Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults during 48-h Holter ECG Recordings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 48-h ECG Holter Recordings
2.3. Heart Rate and Heart Rate Variability Measurement
- SDNN—the square root of the total RR intervals variance (standard deviation of normal-to-normal RR intervals as a measure of total HRV);
- SD1—the square root of the short-term RR intervals variance, is a measure of short-term HRV that reflects the instantaneous changes between each pair of heartbeats. It is equivalent to the root mean square of the successive differences (rMSSD) between RR intervals but is rescaled by a constant value of the square root of 2. As both measures provide identical physiological and mathematical information, we have chosen to present only SD1 and have omitted rMSSD from this analysis. Any conclusions drawn from SD1 can be interpreted in the same way as if rMSSD had been used;
- SD2—the square root of the long-term RR intervals variance (standard deviation measuring the dispersion of points in the Poincare plots of RR intervals along the identity line, a measure of the long-term HRV);
- SD2/SD1—the ratio of SD2 to SD1 that measures the balance between the long- and short-term HRV;
- CV—the coefficient of variance—the index of total variance normalized to the mean RR multiplied by 100%;
- pNN50—the percentage of adjacent normal RR intervals (or normal-to-normal–NN) that differ by more than 50 ms. It is a simple measure of short-term HRV based on counting statistics.
- CS—the contribution of the short-term HRV to the total HRV that is a percentage of the short-term variance (SD12) of RR intervals to doubled total variance of RR intervals (SDNN2);
- CL—the contribution of the long-term HRV to the total HRV that is a percentage of the long-term variance (SD22) of RR intervals to doubled total variance of RR intervals (SDNN2).
2.4. Heart Rate Asymmetry Measurement
- SD1d2—part of SD12 derived from HR decelerations;
- SD1a2—part of SD12 derived from HR accelerations.
- SD2d2—part of SD22 derived from HR decelerations;
- SD2a2—part of SD22 derived from HR accelerations.
- SDNNd2—part of SDNN2 related to HR decelerations;
- SDNNa2—part of SDNN-related to HR accelerations.
- nd—the absolute number of HR decelerations;
- na—the absolute number of HR accelerations.
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Descriptors of Global, i.e., 48-h, HRV and HRA
3.3. Prevalence of Various Forms of HRA and HRA Compensation
3.4. Comparison of HRV and HRA between Men and Women
3.5. Prevalence of Various Forms of HRA and HRA Compensation
4. Discussion
4.1. HRA in Physiological and Clinical Conditions
4.2. HRA and Its Compensation in Healthy People in ECGs of Different Lengths
4.3. HRA and HRV in Men and Women
4.4. Study Limitations
4.5. Sampling Frequency
4.6. Novelty, Potential Clinical Meaning, and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the American Society of Pacing and Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Karemaker, J.M. Autonomic Integration: The Physiological Basis of Cardiovascular Variability. J. Physiol. 1999, 517 Pt 2, 316. [Google Scholar] [CrossRef]
- Crystal, G.J.; Salem, M.R. The Bainbridge and the “Reverse” Bainbridge Reflexes: History, Physiology, and Clinical Relevance. Anesth. Analg. 2012, 114, 520–532. [Google Scholar] [CrossRef]
- Fatisson, J.; Oswald, V.; Lalonde, F. Influence Diagram of Physiological and Environmental Factors Affecting Heart Rate Variability: An Extended Literature Overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
- Weiss, J.N.; Qu, Z.; Shivkumar, K. Electrophysiology of Hypokalemia and Hyperkalemia. Circ. Arrhythm. Electrophysiol. 2017, 10, e004667. [Google Scholar] [CrossRef]
- Severi, S.; Cavalcanti, S.; Mancini, E.; Santoro, A. Effect of Electrolyte and PH Changes on the Sinus Node Pacemaking in Humans. J. Electrocardiol. 2002, 35, 115–124. [Google Scholar] [CrossRef]
- von Olshausen, K.; Bischoff, S.; Kahaly, G.; Mohr-Kahaly, S.; Erbel, R.; Beyer, J.; Meyer, J. Cardiac Arrhythmias and Heart Rate in Hyperthyroidism. Am. J. Cardiol. 1989, 63, 930–933. [Google Scholar] [CrossRef]
- Dai, R.; Dheen, T.S.; Tay, S. Induction of Cytokine Expression in Rat Post-Ischemic Sinoatrial Node (SAN). Cell Tissue Res. 2002, 310, 59–66. [Google Scholar] [CrossRef]
- MacDonald, E.A.; Rose, R.A.; Quinn, T.A. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight from Experimental Models and Findings from Humans. Front. Physiol. 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Harthoorn, L.F.; Dransfield, E. Periprandial Changes of the Sympathetic-Parasympathetic Balance Related to Perceived Satiety in Humans. Eur. J. Appl. Physiol. 2008, 102, 601–608. [Google Scholar] [CrossRef]
- Critchley, H.D.; Harrison, N.A. Visceral Influences on Brain and Behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, W.; Wei, Z.; Zhang, H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front. Cardiovasc. Med. 2021, 8, 1456. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Heart Rate Asymmetry by Poincaré Plots of RR Intervals. Biomed. Technol. Eng. 2006, 51, 272–275. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Asymmetric Properties of Long-Term and Total Heart Rate Variability. Med. Biol. Eng. Comput. 2011, 49, 1289–1297. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Compensatory Properties of Heart Rate Asymmetry. J. Electrocardiol. 2012, 45, 220–224. [Google Scholar] [CrossRef]
- Porta, A.; Casali, K.R.; Casali, A.G.; Gnecchi-Ruscone, T.; Tobaldini, E.; Montano, N.; Lange, S.; Geue, D.; Cysarz, D.; Van Leeuwen, P. Temporal Asymmetries of Short-Term Heart Period Variability Are Linked to Autonomic Regulation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R550–R557. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. The Structure of Heart Rate Asymmetry: Deceleration and Acceleration Runs. Physiol. Meas. 2011, 32, 1011–1023. [Google Scholar] [CrossRef]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dassi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-Hour Assessment of the Neural Regulation of Systemic Arterial Pressure and RR Variabilities in Ambulant Subjects. Circulation 1990, 81, 537–547. [Google Scholar] [CrossRef]
- Bonnemeier, H.; Richardt, G.; Potratz, J.; Wiegand, U.K.H.; Brandes, A.; Kluge, N.; Katus, H.A. Circadian Profile of Cardiac Autonomic Nervous Modulation in Healthy Subjects: Differing Effects of Aging and Gender on Heart Rate Variability. J. Cardiovasc. Electrophysiol. 2003, 14, 791–799. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Kuo, T.B.J.; Lai, C.-T.; Yang, C.C.H. Effects of Breathing Frequency on the Heart Rate Deceleration Capacity and Heart Rate Acceleration Capacity. Eur. J. Appl. Physiol. 2015, 115, 2415–2420. [Google Scholar] [CrossRef]
- Julien, C. The Enigma of Mayer Waves: Facts and Models. Cardiovasc. Res. 2006, 70, 12–21. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Ellert, J.; Krauze, T. Asymmetry of Haemodynamic Variability in Healthy People. In Proceedings of the 2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO), Trento, Italy, 25–28 May 2014; pp. 129–130. [Google Scholar]
- Parlow, J.; Viale, J.P.; Annat, G.; Hughson, R.; Quintin, L. Spontaneous Cardiac Baroreflex in Humans. Comparison with Drug-Induced Responses. Hypertension 1995, 25, 1058–1068. [Google Scholar] [CrossRef]
- Guzik, P.; Zuchowski, B.; Blaszyk, K.; Seniuk, W.; Wasniewski, M.; Gwizdala, A.; Wykretowicz, A.; Piskorski, J. Asymmetry of the Variability of Heart Rate and Conduction Time between Atria and Ventricles. Circ. J. Off. J. Jpn. Circ. Soc. 2013, 77, 2904–2911. [Google Scholar] [CrossRef]
- Guzik, P. Asymetria Rytmu Serca, Krótko-i Długoterminowe Składowe Zmienności Rytmu Serca u Zdrowych Osób; Wydawnictwo Naukowe Uniwersytetu Medycznego im. Karola Marcinkowskiego: Poznań, Poland, 2009. [Google Scholar]
- Piskorski, J.; Guzik, P. Geometry of the Poincaré Plot of RR Intervals and Its Asymmetry in Healthy Adults. Physiol. Meas. 2007, 28, 287–300. [Google Scholar] [CrossRef]
- Piskorski, J.; Ellert, J.; Krauze, T.; Grabowski, W.; Wykretowicz, A.; Guzik, P. Testing Heart Rate Asymmetry in Long, Nonstationary 24 Hour RR-Interval Time Series. Physiol. Meas. 2019, 40, 105001. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do Existing Measures of Poincare Plot Geometry Reflect Nonlinear Features of Heart Rate Variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Partitioning Total Heart Rate Variability. Int. J. Cardiol. 2010, 144, 138–139. [Google Scholar] [CrossRef]
- Pawłowski, R.; Buszko, K.; Newton, J.L.; Kujawski, S.; Zalewski, P. Heart Rate Asymmetry Analysis During Head-Up Tilt Test in Healthy Men. Front. Physiol. 2021, 12, 657902. [Google Scholar] [CrossRef]
- Shi, P.; Li, A.; Wu, L.; Yu, H. The Effect of Passive Lower Limb Training on Heart Rate Asymmetry. Physiol. Meas. 2022, 43, 015003. [Google Scholar] [CrossRef] [PubMed]
- Chladekova, L.; Czippelova, B.; Turianikova, Z.; Tonhajzerova, I.; Calkovska, A.; Baumert, M.; Javorka, M. Multiscale Time Irreversibility of Heart Rate and Blood Pressure Variability during Orthostasis. Physiol. Meas. 2012, 33, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Mina-Paz, Y.; Santana-García, V.N.; Tafur-Tascon, L.J.; Cabrera-Hernández, M.A.; Pliego-Carrillo, A.C.; Reyes-Lagos, J.J. Analysis of Short-Term Heart Rate Asymmetry in High-Performance Athletes and Non-Athletes. Symmetry 2022, 14, 1229. [Google Scholar] [CrossRef]
- Frank, J.; Seifert, G.; Schroeder, R.; Gruhn, B.; Stritter, W.; Jeitler, M.; Steckhan, N.; Kessler, C.S.; Michalsen, A.; Voss, A. Yoga in School Sports Improves Functioning of Autonomic Nervous System in Young Adults: A Non-Randomized Controlled Pilot Study. PLoS ONE 2020, 15, e0231299. [Google Scholar] [CrossRef]
- Klintworth, A.; Ajtay, Z.; Paljunite, A.; Szabados, S.; Hejjel, L. Heart Rate Asymmetry Follows the Inspiration/Expiration Ratio in Healthy Volunteers. Physiol. Meas. 2012, 33, 1717–1731. [Google Scholar] [CrossRef]
- Parvaneh, S.; Toosizadeh, N.; Moharreri, S. Computing in Cardiology 2015. In Proceedings of the Impact of Mental Stress on Heart Rate Asymmetry, Nice, France, 6–9 September 2015; pp. 793–796. [Google Scholar]
- Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I. Complexity and Time Asymmetry of Heart Rate Variability Are Altered in Acute Mental Stress. Physiol. Meas. 2014, 35, 1319–1334. [Google Scholar] [CrossRef]
- Kaczmarek, L.D.; Behnke, M.; Enko, J.; Kosakowski, M.; Hughes, B.M.; Piskorski, J.; Guzik, P. Effects of Emotions on Heart Rate Asymmetry. Psychophysiology 2019, 56, e13318. [Google Scholar] [CrossRef]
- Tonhajzerová, I.; Ondrejka, I.; Farský, I.; Višňovcová, Z.; Mešťaník, M.; Javorka, M.; Jurko, A.; Čalkovská, A.; Tonhajzerova, I. Attention Deficit/Hyperactivity Disorder (ADHD) Is Associated with Altered Heart Rate Asymmetry. Physiol. Res. 2014, 63, 509–519. [Google Scholar] [CrossRef]
- Thomas Bigger, J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; Van der Molen, M.W. Heart Rate Variability: Origins, Methods, and Interpretive Caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- El-Sherif, N.; Turitto, G. Electrolyte Disorders and Arrhythmogenesis. Cardiol. J. 2011, 18, 13. [Google Scholar]
- Parati, G.; Saul, J.P.; Di Rienzo, M.; Mancia, G. Spectral Analysis of Blood Pressure and Heart Rate Variability in Evaluating Cardiovascular Regulation. A Critical Appraisal. Hypertension 1995, 25, 1276–1286. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal Balance. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef]
- Marmerstein, J.T.; McCallum, G.A.; Durand, D.M. Direct Measurement of Vagal Tone in Rats Does Not Show Correlation to HRV. Sci. Rep. 2021, 11, 1210. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Contreras, P.; Migliaro, E.R. Asymmetrical Properties of Heart Rate Variability in Type 1 Diabetes. Clin. Auton. Res. 2010, 20, 255–257. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Barthel, P.; Bauer, A.; Müller, A.; Junk, N.; Ulm, K.; Malik, M.; Schmidt, G. Heart Rate Deceleration Runs for Postinfarction Risk Prediction. J. Electrocardiol. 2012, 45, 70–76. [Google Scholar] [CrossRef]
- Cysarz, D.; Lange, S.; Matthiessen, P.F.; van Leeuwen, P. Regular Heartbeat Dynamics Are Associated with Cardiac Health. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2007, 292, R368–R372. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J.; Awan, K.; Krauze, T.; Fitzpatrick, M.; Baranchuk, A. Obstructive Sleep Apnea and Heart Rate Asymmetry Microstructure during Sleep. Clin. Auton. Res. 2013, 23, 91–100. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Zhang, C.; Wang, G.; Fang, J.; Ma, J.; Zhang, J. Heart Rate Acceleration Runs and Deceleration Runs in Patients with Obstructive Sleep Apnea Syndrome. Sleep Breath. 2017, 21, 443–451. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Farhy, L.S.; Cao, H.; Griffin, M.P.; Lake, D.E.; Moorman, J.R. Sample Asymmetry Analysis of Heart Rate Characteristics with Application to Neonatal Sepsis and Systemic Inflammatory Response Syndrome. Pediatr. Res. 2003, 54, 892–898. [Google Scholar] [CrossRef]
- Kramarić, K.; Šapina, M.; Garcin, M.; Milas, K.; Pirić, M.; Brdarić, D.; Lukić, G.; Milas, V.; Pušeljić, S. Heart Rate Asymmetry as a New Marker for Neonatal Stress. Biomed. Signal Process. Control 2019, 47, 219–223. [Google Scholar] [CrossRef]
- Karmakar, C.K.; Jelinek, H.F.; Warner, P.; Khandoker, A.H.; Palaniswami, M. Effect of gender and diabetes on major depressive disorder using heart rate asymmetry. In Proceedings of the Effect of Gender and Diabetes on Major Depressive Disorder Using Heart Rate Asymmetry, Chicago, IL, USA, 26–30 August 2014; pp. 6679–6682. [Google Scholar]
- Shi, B.; Wang, L.; Yan, C.; Chen, D.; Liu, M.; Li, P. Nonlinear Heart Rate Variability Biomarkers for Gastric Cancer Severity: A Pilot Study. Sci. Rep. 2019, 9, 13833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender over Nine Decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Stein, P.K.; Kleiger, R.E.; Rottman, J.N. Differing Effects of Age on Heart Rate Variability in Men and Women. Am. J. Cardiol. 1997, 80, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Bobkowski, W.; Stefaniak, M.E.; Krauze, T.; Gendera, K.; Wykretowicz, A.; Piskorski, J.; Guzik, P. Measures of Heart Rate Variability in 24-h ECGs Depend on Age but Not Gender of Healthy Children. Front. Physiol. 2017, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-Term Heart Rate Variability—Influence of Gender and Age in Healthy Subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, K.; Tsumura, T.; Ishii, H.; Ijiri, H.; Tamura, K.; Tsukahara, S. Circadian Rhythm of Autonomic Nervous Function in Patients with Normal-Tension Glaucoma Compared with Normal Subjects Using Ambulatory Electrocardiography. J. Glaucoma 2000, 9, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Colón, S.; He, F.; Bixler, E.O.; Fernandez-Mendoza, J.; Vgontzas, A.N.; Berg, A.; Kawasawa, Y.I.; Liao, D. The Circadian Pattern of Cardiac Autonomic Modulation and Obesity in Adolescents. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2014, 24, 265–273. [Google Scholar] [CrossRef]
- Kamen, P.W.; Krum, H.; Tonkin, A.M. Poincaré Plot of Heart Rate Variability Allows Quantitative Display of Parasympathetic Nervous Activity in Humans. Clin. Sci. 1996, 91, 201–208. [Google Scholar] [CrossRef]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.-K.; Schmidt, G.; Yamamoto, Y.; Gorenek, B.; Lip, G.Y.H.; et al. Advances in Heart Rate Variability Signal Analysis: Joint Position Statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association Co-Endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Bauer, A.; Guzik, P.; Barthel, P.; Schneider, R.; Ulm, K.; Watanabe, M.A.; Schmidt, G. Reduced Prognostic Power of Ventricular Late Potentials in Post-Infarction Patients of the Reperfusion Era. Eur. Heart J. 2005, 26, 755–761. [Google Scholar] [CrossRef]
- Bigger, J.T.; Fleiss, J.L.; Steinman, R.C.; Rolnitzky, L.M.; Kleiger, R.E.; Rottman, J.N. Frequency Domain Measures of Heart Period Variability and Mortality after Myocardial Infarction. Circulation 1992, 85, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, T.G.; Bashir, Y.; Cripps, T.; Malik, M.; Poloniecki, J.; Bennett, E.D.; Ward, D.E.; Camm, A.J. Risk Stratification for Arrhythmic Events in Postinfarction Patients Based on Heart Rate Variability, Ambulatory Electrocardiographic Variables and the Signal-Averaged Electrocardiogram. J. Am. Coll. Cardiol. 1991, 18, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.; Malik, M.; Barthel, P.; Schneider, R.; Ulm, K.; Rolnitzky, L.; Camm, A.J.; Bigger, J.T.; Schömig, A. Heart-Rate Turbulence after Ventricular Premature Beats as a Predictor of Mortality after Acute Myocardial Infarction. Lancet Lond. Engl. 1999, 353, 1390–1396. [Google Scholar] [CrossRef]
- Bauer, A.; Kantelhardt, J.W.; Barthel, P.; Schneider, R.; Mäkikallio, T.; Ulm, K.; Hnatkova, K.; Schömig, A.; Huikuri, H.; Bunde, A.; et al. Deceleration Capacity of Heart Rate as a Predictor of Mortality after Myocardial Infarction: Cohort Study. Lancet 2006, 367, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective Study of Heart Rate Variability and Mortality in Chronic Heart Failure: Results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart). Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Anker, S.D.; Chua, T.P.; Szelemej, R.; Piepoli, M.; Adamopoulos, S.; Webb-Peploe, K.; Harrington, D.; Banasiak, W.; Wrabec, K.; et al. Depressed Heart Rate Variability as an Independent Predictor of Death in Chronic Congestive Heart Failure Secondary to Ischemic or Idiopathic Dilated Cardiomyopathy. Am. J. Cardiol. 1997, 79, 1645–1650. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Zareba, W.; Vazquez, R.; Bayes-Genis, A.; Pascual, D.; Macaya, C.; Almendral, J.; Fiol, M.; Bardaji, A.; Gonzalez-Juanatey, J.R.; et al. Risk Stratification of Mortality in Patients with Heart Failure and Left Ventricular Ejection Fraction >35%. Am. J. Cardiol. 2009, 103, 1003–1010. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Zareba, W.; Vazquez, R.; Almendral, J.; Bayes-Genis, A.; Fiol, M.; Valdes, M.; Macaya, C.; Gonzalez-Juanatey, J.R.; Cinca, J.; et al. Prognostic Value of QT/RR Slope in Predicting Mortality in Patients with Congestive Heart Failure. J. Cardiovasc. Electrophysiol. 2008, 19, 1066–1072. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Vallverdu, M.; Cygankiewicz, I.; Vazquez, R.; Bayes de Luna, A.; Caminal, P. Linear and Nonlinear Heart Rate Variability Risk Stratification in Heart Failure Patients. In Proceedings of the 2008 Computers in Cardiology, Bologna, Italy, 14–17 September 2008; pp. 557–560. [Google Scholar]
- Sandercock, G.R.H.; Brodie, D.A. The Role of Heart Rate Variability in Prognosis for Different Modes of Death in Chronic Heart Failure. Pacing Clin. Electrophysiol. PACE 2006, 29, 892–904. [Google Scholar] [CrossRef]
Parameter | Median | IQR |
---|---|---|
SDNN [ms] | 159.83 | 140.57–184.31 |
SD1 [ms] | 27.29 | 21.00–35.41 |
SD2 [ms] | 224.83 | 197.48–257.68 |
pNN50 [%] | 12.26 | 6.09-21.42 |
Mean RR interval [ms] | 809.83 | 762.69–865.10 |
SDNNd [ms] | 110.47 | 98.43–126.79 |
SDNNa [ms] | 115.18 | 100.16–134.83 |
SD1d [ms] | 21.11 | 15.48–27.32 |
SD1a [ms] | 17.92 | 13.42–23.28 |
SD2d [ms] | 155.55 | 138.13–177.98 |
SD2a [ms] | 162.21 | 140.50–188.62 |
Nd [%] | 48.93 | 47.97–50.00 |
CS [%] | 1.43 | 1.03–2.20 |
SD2/SD1 | 8.31 | 6.67–9.78 |
CV [%] | 19.80 | 17.54–22.78 |
CTd [%] | 48.05 | 46.94–49.30 |
C1d [%] | 57.31 | 54.26–59.84 |
C2d [%] | 47.95 | 46.73–49.27 |
CSd [%] | 0.85 | 0.95–1.25 |
CSa [%] | 0.64 | 0.45–0.96 |
CLd [%] | 47.25 | 45.72–48.56 |
CLa [%] | 51.27 | 50.14–52.15 |
N | % | p-Value | |
---|---|---|---|
HRA1 | 99 | 98.02% | <0.0001 |
HRA2 | 90 | 89.11% | <0.0001 |
HRAT | 89 | 88.12% | <0.0001 |
HRAN | 75 | 74.26% | <0.0001 |
HRAcomp | 89 | 88.12% | <0.0001 |
Parameter | Men | Women | p-Value (M-W) | ||
---|---|---|---|---|---|
Median | IQR | Median | IQR | ||
SDNN [ms] | 173.57 | 153.24–190.49 | 152.72 | 130.86–180.89 | 0.0220 |
SD1 [ms] | 30.61 | 23.29–38.31 | 25.00 | 18.94–33.87 | 0.0570 |
SD2 [ms] | 243.73 | 214.19–267.06 | 215.14 | 184.04–253.79 | 0.0204 |
pNN50 [%] | 13.27 | 7.48–23.05 | 10.77 | 5.04-20.18 | 0.2595 |
Mean RR interval [ms] | 849.14 | 780.62–910.48 | 784.23 | 744.51–827.61 | 0.0003 |
SDNNd [ms] | 118.18 | 104.83–131.48 | 106.60 | 91.86–124.85 | 0.0267 |
SDNNa [ms] | 124.81 | 110.43–137.83 | 110.19 | 93.17–130.63 | 0.0190 |
SD1d [ms] | 23.28 | 17.38–29.44 | 17.83 | 14.00–25.91 | 0.0240 |
SD1a [ms] | 18.27 | 14.69–24.09 | 16.41 | 12.56–22.29 | 0.1659 |
SD2d [ms] | 165.93 | 146.52–184.07 | 149.54 | 129.15–172.09 | 0.0240 |
SD2a [ms] | 175.86 | 155.10–193.48 | 155.18 | 131.02–183.97 | 0.0194 |
Nd [%] | 48.47 | 47.46–49.70 | 49.35 | 48.42–50.38 | 0.0187 |
CS [%] | 1.67 | 1.06–2.34 | 1.34 | 1.03–2.09 | 0.3929 |
SD2/SD1 | 7.66 | 6.46–9.68 | 8.57 | 6.85–9.80 | 0.3891 |
CV [%] | 19.98 | 18.28–23.20 | 19.68 | 17.28–22.29 | 0.5605 |
CTd [%] | 47.52 | 46.81–48.75 | 48.54 | 47.58–49.39 | 0.0312 |
C1d [%] | 58.71 | 56.40–61.49 | 55.68 | 52.86–58.72 | 0.0008 |
C2d [%] | 47.28 | 46.48–48.71 | 48.47 | 47.43–49.37 | 0.0286 |
CSd [%] | 0.98 | 0.60–1.41 | 0.73 | 0.59–1.12 | 0.1877 |
CSa [%] | 0.65 | 0.43–0.92 | 0.59 | 0.48–0.95 | 0.8090 |
CLd [%] | 46.50 | 45.33–48.38 | 47.92 | 46.36–48.72 | 0.0442 |
CLa [%] | 51.68 | 50.84–52.35 | 50.85 | 49.89–51.93 | 0.0258 |
Women | Men | p-Value for Sex Comparisons * | |||||
---|---|---|---|---|---|---|---|
N | % | p | N | % | p | ||
HRA1 | 53 | 98.15% | <0.0001 | 46 | 97.87% | <0.0001 | 1 |
HRA2 | 47 | 87.04% | <0.0001 | 43 | 91.49% | <0.0001 | 0.5371 |
HRAT | 46 | 85.19% | <0.0001 | 43 | 91.49% | <0.0001 | 0.3726 |
HRAN | 36 | 66.67% | 0.0143 | 39 | 82.98% | <0.0001 | 0.0714 |
HRAcomp | 46 | 85.19% | <0.0001 | 43 | 91.49% | <0.0001 | 0.3726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibrecht, G.; Piskorski, J.; Krauze, T.; Guzik, P. Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults during 48-h Holter ECG Recordings. J. Clin. Med. 2023, 12, 1219. https://doi.org/10.3390/jcm12031219
Sibrecht G, Piskorski J, Krauze T, Guzik P. Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults during 48-h Holter ECG Recordings. Journal of Clinical Medicine. 2023; 12(3):1219. https://doi.org/10.3390/jcm12031219
Chicago/Turabian StyleSibrecht, Greta, Jarosław Piskorski, Tomasz Krauze, and Przemysław Guzik. 2023. "Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults during 48-h Holter ECG Recordings" Journal of Clinical Medicine 12, no. 3: 1219. https://doi.org/10.3390/jcm12031219
APA StyleSibrecht, G., Piskorski, J., Krauze, T., & Guzik, P. (2023). Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults during 48-h Holter ECG Recordings. Journal of Clinical Medicine, 12(3), 1219. https://doi.org/10.3390/jcm12031219