Lelonek-Kuleta, Joanna Chwaszcz, Niko Männikkö, Hans-Jürgen Rumpf, Anja Bischof, Orsolya Király, and et al. 2023. "Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries" Journal of Clinical Medicine 12, no. 3: 1027. https://doi.org/10.3390/jcm12031027
APA StyleLopez-Fernandez, O., Romo, L., Kern, L., Rousseau, A., Lelonek-Kuleta, B., Chwaszcz, J., Männikkö, N., Rumpf, H. -J., Bischof, A., Király, O., Gässler, A. -K., Graziani, P., Kääriäinen, M., Landrø, N. I., Zacarés, J. J., Chóliz, M., Dufour, M., Rochat, L., Zullino, D., ... Kuss, D. J. (2023). Problematic Internet Use among Adults: A Cross-Cultural Study in 15 Countries. Journal of Clinical Medicine, 12(3), 1027. https://doi.org/10.3390/jcm12031027