Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charteris, D.G. Proliferative vitreoretinopathy: Revised concepts of pathogenesis and adjunctive treatment. Eye 2020, 34, 241–245. [Google Scholar] [CrossRef]
- Banaee, T.; Hosseini, S.M.; Eslampoor, A.; Abrishami, M.; Moosavi, M. Peripheral 360° Retinectomy in Complex Retinal Detachment. Retina 2009, 29, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Moharram, H.E.M.; Abdelhalim, A.S.M.; Hamid, M.A.; Abdelkader, M.F. Comparison Between Silicone Oil and Gas in Tamponading Giant Retinal Breaks. Clin. Ophthalmol. 2020, 14, 127–132. [Google Scholar] [CrossRef]
- Pastor, J.C. Proliferative vitreoretinopathy: An overview. Surv. Ophthalmol. 1998, 43, 3–18. [Google Scholar] [CrossRef]
- Girard, P.; Mimoun, G.; Karpouzas, I.; Montefiore, G. Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 1994, 14, 417–424. [Google Scholar] [CrossRef]
- Nagasaki, H.; Shinagawa, K.; Mochizuki, M. Risk factors for proliferative vitreoretinopathy. Prog. Retin. Eye Res. 1998, 17, 77–98. [Google Scholar] [CrossRef]
- Bonnet, M.; Fleury, J.; Guenoun, S.; Yaniali, A.; Dumas, C.; Hajjar, C. Cryopexy in primary rhegmatogenous retinal detachment: A risk factor for postoperative proliferative vitreoretinopathy? Graefes Arch. Clin. Exp. Ophthalmol. 1996, 234, 739–743. [Google Scholar] [CrossRef]
- Cowley, M.; Conway, B.P.; Campochiaro, P.A.; Kaiser, D.; Gaskin, H. Clinical risk factors for proliferative vitreoretinopathy. Arch. Ophthalmol. Chic. Ill 1960 1989, 107, 1147–1151. [Google Scholar] [CrossRef]
- Grizzard, W.S.; Hilton, G.F.; Hammer, M.E.; Taren, D. A multivariate analysis of anatomic success of retinal detachments treated with scleral buckling. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1994, 232, 1–7. [Google Scholar] [CrossRef]
- Chiba, C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp. Eye Res. 2014, 123, 107–114. [Google Scholar] [CrossRef]
- Pastor, J.C.; de la Rúa, E.R.; Martıín, F. Proliferative vitreoretinopathy: Risk factors and pathobiology. Prog. Retin. Eye Res. 2002, 21, 127–144. [Google Scholar] [CrossRef]
- Tosi, G.M.; Orlandini, M.; Galvagni, F. The Controversial Role of TGF-β in Neovascular Age-Related Macular Degeneration Pathogenesis. Int. J. Mol. Sci. 2018, 19, 3363. [Google Scholar] [CrossRef] [PubMed]
- Sukhikh, G.T.; Panova, I.G.; Smirnova, Y.A.; Milyushina, L.A.; Firsova, N.V.; Markitantova, Y.V.; Poltavtseva, R.A.; Zinov’eva, R.D. Expression of transforming growth factor-β2in vitreous body and adjacent tissues during prenatal development of human eye. Bull. Exp. Biol. Med. 2010, 150, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, H.; Yoshida, M.; Matsumoto, M.; Yoshimura, N. Identification of Transforming Growth Factor-Beta Expressed in Cultured Human Retinal Pigment Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 1993, 34, 413–419. [Google Scholar]
- Hirsch, L.; Nazari, H.; Sreekumar, P.G.; Kannan, R.; Dustin, L.; Zhu, D.; Barron, E.; Hinton, D.R. TGF-β2 secretion from RPE decreases with polarization and becomes apically oriented. Cytokine 2015, 71, 394–396. [Google Scholar] [CrossRef]
- Dvashi, Z.; Goldberg, M.; Adir, O.; Shapira, M.; Pollack, A. TGF-β1 induced transdifferentiation of rpe cells is mediated by TAK1. PLoS ONE 2015, 10, e0122229. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Wang, F.; Gu, Q.; Xu, X. Snail involves in the transforming growth factor β1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS ONE 2011, 6, e23322. [Google Scholar] [CrossRef]
- Saika, S.; Kono-Saika, S.; Tanaka, T.; Yamanaka, O.; Ohnishi, Y.; Sato, M.; Muragaki, Y.; Ooshima, A.; Yoo, J.; Flanders, K.C.; et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice. Lab. Investig. J. Tech. Methods Pathol. 2004, 84, 1245–1258. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, X.; Liu, X.; Luo, L.; Ye, S.; Liu, Y. Trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. J. Cell. Mol. Med. 2014, 18, 646–655. [Google Scholar] [CrossRef]
- Stocks, S.Z.; Taylor, S.M.; Shiels, I.A. Transforming growth factor-beta1 induces alpha-smooth muscle actin expression and fibronectin synthesis in cultured human retinal pigment epithelial cells. Clin. Experiment. Ophthalmol. 2001, 29, 33–37. [Google Scholar] [CrossRef]
- Liang, C.-M.; Tai, M.-C.; Chang, Y.-H.; Chen, Y.-H.; Chen, C.-L.; Lu, D.-W.; Chen, J.-T. Glucosamine inhibits epithelial-to-mesenchymal transition and migration of retinal pigment epithelium cells in culture and morphologic changes in a mouse model of proliferative vitreoretinopathy. Acta Ophthalmol. 2011, 89, e505-14. [Google Scholar] [CrossRef]
- Nassar, K.; Grisanti, S.; Tura, A.; Lüke, J.; Lüke, M.; Soliman, M.; Grisanti, S. A TGF-β receptor 1 inhibitor for prevention of proliferative vitreoretinopathy. Exp. Eye Res. 2014, 123, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Nassar, K.; Lüke, J.; Lüke, M.; Kamal, M.; Abd El-Nabi, E.; Soliman, M.; Rohrbach, M.; Grisanti, S. The novel use of decorin in prevention of the development of proliferative vitreoretinopathy (PVR). Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 2011, 249, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Kita, T.; Hata, Y.; Arita, R.; Kawahara, S.; Miura, M.; Nakao, S.; Mochizuki, Y.; Enaida, H.; Goto, Y.; Shimokawa, H.; et al. Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target. Proc. Natl. Acad. Sci. USA 2008, 105, 17504–17509. [Google Scholar] [CrossRef]
- Drenser, K.A. Anti-angiogenic therapy in the management of retinopathy of prematurity. Dev. Ophthalmol. 2009, 44, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, J.F.; Maia, M.; Flynn, H.W.J.; Saravia, M.; Avery, R.L.; Wu, L.; Eid Farah, M.; Pieramici, D.J.; Berrocal, M.H.; Sanchez, J.G. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br. J. Ophthalmol. 2008, 92, 213–216. [Google Scholar] [CrossRef]
- Connor, T.B.J.; Roberts, A.B.; Sporn, M.B.; Danielpour, D.; Dart, L.L.; Michels, R.G.; de Bustros, S.; Enger, C.; Kato, H.; Lansing, M. Correlation of fibrosis and transforming growth factor-beta type 2 levels in the eye. J. Clin. Investig. 1989, 83, 1661–1666. [Google Scholar] [CrossRef]
- Bourne, G.L. The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 1960, 79, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Sheha, H.; Kheirkhah, A.; Taha, H. Amniotic membrane transplantation in trabeculectomy with mitomycin C for refractory glaucoma. J. Glaucoma 2008, 17, 303–307. [Google Scholar] [CrossRef]
- Kassem, R.R.; El-Mofty, R.M.A.-M. Amniotic Membrane Transplantation in Strabismus Surgery. Curr. Eye Res. 2019, 44, 451–464. [Google Scholar] [CrossRef]
- Kassem, R.R.; Kamal, A.M.; El-Mofty, R.M.A.-M.; Elhilali, H.M. A controlled study of the role of cryopreserved amniotic membrane transplant during strabismus reoperations. J. AAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2017, 21, 97–102.e1. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, H.; Rajak, S.N. Dried amniotic membrane in fornix reconstruction. Clin. Experiment. Ophthalmol. 2019, 47, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Thatte, S.; Jain, J. Fornix Reconstruction with Amniotic Membrane Transplantation: A Cosmetic Remedy for Blind Patients. J. Ophthalmic Vis. Res. 2016, 11, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Barabino, S.; Rolando, M.; Bentivoglio, G.; Mingari, C.; Zanardi, S.; Bellomo, R.; Calabria, G. Role of amniotic membrane transplantation for conjunctival reconstruction in ocular-cicatricial pemphigoid. Ophthalmology 2003, 110, 474–480. [Google Scholar] [CrossRef]
- Sharma, N.; Thenarasun, S.A.; Kaur, M.; Pushker, N.; Khanna, N.; Agarwal, T.; Vajpayee, R.B. Adjuvant Role of Amniotic Membrane Transplantation in Acute Ocular Stevens-Johnson Syndrome: A Randomized Control Trial. Ophthalmology 2016, 123, 484–491. [Google Scholar] [CrossRef]
- Solomon, A.; Wajngarten, M.; Alviano, F.; Anteby, I.; Elchalal, U.; Pe, J.; Levi-schaffer, F. Suppression of inflammatory and fibrotic responses in allergic inflammation by the amniotic membrane stromal matrix. Clin. Exp. Allergy 2005, 35, 941–948. [Google Scholar] [CrossRef]
- Lee, S.-B.; Li, D.-Q.; Tan, D.T.H.; Meller, D.; Tseng, S.C.G. Suppression of TGF-ß signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr. Eye Res. 2000, 20, 325–334. [Google Scholar] [CrossRef]
- Tseng, S.C.G.; Li, D.-Q.; Ma, X. Suppression of transforming growth factor-beta isoforms, TGF-? receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J. Cell. Physiol. 1999, 179, 325–335. [Google Scholar] [CrossRef]
- Witherel, C.E.; Yu, T.; Concannon, M.; Dampier, W.; Spiller, K.L. Immunomodulatory Effects of Human Cryopreserved Viable Amniotic Membrane in a Pro-Inflammatory Environment In Vitro. Cell. Mol. Bioeng. 2017, 10, 451–462. [Google Scholar] [CrossRef]
- Martín, F.; Pastor, J.C.; De La Rúa, E.R.; Mayo-Iscar, A.; García-Arumí, J.; Martínez, V.; Fernández, N.; Saornil, M.A. Proliferative vitreoretinopathy: Cytologic findings in vitreous samples. Ophthalmic Res. 2003, 35, 232–238. [Google Scholar] [CrossRef]
- Akrami, H.; Soheili, Z.-S.; Sadeghizadeh, M.; Khalooghi, K.; Ahmadieh, H.; Kanavi, M.R.; Samiei, S.; Pakravesh, J. Evaluation of RPE65, CRALBP, VEGF, CD68, and Tyrosinase Gene Expression in Human Retinal Pigment Epithelial Cells Cultured on Amniotic Membrane. Biochem. Genet. 2011, 49, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ye, K.; Gao, G.; Song, X.; Xu, P.; Zeng, J.; Xie, B.; Zheng, D.; He, L.; Ji, J.; et al. Amniotic Membrane Enhances the Characteristics and Function of Stem Cell-Derived Retinal Pigment Epithelium Sheets by Inhibiting the Epithelial–Mesenchymal Transition. Acta Biomater. 2022, 151, 183–196. [Google Scholar] [CrossRef]
- He, H.; Kuriyan, A.E.; Su, C.; Mahabole, M.; Zhang, Y. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3. Nat. Publ. Group 2017, 7, srep43736. [Google Scholar] [CrossRef]
- Caporossi, T.; Pacini, B.; De Angelis, L.; Barca, F.; Peiretti, E.; Rizzo, S. Human Amniotic Membrane to Close Recurrent, High Myopic Macular Holes in Pathologic Myopia with Axial Length of ≥30 mm. Retina, 2019; Publish Ahead of Print. [Google Scholar] [CrossRef]
- Caporossi, T.; Pacini, B.; De Angelis, L.; Rizzo, S. Amniotic Membrane Plug to Promote ChronicPost-Traumatic Macular Hole Closure. Ophthalmic Surg. Lasers Imaging Retin. 2019, 51, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Caporossi, T.; Angelis, L.; Pacini, B.; Tartaro, R.; Finocchio, L.; Barca, F.; Rizzo, S. A human Amniotic Membrane plug to manage high myopic macular hole associated with retinal detachment. Acta Ophthalmol. 2020, 98, e252–e256. [Google Scholar] [CrossRef]
- Caporossi, T.; Tartaro, R.; De Angelis, L.; Pacini, B.; Rizzo, S. A human amniotic membrane plug to repair retinal detachment associated with large macular tear. Acta Ophthalmol. 2019, 97, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Caporossi, T.; De Angelis, L.; Pacini, B.; Rizzo, S. Amniotic membrane for retinal detachment due to paravascular retinal breaks over patchy chorioretinal atrophy in pathologic myopia. Eur. J. Ophthalmol. 2020, 30, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Caporossi, T.; de Angelis, L.; Bacherini, D.; Governatori, L.; Rizzo, S. Human Amniotic Membrane Patching-Assisted Vitrectomy in Retinal Detachment. Ophthalmol. Retina 2021, 5, 215–217. [Google Scholar] [CrossRef]
- Hilton, G.; Machemer, R.; Michels, R.; Okun, E.; Schepens, C.; Schwartz, A. The Classification of Retinal Detachment with Proliferative Vitreoretinopathy. Ophthalmology 1983, 90, 121–125. [Google Scholar] [CrossRef]
- Thomasen, H.; Pauklin, M. Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Caporossi, T.; Tartaro, R.; Finocchio, L.; Franco, F.; Barca, F.; Giansanti, F. A Human Amniotic Membrane Plug to Promote Retinal Breaks Repair and Recurrent Macular Hole Closure. Retina 2019, 39, S95–S103. [Google Scholar] [CrossRef]
- Chen, H.-J.; Ma, Z.-Z. N-cadherin expression in a rat model of retinal detachment and reattachment. Invest. Ophthalmol. Vis. Sci. 2007, 48, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Koerner, F.; Merz, A.; Gloor, B.; Wagner, E. Postoperative retinal fibrosis—A controlled clinical study of systemic steroid therapy. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1982, 219, 268–271. [Google Scholar] [CrossRef]
- Williams, R.G.; Chang, S.; Comaratta, M.R.; Simoni, G. Does the presence of heparin and dexamethasone in the vitrectomy infusate reduce reproliferation in proliferative vitreoretinopathy? Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 1996, 234, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Munir, W.M.; Pulido, J.S.; Sharma, M.C.; Buerk, B.M. Intravitreal triamcinolone for treatment of complicated proliferative diabetic retinopathy and proliferative vitreoretinopathy. Can. J. Ophthalmol. J. Can. Ophtalmol. 2005, 40, 598–604. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Feghhi, M.; Tabatabaei, H.; Shoeibi, N.; Ramezani, A.; Mohebbi, M.R. Triamcinolone acetonide in silicone-filled eyes as adjunctive treatment for proliferative vitreoretinopathy: A randomized clinical trial. Ophthalmology 2008, 115, 1938–1943. [Google Scholar] [CrossRef]
- Banerjee, P.J.; Quartilho, A.; Bunce, C.; Xing, W.; Zvobgo, T.M.; Harris, N.; Charteris, D.G. Slow-Release Dexamethasone in Proliferative Vitreoretinopathy: A Prospective, Randomized Controlled Clinical Trial. Ophthalmology 2017, 124, 757–767. [Google Scholar] [CrossRef]
- Wiedemann, P.; Hilgers, R.D.; Bauer, P.; Heimann, K.; Daunomycin Study Group. Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: Results of a multicenter clinical trial. Am. J. Ophthalmol. 1998, 126, 550–559. [Google Scholar] [CrossRef]
- Blumenkranz, M.; Hernandez, E.; Ophir, A.; Norton, E.W. 5-fluorouracil: New applications in complicated retinal detachment for an established antimetabolite. Ophthalmology 1984, 91, 122–130. [Google Scholar] [CrossRef]
- Blumenkranz, M.S.; Ophir, A.; Claflin, A.J.; Hajek, A. Fluorouracil for the treatment of massive periretinal proliferation. Am. J. Ophthalmol. 1982, 94, 458–467. [Google Scholar] [CrossRef]
- Charteris, D.G.; Aylward, G.W.; Wong, D.; Groenewald, C.; Asaria, R.H.Y.; Bunce, C. A randomized controlled trial of combined 5-fluorouracil and low-molecular-weight heparin in management of established proliferative vitreoretinopathy. Ophthalmology 2004, 111, 2240–2245. [Google Scholar] [CrossRef]
- Schaub, F.; Schiller, P.; Hoerster, R.; Kraus, D.; Holz, F.G.; Guthoff, R.; Agostini, H.; Spitzer, M.S.; Wiedemann, P.; Lommatzsch, A.; et al. Intravitreal 5-Fluorouracil and Heparin to Prevent Proliferative Vitreoretinopathy: Results from a Randomized Clinical Trial. Ophthalmology 2022, 129, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Falavarjani, K.G.; Hadavandkhani, A.; Parvaresh, M.M.; Modarres, M.; Naseripour, M.; Alemzadeh, S.A. Intra-silicone Oil Injection of Methotrexate in Retinal Reattachment Surgery for Proliferative Vitreoretinopathy. Ocul. Immunol. Inflamm. 2020, 28, 513–516. [Google Scholar] [CrossRef]
- Sadaka, A.; Sisk, R.A.; Osher, J.M.; Toygar, O.; Duncan, M.K.; Riemann, C.D. Intravitreal methotrexate infusion for proliferative vitreoretinopathy. Clin. Ophthalmol. Auckl. N. Z. 2016, 10, 1811–1817. [Google Scholar] [CrossRef]
- El Baha, S.; Leila, M.; Amr, A.; Lolah, M.M.A. Anatomical and Functional Outcomes of Vitrectomy with/without Intravitreal Methotrexate Infusion for Management of Proliferative Vitreoretinopathy Secondary to Rhegmatogenous Retinal Detachment. J. Ophthalmol. 2021, 2021, 3648134. [Google Scholar] [CrossRef] [PubMed]
- Nourinia, R.; Borna, F.; Rahimi, A.; Jabbarpoor Bonyadi, M.H.; Amizadeh, Y.; Daneshtalab, A.; Kheiri, B.; Ahmadieh, H. Repeated Injection of Methotrexate into Silicone Oil-Filled Eyes for Grade C Proliferative Vitreoretinopathy: A Pilot Study. Ophthalmologica 2019, 242, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.A.; Yon-Mendoza, A.; Huamán, N.; Wu, L. Adjunctive serial post-operative intravitreal methotrexate injections in the management of advanced proliferative vitreoretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 2021, 259, 2913–2917. [Google Scholar] [CrossRef]
- Benner, J.D.; Dao, D.; Butler, J.W.; Hamill, K.I. Intravitreal methotrexate for the treatment of proliferative vitreoretinopathy. BMJ Open Ophthalmol. 2019, 4, e000293. [Google Scholar] [CrossRef]
Population Study Characteristics | Value * |
---|---|
Number of patients | 15 |
Mean Age (years) | 60 ± 11 |
Male/Female ratio | 9/6 |
Mean preoperative BCVA (LogMAR) | 2 (2.70–1.50) |
Mean number of Previous unsuccessful vitreoretinal procedures | 1.6 (1–3) |
Mean preoperative IOP (mmHg) | 11.7 (5–19) |
Preoperative Epiretinal PVR, Grade D (eyes) | 6 |
Preoperative Epiretinal PVR, Grade D1 (eyes) | 4 |
Preoperative Epiretinal PVR, Grade D3 (eyes) | 2 |
Preoperative Epiretinal PVR, Grade C (eyes) | 9 |
Preoperative Epiretinal PVR, Grade C2 (eyes) | 5 |
Preoperative Epiretinal PVR, Grade C3 (eyes) | 4 |
Preoperative Subretinal PVR (eyes) | 5 |
Study Outcomes | Value * |
Overall success rate (%) | 93.3% |
Cases achieving complete success (%) | 86.7% |
Cases achieving partial success (%) | 6.7% |
Failed cases (%) | 6.7% |
Mean hAM patches per patient (n°) | 1.6 |
Mean hAM patch diameter per patient (mm) | 5.25 |
Mean RPE coverage per patient (mm2) | 34.75 |
Posterior breaks (eyes) | 4 |
Peripheral large breaks (eyes) | 3 |
Cases undergoing retinectomy (eyes) | 11 |
Cases undergoing retinectomy, two quadrants (eyes) | 4 |
Cases undergoing retinectomy, three quadrants (eyes) | 4 |
Cases undergoing retinectomy, four quadrants (eyes) | 3 |
Mean duration of silicone oil tamponade (days) | 93.2 (85–102) |
Mean IOP at 1 month postoperative, from hAMP-V (mmHg) | 14.4 (10–17) |
Mean IOP at 3 months postoperative, from hAMP-V (mmHg) | 14.9 (12–17) |
Mean BCVA at 3 months from silicone oil removal (LogMAR) | 1.83 (2.70–1.00) |
Mean BCVA at 6 months from silicone oil removal (LogMAR) | 1.76 (2.70–1.00) |
Mean IOP at 3 months postoperative, from silicone oil removal (mmHg) | 12.4 (8–17) |
Mean IOP at 6 months postoperative, from silicone oil removal (mmHg) | 13.1 (9–16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caporossi, T.; Molle, A.; Carlà, M.M.; Picardi, S.M.; Gambini, G.; Scampoli, A.; Governatori, L.; Bernardinelli, P.; Rizzo, S. Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments. J. Clin. Med. 2023, 12, 1137. https://doi.org/10.3390/jcm12031137
Caporossi T, Molle A, Carlà MM, Picardi SM, Gambini G, Scampoli A, Governatori L, Bernardinelli P, Rizzo S. Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments. Journal of Clinical Medicine. 2023; 12(3):1137. https://doi.org/10.3390/jcm12031137
Chicago/Turabian StyleCaporossi, Tomaso, Andrea Molle, Matteo Mario Carlà, Stefano Maria Picardi, Gloria Gambini, Alessandra Scampoli, Lorenzo Governatori, Patrizio Bernardinelli, and Stanislao Rizzo. 2023. "Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments" Journal of Clinical Medicine 12, no. 3: 1137. https://doi.org/10.3390/jcm12031137
APA StyleCaporossi, T., Molle, A., Carlà, M. M., Picardi, S. M., Gambini, G., Scampoli, A., Governatori, L., Bernardinelli, P., & Rizzo, S. (2023). Applications of Human Amniotic Membrane Patching Assisted Vitrectomy in the Management of Postoperative PVR in Complex Retinal Detachments. Journal of Clinical Medicine, 12(3), 1137. https://doi.org/10.3390/jcm12031137