Potential Neuromodulation of the Cardio-Renal Syndrome
Abstract
:1. Introduction
2. Neural Regulation of Renal Function
3. Impaired Cardiovascular Reflexes in CHF
4. Renal Denervation
5. Spinal Cord Stimulation
6. Carotid Baroreflex Activation
7. Cardiac Afferent Denervation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [PubMed]
- Damman, K.; Masson, S.; Hillege, H.L.; Maggioni, A.P.; Voors, A.A.; Opasich, C.; van Veldhuisen, D.J.; Montagna, L.; Cosmi, F.; Tognoni, G.; et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur. Heart J. 2011, 32, 2705–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinkeler, S.J.; Damman, K.; van Veldhuisen, D.J.; Hillege, H.; Navis, G. A re-appraisal of volume status and renal function impairment in chronic heart failure: Combined effects of pre-renal failure and venous congestion on renal function. Heart Fail. Rev. 2012, 17, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Sarraf, M.; Masoumi, A.; Schrier, R.W. Cardiorenal syndrome in acute decompensated heart failure. Clin. J. Am. Soc. Nephrol. CJASN 2009, 4, 2013–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teruya, R.; Ikejiri, A.T.; Somaio Neto, F.; Chaves, J.C.; Bertoletto, P.R.; Taha, M.O.; Fagundes, D.J. Expression of oxidative stress and antioxidant defense genes in the kidney of inbred mice after intestinal ischemia and reperfusion. Acta Cir. Bras. 2013, 28, 848–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanzo, M.R. The Cardiorenal Syndrome in Heart Failure. Cardiol. Clin. 2022, 40, 219–235. [Google Scholar] [CrossRef]
- Heerspink, H.J.; Gao, P.; de Zeeuw, D.; Clase, C.; Dagenais, G.R.; Sleight, P.; Lonn, E.; Teo, K.T.; Yusuf, S.; Mann, J.F. The effect of ramipril and telmisartan on serum potassium and its association with cardiovascular and renal events: Results from the ONTARGET trial. Eur. J. Prev. Cardiol. 2014, 21, 299–309. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A. Anemia of cardiorenal syndrome. Kidney Int. Suppl. 2021, 11, 35–45. [Google Scholar] [CrossRef]
- Charytan, D.M.; Fishbane, S.; Malyszko, J.; McCullough, P.A.; Goldsmith, D. Cardiorenal Syndrome and the Role of the Bone-Mineral Axis and Anemia. Am. J. Kidney Dis. 2015, 66, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Giam, B.; Kaye, D.M.; Rajapakse, N.W. Role of Renal Oxidative Stress in the Pathogenesis of the Cardiorenal Syndrome. Heart Lung Circ. 2016, 25, 874–880. [Google Scholar] [CrossRef]
- Liang, W.; He, X.; Xue, R.; Wei, F.; Dong, B.; Wu, Z.; Owusu-Agyeman, M.; Wu, Y.; Zhou, Y.; Dong, Y.; et al. Association of hyponatraemia and renal function in type 1 cardiorenal syndrome. Eur. J. Clin. Invest. 2020, 50, e13269. [Google Scholar] [CrossRef]
- Patschan, D.; Drubel, K.; Matyukhin, I.; Marahrens, B.; Patschan, S.; Ritter, O. Kidney Replacement Therapy in Cardiorenal Syndromes. J. Clin. Med. Res. 2022, 14, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Shabari, F.R.; George, J.; Cuchiara, M.P.; Langsner, R.J.; Heuring, J.J.; Cohn, W.E.; Hertzog, B.A.; Delgado, R. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a porcine model of acute left ventricular dysfunction. ASAIO J. 2013, 59, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Pabst, D.; Sanchez-Cueva, P.A.; Soleimani, B.; Brehm, C.E. Predictors for acute and chronic renal failure and survival in patients supported with veno-arterial extracorporeal membrane oxygenation. Perfusion 2020, 35, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, H.; Kapur, N.K.; Abraham, W.T.; Udelson, J.; Itkin, M.; Uriel, N.; Voors, A.A.; Burkhoff, D. Conceptual Considerations for Device-Based Therapy in Acute Decompensated Heart Failure: DRI(2)P(2)S. Circ. Heart Fail. 2020, 13, e006731. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, K.; Shimizu, J.; Yi, G.H.; Gu, A.; Wang, J.; Keren, G.; Burkhoff, D. Selective renal vasodilation and active renal artery perfusion improve renal function in dogs with acute heart failure. J. Pharmacol. Exp. Ther. 2001, 298, 1154–1160. [Google Scholar]
- Katsurada, K.; Shinohara, K.; Aoki, J.; Nanto, S.; Kario, K. Renal denervation: Basic and clinical evidence. Hypertens. Res. 2021, 45, 198–209. [Google Scholar] [CrossRef]
- Osborn, J.W.; Tyshynsky, R.; Vulchanova, L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu. Rev. Physiol. 2021, 83, 429–450. [Google Scholar] [CrossRef]
- Mancia, G. Renal nerve ablation. Eur. Heart J. 2018, 39, 4060–4061. [Google Scholar] [CrossRef]
- Barajas, L. Innervation of the renal cortex. Fed. Proc. 1978, 37, 1192–1201. [Google Scholar]
- Barajas, L.; Liu, L.; Powers, K. Anatomy of the renal innervation: Intrarenal aspects and ganglia of origin. Can. J. Physiol. Pharmacol. 1992, 70, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Imnadze, G.; Balzer, S.; Meyer, B.; Neumann, J.; Krech, R.H.; Thale, J.; Franz, N.; Warnecke, H.; Awad, K.; Hayek, S.S.; et al. Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation. J. Interv. Cardiol. 2016, 29, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Barajas, L.; Silverman, A.J.; Muller, J. Ultrastructural localization of acetylcholinesterase in the renal nerves. J. Ultrastruct. Res. 1974, 49, 297–311. [Google Scholar] [CrossRef]
- Ferguson, M.; Bell, C. Ultrastructural localization and characterization of sensory nerves in the rat kidney. J. Comp. Neurol. 1988, 274, 9–16. [Google Scholar] [CrossRef]
- Kluge, N.; Dacey, M.; Hadaya, J.; Shivkumar, K.; Chan, S.A.; Ardell, J.L.; Smith, C. Rapid measurement of cardiac neuropeptide dynamics by capacitive immunoprobe in the porcine heart. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H66–H76. [Google Scholar] [CrossRef] [PubMed]
- Alsanie, W.F.; Abdelrahman, S.; Alhomrani, M.; Gaber, A.; Habeeballah, H.; Alkhatabi, H.A.; Felimban, R.I.; Hauser, C.A.E.; Tayeb, H.H.; Alamri, A.S.; et al. Prenatal Exposure to Gabapentin Alters the Development of Ventral Midbrain Dopaminergic Neurons. Front. Pharmacol. 2022, 13, 923113. [Google Scholar] [CrossRef]
- Wu, Z.; He, K.; Chen, Y.; Li, H.; Pan, S.; Li, B.; Liu, T.; Xi, F.; Deng, F.; Wang, H.; et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 2022, 110, 770–782.e775. [Google Scholar] [CrossRef]
- Fourman, J. The distribution and variations of cholinesterase activity in the nephron and in other tissues concerned with sodium transport. J. Physiol. 1967, 191, 52P–53P. [Google Scholar]
- Rao, K.V.; Swami, K.S. The effects of histamine and pheniramine maleate on the activities of dehydrogenases and acetylcholinesterase in sheep kidney homogenate. Ann. Allergy 1969, 27, 429–433. [Google Scholar]
- Sata, Y.; Head, G.A.; Denton, K.; May, C.N.; Schlaich, M.P. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension. Front. Med. 2018, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Johns, E.J.; Kopp, U.C.; DiBona, G.F. Neural control of renal function. Compr. Physiol. 2011, 1, 731–767. [Google Scholar] [PubMed]
- Hammond, R.L.; Augustyniak, R.A.; Rossi, N.F.; Lapanowski, K.; Dunbar, J.C.; O’Leary, D.S. Alteration of humoral and peripheral vascular responses during graded exercise in heart failure. J. Appl. Physiol. 2001, 90, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, U.C. Role of renal sensory nerves in physiological and pathophysiological conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R79–R95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiBona, G.F. Functionally specific renal sympathetic nerve fibers: Role in cardiovascular regulation. Am. J. Hypertens. 2001, 14, 163s–170s. [Google Scholar] [CrossRef]
- DeLalio, L.J.; Stocker, S.D. Sympathoexcitatory responses to renal chemosensitive stimuli are exaggerated at nighttime in rats. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H437–H448. [Google Scholar] [CrossRef]
- Barry, E.F.; Johns, E.J. Intrarenal bradykinin elicits reno-renal reflex sympatho-excitation and renal nerve-dependent fluid retention. Acta Physiol. 2015, 213, 731–739. [Google Scholar] [CrossRef]
- AlMarabeh, S.; Lucking, E.F.; O’Halloran, K.D.; Abdulla, M.H. Intrarenal pelvic bradykinin-induced sympathoexcitatory reno-renal reflex is attenuated in rats exposed to chronic intermittent hypoxia. J. Hypertens. 2022, 40, 46–64. [Google Scholar] [CrossRef]
- Zheng, H.; Katsurada, K.; Liu, X.; Knuepfer, M.M.; Patel, K.P. Specific Afferent Renal Denervation Prevents Reduction in Neuronal Nitric Oxide Synthase Within the Paraventricular Nucleus in Rats With Chronic Heart Failure. Hypertension 2018, 72, 667–675. [Google Scholar] [CrossRef]
- Katsurada, K.; Nandi, S.S.; Zheng, H.; Liu, X.; Sharma, N.M.; Patel, K.P. GLP-1 mediated diuresis and natriuresis are blunted in heart failure and restored by selective afferent renal denervation. Cardiovasc. Diabetol. 2020, 19, 57. [Google Scholar] [CrossRef]
- Katsurada, K.; Ogoyama, Y.; Imai, Y.; Patel, K.P.; Kario, K. Renal denervation based on experimental rationale. Hypertens. Res. 2021, 44, 1385–1394. [Google Scholar] [CrossRef]
- Xiao, L.; Kirabo, A.; Wu, J.; Saleh, M.A.; Zhu, L.; Wang, F.; Takahashi, T.; Loperena, R.; Foss, J.D.; Mernaugh, R.L.; et al. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II-Induced Hypertension. Circ. Res. 2015, 117, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Banek, C.T.; Knuepfer, M.M.; Foss, J.D.; Fiege, J.K.; Asirvatham-Jeyaraj, N.; Van Helden, D.; Shimizu, Y.; Osborn, J.W. Resting Afferent Renal Nerve Discharge and Renal Inflammation: Elucidating the Role of Afferent and Efferent Renal Nerves in Deoxycorticosterone Acetate Salt Hypertension. Hypertension 2016, 68, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zucker, I.H. Cardiac sympathetic afferent reflex in dogs with congestive heart failure. Am. J. Physiol. 1996, 271, R751–R756. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.J.; Wang, W.; Cornish, K.G.; Rozanski, G.J.; Zucker, I.H. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension 2014, 64, 745–755. [Google Scholar] [CrossRef]
- Kaufman, M.P.; Hayes, S.G. The exercise pressor reflex. Clin. Auton. Res. 2002, 12, 429–439. [Google Scholar] [CrossRef]
- Polónia, J.; Gonçalves, F.R. The historical evolution of knowledge of the involvement of neurohormonal systems in the pathophysiology and treatment of heart failure. Rev. Port. Cardiol. 2019, 38, 883–895. [Google Scholar] [CrossRef]
- Ueda, H.; Tagawa, H.; Ishii, M.; Kaneko, Y. Effect of renal denervation on release and content of renin in anesthetized dogs. Japanese Heart J. 1967, 8, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Mogil, R.A.; Itskovitz, H.D.; Russell, J.H.; Murphy, J.J. Plasma renin activity and blood pressure before and after renal denervation. Invest. Urol. 1970, 7, 442–447. [Google Scholar]
- Delacroix, S.; Chokka, R.G.; Nelson, A.J.; Wong, D.T.; Sidharta, S.; Pederson, S.M.; Rajwani, A.; Nimmo, J.; Teo, K.S.; Worthley, S.G. Renal sympathetic denervation increases renal blood volume per cardiac cycle: A serial magnetic resonance imaging study in resistant hypertension. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Krum, H.; Schlaich, M.; Whitbourn, R.; Sobotka, P.A.; Sadowski, J.; Bartus, K.; Kapelak, B.; Walton, A.; Sievert, H.; Thambar, S.; et al. Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet 2009, 373, 1275–1281. [Google Scholar] [CrossRef]
- Banek, C.T.; Gauthier, M.M.; Baumann, D.C.; Van Helden, D.; Asirvatham-Jeyaraj, N.; Panoskaltsis-Mortari, A.; Fink, G.D.; Osborn, J.W. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R883–R891. [Google Scholar] [CrossRef] [PubMed]
- Polhemus, D.J.; Gao, J.; Scarborough, A.L.; Trivedi, R.; McDonough, K.H.; Goodchild, T.T.; Smart, F.; Kapusta, D.R.; Lefer, D.J. Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling. Circ. Res. 2016, 119, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Zaldivia, M.T.; Rivera, J.; Hering, D.; Marusic, P.; Sata, Y.; Lim, B.; Eikelis, N.; Lee, R.; Lambert, G.W.; Esler, M.D.; et al. Renal Denervation Reduces Monocyte Activation and Monocyte-Platelet Aggregate Formation: An Anti-Inflammatory Effect Relevant for Cardiovascular Risk. Hypertension 2017, 69, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kario, K.; Mahfoud, F.; Kandzari, D.E.; Townsend, R.R.; Weber, M.A.; Schmieder, R.E.; Tsioufis, K.; Pocock, S.; Brar, S.; Hettrick, D.A.; et al. Long-term reduction in morning and nighttime blood pressure after renal denervation: 36-month results from SPYRAL HTN-ON MED trial. Hypertens. Res. 2022, 46, 280–288. [Google Scholar] [CrossRef]
- Lauder, L.; Mahfoud, F.; Azizi, M.; Bhatt, D.L.; Ewen, S.; Kario, K.; Parati, G.; Rossignol, P.; Schlaich, M.P.; Teo, K.K.; et al. Hypertension management in patients with cardiovascular comorbidities. Eur. Heart J. 2022, ehac395. [Google Scholar] [CrossRef]
- Kassab, K.; Soni, R.; Kassier, A.; Fischell, T.A. The Potential Role of Renal Denervation in the Management of Heart Failure. J. Clin. Med. 2022, 11, 4147. [Google Scholar] [CrossRef]
- Nammas, W.; Koistinen, J.; Paana, T.; Karjalainen, P.P. Renal sympathetic denervation for treatment of patients with heart failure: Summary of the available evidence. Ann. Med. 2017, 49, 384–395. [Google Scholar] [CrossRef]
- Ye, S.; Zhong, H.; Yanamadala, S.; Campese, V.M. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 2006, 48, 309–315. [Google Scholar] [CrossRef]
- Pellegrino, P.R.; Zucker, I.H.; Chatzizisis, Y.S.; Wang, H.J.; Schiller, A.M. Quantification of Renal Sympathetic Vasomotion as a Novel End Point for Renal Denervation. Hypertension 2020, 76, 1247–1255. [Google Scholar] [CrossRef]
- Burnett, J.C., Jr.; Haas, J.A.; Knox, F.G. Segmental analysis of sodium reabsorption during renal vein constriction. Am. J. Physiol. 1982, 243, F19–F22. [Google Scholar] [CrossRef]
- Schramm, L.P.; Livingstone, R.H. Inhibition of renal nerve sympathetic activity by spinal stimulation in rat. Am. J. Physiol. 1987, 252, R514–R525. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.F.; Schramm, L.P. Spinally mediated inhibition of abdominal and lumbar sympathetic activities. Am. J. Physiol. 1988, 254, R655–R658. [Google Scholar] [CrossRef] [PubMed]
- Standish, A.; Vizzard, M.A.; Ammons, W.S. Tonic descending modulation of spinal neurons with renal input. Brain Res. 1992, 576, 12–24. [Google Scholar] [CrossRef]
- Schwartz, P.J.; La Rovere, M.T.; De Ferrari, G.M.; Mann, D.L. Autonomic modulation for the management of patients with chronic heart failure. Circ. Heart Fail. 2015, 8, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T. Deep and future insights into neuromodulation therapies for heart failure. J. Cardiol. 2016, 68, 368–372. [Google Scholar] [CrossRef]
- Zucker, I.H.; Wang, W.; Brändle, M.; Schultz, H.D.; Patel, K.P. Neural regulation of sympathetic nerve activity in heart failure. Prog. Cardiovasc. Dis. 1995, 37, 397–414. [Google Scholar] [CrossRef]
- Zucker, I.H.; Wang, W. Modulation of baroreflex and baroreceptor function in experimental heart failure. Basic Res. Cardiol. 1991, 86 (Suppl. 3), 133–148. [Google Scholar]
- Gao, L.; Schultz, H.D.; Patel, K.P.; Zucker, I.H.; Wang, W. Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension 2005, 45, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Braunwald, N.S. Carotid sinus nerve stimulator in the treatment of intractable angina pectoris. Its place in the surgical armamentarium. Ann. Thorac. Surg. 1971, 11, 90–91. [Google Scholar] [CrossRef]
- Elliott, W.C.; King, R.D.; Ross, E.; McHenry, P.L. Carotid sinus nerve stimulation in the treatment of angina pectoris. J. Indiana State Med. Assoc. 1969, 62, 176–180. [Google Scholar]
- Mancia, G.; Parati, G.; Zanchetti, A. Electrical carotid baroreceptor stimulation in resistant hypertension. Hypertension 2010, 55, 607–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumas, M.; Faselis, C.; Tsioufis, C.; Papademetriou, V. Carotid baroreceptor activation for the treatment of resistant hypertension and heart failure. Curr. Hypertens. Rep. 2012, 14, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Gronda, E.; Seravalle, G.; Brambilla, G.; Costantino, G.; Casini, A.; Alsheraei, A.; Lovett, E.G.; Mancia, G.; Grassi, G. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: A proof-of-concept study. Eur. J. Heart Fail. 2014, 16, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Abraham, W.T.; Zile, M.R.; Weaver, F.A.; Butter, C.; Ducharme, A.; Halbach, M.; Klug, D.; Lovett, E.G.; Müller-Ehmsen, J.; Schafer, J.E.; et al. Baroreflex Activation Therapy for the Treatment of Heart Failure With a Reduced Ejection Fraction. JACC Heart Fail. 2015, 3, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemmer, J.S.; Pruett, W.A. Modeling the physiological roles of the heart and kidney in heart failure with preserved ejection fraction during baroreflex activation therapy. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H597–H607. [Google Scholar] [CrossRef]
- Burgoyne, S.; Georgakopoulos, D.; Belenkie, I.; Tyberg, J.V. Systemic vascular effects of acute electrical baroreflex stimulation. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H236–H241. [Google Scholar] [CrossRef] [Green Version]
- Zucker, I.H.; Hackley, J.F.; Cornish, K.G.; Hiser, B.A.; Anderson, N.R.; Kieval, R.; Irwin, E.D.; Serdar, D.J.; Peuler, J.D.; Rossing, M.A. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 2007, 50, 904–910. [Google Scholar] [CrossRef]
- Iliescu, R.; Tudorancea, I.; Lohmeier, T.E. Baroreflex activation: From mechanisms to therapy for cardiovascular disease. Curr. Hypertens. Rep. 2014, 16, 453. [Google Scholar] [CrossRef] [Green Version]
- Marcus, N.J.; Del Rio, R.; Ding, Y.; Schultz, H.D. KLF2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J. Physiol. 2018, 596, 3171–3185. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, R.; Andrade, D.C.; Toledo, C.; Diaz, H.S.; Lucero, C.; Arce-Alvarez, A.; Marcus, N.J.; Schultz, H.D. Carotid Body-Mediated Chemoreflex Drive in The Setting of low and High Output Heart Failure. Sci. Rep. 2017, 7, 8035. [Google Scholar] [CrossRef] [Green Version]
- Andrade, D.C.; Lucero, C.; Toledo, C.; Madrid, C.; Marcus, N.J.; Schultz, H.D.; Del Rio, R. Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BioMed Res. Int. 2015, 2015, 467597. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Chua, T.P.; Piepoli, M.; Ondusova, D.; Webb-Peploe, K.; Harrington, D.; Anker, S.D.; Volterrani, M.; Colombo, R.; Mazzuero, G.; et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 1997, 96, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, R.; Marcus, N.J.; Schultz, H.D. Carotid chemoreceptor ablation improves survival in heart failure: Rescuing autonomic control of cardiorespiratory function. J. Am. Coll. Cardiol. 2013, 62, 2422–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, N.J.; Del Rio, R.; Schultz, E.P.; Xia, X.H.; Schultz, H.D. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J. Physiol. 2014, 592, 391–408. [Google Scholar] [CrossRef] [PubMed]
- Florea, V.G.; Cohn, J.N. The autonomic nervous system and heart failure. Circ. Res. 2014, 114, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Schultz, H.D.; Ustinova, E.E. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc. Res. 1998, 38, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Ustinova, E.E.; Schultz, H.D. Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. Circ. Res. 1994, 74, 895–903. [Google Scholar] [CrossRef]
- Chen, W.W.; Xiong, X.Q.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol. 2015, 213, 778–794. [Google Scholar] [CrossRef]
- Foreman, R.D.; Garrett, K.M.; Blair, R.W. Mechanisms of cardiac pain. Compr. Physiol. 2015, 5, 929–960. [Google Scholar]
- Xia, Z.; Vellichirammal, N.N.; Han, L.; Gao, L.; Boesen, E.I.; Schiller, A.M.; Pellegrino, P.R.; Lisco, S.J.; Guda, C.; Zucker, I.H.; et al. Cardiac Spinal Afferent Denervation Attenuates Renal Dysfunction in Rats With Cardiorenal Syndrome Type 2. JACC Basic Transl. Sci. 2022, 7, 582–596. [Google Scholar] [CrossRef]
- Mehra, R.; Tjurmina, O.A.; Ajijola, O.A.; Arora, R.; Bolser, D.C.; Chapleau, M.W.; Chen, P.S.; Clancy, C.E.; Delisle, B.P.; Gold, M.R.; et al. Research Opportunities in Autonomic Neural Mechanisms of Cardiopulmonary Regulation: A Report From the National Heart, Lung, and Blood Institute and the National Institutes of Health Office of the Director Workshop. JACC Basic Transl. Sci. 2022, 7, 265–293. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucker, I.H.; Xia, Z.; Wang, H.-J. Potential Neuromodulation of the Cardio-Renal Syndrome. J. Clin. Med. 2023, 12, 803. https://doi.org/10.3390/jcm12030803
Zucker IH, Xia Z, Wang H-J. Potential Neuromodulation of the Cardio-Renal Syndrome. Journal of Clinical Medicine. 2023; 12(3):803. https://doi.org/10.3390/jcm12030803
Chicago/Turabian StyleZucker, Irving H., Zhiqiu Xia, and Han-Jun Wang. 2023. "Potential Neuromodulation of the Cardio-Renal Syndrome" Journal of Clinical Medicine 12, no. 3: 803. https://doi.org/10.3390/jcm12030803
APA StyleZucker, I. H., Xia, Z., & Wang, H. -J. (2023). Potential Neuromodulation of the Cardio-Renal Syndrome. Journal of Clinical Medicine, 12(3), 803. https://doi.org/10.3390/jcm12030803