Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva Ramos, F.J.; Freitas, F.G.; Machado, F.R. Sepsis in patients hospitalized with coronavirus disease 2019: How often and how severe? Curr. Opin. Crit. Care 2021, 27, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Serafim, R.B.; Povoa, P.; Souya Dantas, V.; Kalil, A.; Salluh, J. Clinical course and outcomes of critically ill patients with COVID-19 infection: A Systematic Review. Clin. Microbiol. Infect. 2021, 27, 47–54. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef]
- Kayambankadzanja, R.K.; Schell, C.O.; Wärnberg, M.G.; Tamras, T.; Mollazadegan, H.; Holmberg, M.; Alvesson, H.M.; Baker, T. Towards definitions of critical illness and critical care using concept analysis. BMJ Open 2022, 12, e060972. [Google Scholar] [CrossRef]
- Gul, F.; Arslantas, M.K.; Cinel, I.; Kumar, A. Changing Definitions of Sepsis. Turk. J. Anaesthesiol. Reanim. 2017, 45, 129–138. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, 1063–1143. [Google Scholar] [CrossRef] [PubMed]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis- Patophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Zinellu, A.; Mangoni, A. Red Blood Cell Distribution Width, Disease Severity, and Mortality in Hospitalized Patients with SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 286. [Google Scholar] [CrossRef]
- Pollili, E.; Frattari, A.; Esposito, J.E.; Stanziale, A.; Giurdanella, G.; Iorio, G. Monocyte distribution width (MDW) as a new tool for the prediction of sepsis in critically ill patients: A preliminary investigation in an intensive care unit. BMC Emerg. Med. 2021, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Lorubbio, M.; Tacconi, D.; Iannelli, G.; Feri, M.; Scala, R.; Montemerani, S.; Mandò, M.; Ognibene, A. The role of Monocyte Distribution Width (MDW) in the prognosis and monitoring of COVID-19 patients. Clin. Biochem. 2022, 103, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Piva, E.; Zuin, J.; Pelloso, M.; Tosato, F.; Fogar, P.; Plebani, M. Monocyte distribution width (MDW) parameter as a sepsis indicator in intensive care units. Clin. Chem. Lab. Med. 2021, 59, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.O.; Combes, T.W.; Orsenigo, F.; Gordon, S. Monocyte activation in systemic Covid-19 infection: Assay and rationale. Ebiomedicine 2020, 59, 102964. [Google Scholar] [CrossRef]
- Fan, S.-L.; Miller, N.S.; Lee, J.; Remick, D.G. Diagnosing sepsis—The role of laboratory medicine. Clin. Chim. Acta 2016, 460, 203–210. [Google Scholar] [CrossRef]
- Merad, M.; Martin, J. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F.; Henry, B. Pooled analysis of monocyte distribution width in subjects with SARS-CoV-2 infection. Int. J. Lab. Hematolog. 2021, 43, 161–163. [Google Scholar] [CrossRef]
- Alsuwaidi, L.; Heialy, S.; Shaikh, N.; Al Najjar, F.; Seliem, R.; Hachim, M. Monocyte distribution width as a novel sepsis indicator in COVID-19 patients. BMC Infect. Dis. 2022, 22, 27. [Google Scholar] [CrossRef]
- Urrechaga, E.; Boveda, O.; Aguirre, U. Role of leucocytes cell population data in the early detection of sepsis. J. Clin. Pathol. 2017, 71, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Urrechaga, E. Reviewing the value of leucocytes cell population data in the management of sepsis. Ann. Transl. Med. 2020, 8, 953. [Google Scholar] [CrossRef]
- Ceci, F.M.; Fiore, M.; Gavaruzzi, F.; Angeloni, A.; Lucarelli, M.; Scagnolari, C.; Bonci, E.; Gabanella, F.; Di Certo, M.G.; Barbato, C.; et al. Early routine biomarkers of SARS-CoV-2 morbidity and mortality: Outcomes from an emergency section. Diagnostics 2022, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Teggert, A.; Datta, H.; Ali, Z. Biomarkers for Point-of-Care Diagnosing of Sepsis. Micromachines 2020, 11, 286. [Google Scholar] [CrossRef]
- Villard, O.; Morquin, D.; Molinari, N.; Raingeard, I.; Nagot, N.; Cristol, J.-P.; Jung, B.; Roubille, C.; Foulongne, V.; Fesler, P.; et al. The Plasmatic Aldosterone and C-Reactive Protein Levels, and the Severity of Covid-19: The Dyhor-19 Study. J. Clin. Med. 2020, 9, 2315. [Google Scholar] [CrossRef]
- Kubiak, J.Z.; Kloc, M. Recent Progress in Research on COVID-19 Pathophysiology: Biomarkers, Repurposed Drugs, Viral Invasiveness, SARS-CoV-2 Genetic Diversity, the Crystal Structure of Viral Proteins, and the Molecular and Cellular Outcomes of COVID-19. Int. J. Mol. Sci. 2022, 23, 14194. [Google Scholar] [CrossRef]
- Ognibene, A.; Lorubbio, M.; Magliocca, P.; Tripodo, E.; Vaggelli, G.; Iannelli, G.; Feri, M.; Scala, R.; Tartaglia, A.P.; Galano, A.; et al. Elevated monocyte distribution width in COVID-19 patients: The contribution of the novel sepsis indicator. Clin. Chim. Acta 2020, 509, 22–24. [Google Scholar] [CrossRef] [PubMed]
- Hausfater, P.; Robert Boter, N.; Morales Indiano, C.; Cancella de Abreu, M.; Marin, A.M.; Pernet, J.; Quesada, D.; Castro, I.; Careaga, D.; Arock, M.; et al. Monocyte distribution width performance as an early sepsis indicator in the emergency department: Comparison with CRP and procalcitonin in a multicenter international European prospective study. Crit. Care 2021, 25, 277. [Google Scholar] [CrossRef]
- Borobia, A.M.; Carcas, A.J.; Arnalich, F.; Álvarez-Sala, R.; Monserrat-Villatoro, J.; Quintana, M.; Figueira, J.C.; Torres Santos-Olmo, R.M.; García-Rodríguez, J.; Martín-Vega, A.; et al. A Cohort of Patients with COVID-19 in a Major Teaching Hospital in Europe. J. Clin. Med. 2020, 9, 1733. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Piovani, D.; Brunetta, E.; Aghemo, A.; Greco, M.; Ciccarelli, M.; Angelini, C.; Voza, A.; Omodei, P.; Vespa, E.; et al. Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for Covid-19 Infection in Lombardy, Italy. J. Clin. Med. 2020, 9, 1548. [Google Scholar] [CrossRef]
- Kudlinski, B.; Zgoła, D.; Stolińska, M.; Murkos, M.; Kania, J.; Nowak, P.; Noga, A.; Wojciech, M.; Zaborniak, G.; Zembron-Lacny, A. Systemic Inflammatory Predictors of In-Hospital Mortality in COVID-19 Patients: A Retrospective Study. Diagnostics 2022, 12, 859. [Google Scholar] [CrossRef]
- Levy, M.M.; Evans, L.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit. Care Med. 2018, 46, 997–1000. [Google Scholar] [CrossRef]
- Hu Tianyabg Lv Huajie Jiang, Y. The association between four scoring systems and 30-day mortality among intensive care patients with sepsis: A cohort study. Nature 2021, 11, 11214. [Google Scholar]
- Parasher, A. Covid 19: Current understanding of its Pathophysiology, Clinical presentation and treatment. Postgrad. Med. J. 2021, 97, 312–320. [Google Scholar] [CrossRef]
- Crouser, E.; Parrillo, J.; Martin, G.; Huang, D.; Hausfater, P.; Grigorov, I. Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA. J. Intensive Care 2020, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Castellano, S.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A. Monocyte Distribution Width as novel inflammatory marker with prognostic significance in Covid-19 patients. Nature 2021, 11, 12716. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Nasillo, V.; Luppi, M.; Tagliafico, E.; Trenti, T. Linking COVID-19, monocyte activation and sepsis: MDW, a novel biomarker from cytometry. Lancet 2022, 75, 103754. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Matthes, H.; Schad, F. Seven COVID-19 patients treated with C-Reactive protein (CRP) apheresis. J. Clin. Med. 2022, 11, 1956. [Google Scholar] [CrossRef] [PubMed]
- Tong-Minh, K.; van der Does, Y.; Engelen, S.; de Jong, E.; Ramakers, C.; Gommers, D.; van Gorp, E.; Endeman, H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wernly, B.; Flaatten, H.; Fjolner, J.; Artigas, A.; Pinto, B.B. Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: Results from an international observational study of 2860 patients. Ann. Intensive Care 2021, 11, 128. [Google Scholar]
p Value | Mean | SD | Min | Max | IQR | ||
---|---|---|---|---|---|---|---|
MDW | deceased | 0.008 | 28.72 | 4.83 | 17.82 | 42.98 | 5.82 |
survivors | 26.46 | 3.78 | 18.13 | 35.63 | 5.47 | ||
Age | deceased | 0.018 | 63.16 | 12.35 | 26 | 84 | 14 |
survived | 56.87 | 14.93 | 22 | 77 | 24.75 | ||
CRP | deceased | 0.476 | 148.47 | 103.8 | 0.4 | 419.6 | 147.1 |
survivors | 132.46 | 80.6 | 0.5 | 320.7 | 136.05 | ||
PCT | deceased | 0.03 | 2.12 | 6.7 | 0 | 61.44 | 1.04 |
survivors | 1.17 | 4.51 | 0.05 | 32.95 | 0.7 | ||
Lactate | deceased | 0.009 | 3.13 | 2.9 | 1.02 | 19.75 | 1.36 |
survivors | 2.38 | 1.84 | 0.84 | 10.89 | 1.19 | ||
ICU days | deceased | 0.704 | 11.92 | 11.23 | 1 | 82 | 12 |
survivors | 14.43 | 13.8 | 1 | 50 | 14.5 |
Biomarker | MDW | CRP | PCT | Lactate |
---|---|---|---|---|
Cut-off value | 20 μm | 100 mg/mL | 1 ng/mL | 2 mmol/L |
p value, Chi-square test | 0.023 | 0.578 | 0.08 | 0.006 |
Biomarker | Age | MDW | CRP | PCT | Lactate | ICU Days |
---|---|---|---|---|---|---|
p value | 0.018 | 0.008 | 0.476 | 0.03 | 0.009 | 0.704 |
MDW | CRP | PCT | Lactate | ICU Days | Age | ||
---|---|---|---|---|---|---|---|
MDW | Correlation coefficient (r) | 1.000 | 0.351 ** | 0.182 * | 0.078 | 0.144 | 0.078 |
Significance (p) | - | 0.000 | 0.021 | 0.327 | 0.069 | 0.323 | |
CRP | r | 0.351 ** | 1.000 | 0.423 ** | 0.053 | 0.083 | 0.068 |
p | 0.000 | - | 0.000 | 0.499 | 0.292 | 0.391 | |
PCT | r | 0.182 * | 0.423 ** | 1.000 | 0.087 | 0.060 | 0.017 |
p | 0.021 | 0.000 | - | 0.273 | 0.447 | 0.832 | |
Lactate | r | 0.078 | 0.053 | 0.087 | 1.000 | 0.167 | 0.207 ** |
p | 0.327 | 0.499 | 0.273 | - | 0.033 | 0.008 | |
ICU days | r | 0.144 | 0.083 | 0.060 | 0.167 | 1.000 | 0.306 ** |
p | 0.069 | 0.292 | 0.447 | 0.033 | - | 0.000 | |
Age | r | 0.078 | 0.068 | 0.017 | 0.207 ** | 0.306 ** | 1.000 |
p | 0.323 | 0.391 | 0.832 | 0.008 | 0.000 | - |
Patients (Percentage) | Female | Male | Age (Mean) | SOFA Score (Mean) | Requirements for Mechanical Ventilation | Onset of Shock in First 24 h | |
---|---|---|---|---|---|---|---|
Survived | 54 (33.75%) | 42.6% | 57.4% | 56.87 | 4.76 | 64.3% | 14.3% |
Deceased | 106 (66.25%) | 25.47% | 74.56% | 63.16 | 6.65 | 92.75% | 29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajić, D.; Matijašević, J.; Andrijević, L.; Zarić, B.; Lalić-Popović, M.; Andrijević, I.; Todorović, N.; Mihajlović, A.; Tapavički, B.; Ostojić, J. Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients. J. Clin. Med. 2023, 12, 1197. https://doi.org/10.3390/jcm12031197
Bajić D, Matijašević J, Andrijević L, Zarić B, Lalić-Popović M, Andrijević I, Todorović N, Mihajlović A, Tapavički B, Ostojić J. Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients. Journal of Clinical Medicine. 2023; 12(3):1197. https://doi.org/10.3390/jcm12031197
Chicago/Turabian StyleBajić, Dejana, Jovan Matijašević, Ljiljana Andrijević, Bojan Zarić, Mladena Lalić-Popović, Ilija Andrijević, Nemanja Todorović, Andrea Mihajlović, Borislav Tapavički, and Jelena Ostojić. 2023. "Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients" Journal of Clinical Medicine 12, no. 3: 1197. https://doi.org/10.3390/jcm12031197
APA StyleBajić, D., Matijašević, J., Andrijević, L., Zarić, B., Lalić-Popović, M., Andrijević, I., Todorović, N., Mihajlović, A., Tapavički, B., & Ostojić, J. (2023). Prognostic Role of Monocyte Distribution Width, CRP, Procalcitonin and Lactate as Sepsis Biomarkers in Critically Ill COVID-19 Patients. Journal of Clinical Medicine, 12(3), 1197. https://doi.org/10.3390/jcm12031197