Longitudinal D-Dimer Trajectories and the Risk of Mortality in Abdominal Trauma Patients: A Group-Based Trajectory Modeling Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Group Characteristics
3.2.1. D-Dimer Trajectory Characteristics
3.2.2. Clinical Characteristics
3.3. Association of D-Dimer Trajectories and In-Hospital All-Cause Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- World Health Organization. Injuries and Violence: The Facts. 19 March 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence (accessed on 20 March 2022).
- Bège, T.; Pauly, V.; Orleans, V.; Boyer, L.; Leone, M. Epidemiology of trauma in France: Mortality and risk factors based on a national medico-administrative database. Anaesth. Crit. Care Pain Med. 2019, 38, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, J.R.; Kay, A.B.; Moore, E.E.; Moore, H.B.; Gonzalez, E.; Majercik, S.; Cohen, M.J.; White, T.; Pieracci, F.M. It’s sooner than you think: Blunt solid organ injury patients are already hypercoagulable upon hospital admission-Results of a bi-institutional, prospective study. Am. J. Surg. 2019, 218, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Yorkgitis, B.K.; Berndtson, A.E.; Cross, A.; Kennedy, R.; Kochuba, M.P.; Tignanelli, C.; Tominaga, G.T.; Jacobs, D.G.; Marx, W.H.; Ashley, D.W.; et al. American Association for the Surgery of Trauma/American College of Surgeons-Committee on Trauma Clinical Protocol for inpatient venous thromboembolism prophylaxis after trauma. J. Trauma Acute Care Surg. 2022, 92, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Ley, E.J.; Brown, C.V.; Moore, E.E.; Sava, J.A.; Peck, K.; Ciesla, D.J.; Sperry, J.L.; Rizzo, A.G.; Rosen, N.G.; Brasel, K.J.; et al. Updated guidelines to reduce venous thromboembolism in trauma patients: A Western Trauma Association critical decisions algorithm. J. Trauma Acute Care Surg. 2020, 89, 971–981. [Google Scholar] [CrossRef]
- Rossaint, R.; Bouillon, B.; Cerny, V.; Coats, T.J.; Duranteau, J.; Fernández-Mondéjar, E.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Nardi, G.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D-Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef]
- Johnson, E.D.; Schell, J.C.; Rodgers, G.M. The D-dimer assay. Am. J. Hematol. 2019, 94, 833–839. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, B.K.; Noh, S.M.; Cho, Y.S. High fibrin/fibrinogen degradation product to fibrinogen ratio is associated with 28-day mortality and massive transfusion in severe trauma. Eur. J. Trauma Emerg. Surg. 2018, 44, 291–298. [Google Scholar] [CrossRef]
- Hayakawa, M.; Maekawa, K.; Kushimoto, S.; Kato, H.; Sasaki, J.; Ogura, H.; Matauoka, T.; Uejima, T.; Morimura, N.; Ishikura, H.; et al. High D-dimer levels predict a poor outcome in patients with severe trauma, even with high fibrinogen levels on arrival: A multicenter retrospective study. Shock 2016, 45, 308–314. [Google Scholar] [CrossRef]
- Yuan, F.; Ding, J.; Chen, H.; Guo, Y.; Wang, G.; Gao, W.W.; Chen, S.W.; Tian, H.L. Predicting outcomes after traumatic brain injury: The development and validation of prognostic models based on admission characteristics. J. Trauma Acute Care Surg. 2012, 73, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Nakae, R.; Takayama, Y.; Kuwamoto, K.; Naoe, Y.; Sato, H.; Yokota, H. Time course of coagulation and fibrinolytic parameters in patients with traumatic brain injury. J. Neurotrauma 2016, 33, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Pan, Y.Y.; Xu, C.; Li, D.J. Characteristics of emergency patients with markedly elevated D-dimer levels. Sci. Rep. 2020, 10, 7784. [Google Scholar] [CrossRef] [PubMed]
- Vögeli, A.; Ghasemi, M.; Gregoriano, C.; Hammerer, A.; Haubitz, S.; Koch, D.; Kutz, A.; Mueller, B.; Schuetz, P. Diagnostic and prognostic value of the D-dimer test in emergency department patients: Secondary analysis of an observational study. Clin. Chem. Lab. Med. 2019, 57, 1730–1736. [Google Scholar] [CrossRef]
- Hagiwara, S.; Oshima, K.; Aoki, M.; Murata, M.; Ishihara, K.; Kaneko, M.; Furukawa, K.; Nakamura, T.; Ohyama, Y.; Tamura, J.I. Usefulness of fibrin degradation products and d-dimer levels as biomarkers that reflect the severity of trauma. J. Trauma Acute Care Surg. 2013, 74, 1275–1278. [Google Scholar] [CrossRef]
- Yumoto, T.; Naito, H.; Yamakawa, Y.; Iida, A.; Tsukahara, K.; Nakao, A. Venous thromboembolism in major trauma patients: A single-center retrospective cohort study of the epidemiology and utility of D-dimer for screening. Acute Med. Surg. 2017, 4, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Naymagon, L.; Zubizarreta, N.; Feld, J.; van Gerwen, M.; Alsen, M.; Thibaud, S.; Kessler, A.; Venugopal, S.; Makki, I.; Qin, Q.; et al. Admission D-dimer levels, D-dimer trends, and outcomes in COVID-19. Thromb. Res. 2020, 196, 99–105. [Google Scholar] [CrossRef]
- Cirocchi, R.; Boselli, C.; Renzi, C.; Corsi, A.; Cagini, L.; Boccolini, A.; Noya, G.; Fingerhut, A. The surface landmarks of the abdominal wall: A plea for standardization. Arch. Med. Sci. 2014, 10, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.R.; Tolson, M.A.; Copes, W.S. Evaluating trauma care: The TRISS method. Trauma Score and the Injury Severity Score. J. Trauma 1987, 27, 370–378. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg. Infect. Larchmt 2010, 11, 79–109. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Le Gal, G.; Bates, S.M.; Righini, M.; Haramati, L.B.; Lang, E.; Kline, J.A.; Chasteen, S.; Snyder, M.; Patel, P.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Diagnosis of venous thromboembolism. Blood Adv. 2018, 2, 3226–3256. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbrecht, B.G.; Zenati, M.S.; Doyle, H.R.; McMichael, J.; Townsend, R.N.; Clancy, K.D.; Peitzman, A.B. Hepatic dysfunction increases length of stay and risk of death after injury. J. Trauma 2002, 53, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Morieri, M.L.; Sparacino, G.; Di Camillo, B.; Cattelan, A.; Menzo, S.L.; Trevenzoli, M.; Vianello, A.; Guarnieri, G.; Lionello, F.; et al. Time-series analysis of multidimensional clinical-laboratory data by dynamic Bayesian networks reveals trajectories of COVID-19 outcomes. Comput. Method. Programs Biomed. 2022, 221, 106873. [Google Scholar] [CrossRef]
- Nagin, D.S.; Odgers, C.L. Group-based trajectory modeling in clinical research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef] [Green Version]
- Nagin, D.S. Group-Based Modeling of Development; Harvard University Press: Cambridge, UK, 2005. [Google Scholar]
- Herle, M.; Micali, N.; Abdulkadir, M.; Loos, R.; Bryant-Waugh, R.; Hübel, C.; Bulik, C.M.; De Stavola, B.L. Identifying typical trajectories in longitudinal data: Modelling strategies and interpretations. Eur. J. Epidemiol. 2020, 35, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Ishii, K.; Kinoshita, T.; Kiridume, K.; Watanabe, A.; Yamakawa, K.; Nakao, S.; Fujimi, S.; Matsuoka, T. Impact of initial coagulation and fibrinolytic markers on mortality in patients with severe blunt trauma: A multicentre retrospective observational study. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 25. [Google Scholar] [CrossRef]
- Jiang, R.M.; Pourzanjani, A.A.; Cohen, M.J.; Petzold, L. Associations of longitudinal D-Dimer and Factor II on early trauma survival risk. BMC Bioinform. 2021, 22, 122. [Google Scholar] [CrossRef]
- Gando, S. Tissue factor in trauma and organ dysfunction. Semin. Thromb. Hemost. 2006, 32, 48–53. [Google Scholar] [CrossRef]
- Moore, H.B.; Moore, E.E.; Gonzalez, E.; Chapman, M.P.; Chin, T.L.; Silliman, C.C.; Banerjee, A.; Sauaia, A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: The spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J. Trauma Acute Care Surg. 2014, 77, 811–817; discussion 817. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, J.; Nelson, D.; Holst, A.; Hellgren, E.; Friman, O.; Oldner, A. Temporal patterns of organ dysfunction after severe trauma. Crit. Care 2021, 25, 165. [Google Scholar] [CrossRef]
- Cole, E.; Gillespie, S.; Vulliamy, P.; Brohi, K.; Akkad, H.; Apostolidou, K.; Ardley, R.; Aylwin, C.; Bassford, C.; Bonner, S.; et al. Multiple organ dysfunction after trauma. Br. J. Surg. 2020, 107, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagin, D.S. Group-based trajectory modeling: An overview. Ann. Nutr. Metab. 2014, 65, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, H.L.N.; Pagé, M.G.; Katz, J.; Choinière, M.; Vanasse, A.; Dorais, M.; Samb, O.M.; Lacasse, A. Trajectory modelling techniques useful to epidemiological research: A comparative narrative review of approaches. Clin. Epidemiol. 2020, 12, 1205–1222. [Google Scholar] [CrossRef] [PubMed]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
All Patients (n = 309) | Group 1 (n = 178) | Group 2 (n = 87) | Group 3 (n = 26) | Group 4 (n = 18) | p | |
---|---|---|---|---|---|---|
Baseline Characteristics | ||||||
Age, yr, median (IQR) | 44.00 (31.00, 54.00) | 42.00 (31.00, 52.75) | 44.00 (31.00, 54.50) | 48.50 (34.25, 58.00) | 50.50 (36.50, 59.50) | 0.173 |
Male gender, n (%) | 250 (80.91) | 145 (81.46) | 72 (82.76) | 17 (65.38) | 16 (88.89) | 0.170 |
BMI, median (IQR) | 22.04 (20.66, 24.11) | 21.92 (20.70, 23.88) | 22.46 (20.36, 25.15) | 22.63 (20.83, 23.97) | 22.29 (21.15, 27.62) | 0.347 |
Extra-abdominal trauma | ||||||
Head, n (%) | 86 (27.83) | 47 (26.40) | 19 (21.84) | 14 (53.85) | 6 (33.33) | 0.013 |
Face, n (%) | 9 (2.91) | 6 (3.37) | 2 (2.30) | 0 (0.00) | 1 (5.56) | 0.689 |
Chest, n (%) | 194 (62.78) | 104 (58.43) | 59 (67.82) | 17 (65.38) | 14 (77.78) | 0.241 |
Extremities, n (%) | 108 (34.95) | 54 (30.34) | 32 (36.78) | 12 (46.15) | 10 (55.56) | 0.086 |
External, n (%) | 86 (27.83) | 58 (32.58) | 19 (21.84) | 3 (11.54) | 6 (33.33) | 0.064 |
Severity of Trauma | ||||||
AIS | ||||||
Head, median (IQR) | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 0.00 (0.00, 0.00) | 1.50 (0.00, 3.00) | 0.00 (0.00, 2.75) | 0.011 |
Face, median (IQR) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.689 |
Chest, median (IQR) | 2.00 (0.00, 3.00) | 2.00 (0.00, 3.00) | 3.00 (0.00, 3.00) | 3.00 (0.00, 3.00) | 3.00 (2.25, 3.75) | 0.003 |
Extremities, median (IQR) | 0.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | 0.00 (0.00, 3.00) | 0.00 (0.00, 3.00) | 3.00 (0.00, 4.00) | 0.008 |
External, median (IQR) | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 1.00) | 0.049 |
Abdomen, median (IQR) | 3.00 (3.00,4.00) | 3.50 (2.00,4.00) | 3.00 (3.00,4.00) | 3.00 (3.00,4.00) | 4.00 (2.25,4.00) | 0.964 |
AIS of the abdomen > 3, n (%) | 153 (49.51) | 89 (50.00) | 43 (49.43) | 11 (42.31) | 10 (55.56) | 0.845 |
ISS, median (IQR) | 20.00 (16.00, 29.00) | 18.00 (13.25, 26.00) | 24.00 (16.00, 32.00) | 25.00 (18.00, 34.00) | 34.00 (20.75, 34.75) | 0.001 |
SOFA, median (IQR) | 4.00 (2.00, 7.00) | 3.00 (2.00, 6.00) | 3.00 (2.00, 5.50) | 5.50 (4.00, 9.00) | 7.50 (3.00, 9.50) | 0.005 |
TRISS Ps, median (IQR) | 0.97 (0.92, 0.99) | 0.98 (0.94, 0.99) | 0.97 (0.92, 0.99) | 0.95 (0.87, 0.98) | 0.91 (0.80, 0.96) | 0.001 |
Clinical Treatments | ||||||
UFH, n (%) | 281 (90.94) | 158 (88.76) | 81 (93.10) | 24 (92.31) | 18 (100.00) | 0.338 |
LMWH, n (%) | 101 (32.69) | 39 (21.91) | 43 (49.43) | 11 (42.31) | 8 (44.44) | <0.001 |
Blood transfusion, n (%) | 173 (55.99) | 92 (51.69) | 46 (52.87) | 21 (80.77) | 14 (77.78) | 0.009 |
Plasma, n (%) | 164 (53.07) | 89 (50.00) | 41 (47.13) | 20 (76.92) | 14 (77.78) | 0.007 |
Cryoprecipitate, n (%) | 55 (17.80) | 27 (15.17) | 17 (19.54) | 7 (26.92) | 4 (22.22) | 0.433 |
Surgery, n (%) | 200 (64.72) | 111 (62.36) | 62 (71.26) | 18 (69.23) | 9 (50.00) | 0.261 |
Hospital Complications and Outcomes | ||||||
VTE, n (%) | 25 (8.09) | 9 (5.06) | 11 (12.64) | 2 (7.69) | 3 (16.67) | 0.093 |
Sepsis, n (%) | 71 (22.98) | 31 (17.42) | 26 (29.89) | 8 (30.77) | 6 (33.33) | 0.059 |
Intra-abdominal infection, n (%) | 51 (16.50) | 29 (16.29) | 16 (18.39) | 2 (7.69) | 4 (22.22) | 0.547 |
Renal dysfunction, n (%) | 83 (26.86) | 32 (17.98) | 27 (31.03) | 15 (57.69) | 9 (50.00) | <0.001 |
Liver dysfunction, n (%) | 218 (70.55) | 121 (67.98) | 61 (70.11) | 22 (84.62) | 14 (77.78) | 0.320 |
LOS, days, median (IQR) | 18.20 (11.59, 30.03) | 15.98 (10.90, 25.13) | 22.72 (15.05, 35.44) | 20.06 (11.62, 33.52) | 26.36 (17.15, 41.46) | 0.001 |
In-hospital all-cause death, n (%) | 23 (7.44) | 8 (4.49) | 8 (9.20) | 2 (7.69) | 5 (27.78) | 0.004 |
D-dimer Characteristics | ||||||
Maximum D-dimer, mg/L, median (IQR) | 7.77 (2.14, 17.80) | 2.46 (1.27, 5.83) | 16.02 (11.00, 21.26) | 34.08 (27.35, 40.00) | 33.88 (25.02, 40.00) | <0.001 |
Mean D-dimer, mg/L, median (IQR) | 3.83 (1.25, 7.92) | 1.39 (0.69, 3.00) | 7.42 (5.96, 9.66) | 11.30 (9.76, 13.59) | 11.62 (9.93, 18.60) | <0.001 |
Medium D-dimer, mg/L, median (IQR) | 3.29 (1.09, 6.55) | 1.32 (0.66, 2.38) | 6.59 (5.18, 8.78) | 7.89 (5.95, 9.85) | 8.42 (7.68, 13.92) | <0.001 |
Minimum D-dimer, mg/L, median (IQR) | 1.41 (0.47, 2.62) | 0.58 (0.24, 1.39) | 2.61 (1.61, 4.07) | 3.13 (2.56, 4.22) | 2.70 (2.24, 7.33) | <0.001 |
SD of D-dimer, mg/L, median (IQR) | 2.06 (0.50, 5.07) | 0.61 (0.30, 1.50) | 4.39 (2.65, 5.91) | 9.34 (7.06, 11.60) | 9.01 (6.68, 11.84) | <0.001 |
Trajectories | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | |
Group 1 | Reference | Reference | ||
Group 2 | 2.15 (0.78, 5.94) | 0.139 | 2.83 (0.63, 12.69) | 0.175 |
Group 3 | 1.77 (0.35, 8.84) | 0.486 | 3.11 (0.46, 21.24) | 0.247 |
Group 4 | 8.17 (2.34, 28.57) | 0.001 | 6.94 (1.20, 40.25) | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Xi, F.; Li, J.; Yu, W.; Wang, X. Longitudinal D-Dimer Trajectories and the Risk of Mortality in Abdominal Trauma Patients: A Group-Based Trajectory Modeling Analysis. J. Clin. Med. 2023, 12, 1091. https://doi.org/10.3390/jcm12031091
Sun C, Xi F, Li J, Yu W, Wang X. Longitudinal D-Dimer Trajectories and the Risk of Mortality in Abdominal Trauma Patients: A Group-Based Trajectory Modeling Analysis. Journal of Clinical Medicine. 2023; 12(3):1091. https://doi.org/10.3390/jcm12031091
Chicago/Turabian StyleSun, Chuanrui, Fengchan Xi, Jiang Li, Wenkui Yu, and Xiling Wang. 2023. "Longitudinal D-Dimer Trajectories and the Risk of Mortality in Abdominal Trauma Patients: A Group-Based Trajectory Modeling Analysis" Journal of Clinical Medicine 12, no. 3: 1091. https://doi.org/10.3390/jcm12031091
APA StyleSun, C., Xi, F., Li, J., Yu, W., & Wang, X. (2023). Longitudinal D-Dimer Trajectories and the Risk of Mortality in Abdominal Trauma Patients: A Group-Based Trajectory Modeling Analysis. Journal of Clinical Medicine, 12(3), 1091. https://doi.org/10.3390/jcm12031091